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We test the assumption of entropy conservation between Big Bang nucleosynthesis and recombi-
nation by considering a massive particle that decays into a mixture of photons and other relativistic
species. We employ Planck temperature and polarization anisotropies, COBE/FIRAS spectral
distortion bounds, and the observed primordial deuterium abundance to constrain these decay sce-
narios. If between 56% and 71% of the decaying particle’s energy is transferred to photons, then
Neff at recombination is minimally altered, and Planck data alone allows for significant entropy
injection. If photons are injected by the decay, the addition of spectral distortion bounds restricts
the decay rate of the particle to be ΓY > 1.91 × 10−6 s−1 at 95% confidence level (C.L.). We find
that constraints on the energy density of the decaying particle are significantly enhanced by the
inclusion of bounds on the primordial deuterium abundance, allowing the particle to contribute at
most 2.35% (95% C.L.) of the energy density of the Universe before decaying.

I. INTRODUCTION

An underlying assumption of the standard cosmolog-
ical model is that the comoving entropy density of rel-
ativistic species is conserved. However, many alterna-
tive scenarios include entropy injection into the thermal
bath of relativistic particles. Extreme entropy injection
is needed to completely repopulate the relativistic bath
after an early matter-dominated era [1–4]. Minor entropy
injections that only make small alterations to the radi-
ation density have been proposed to alter the relic dark
matter abundance after thermal freeze-out [5, 6], change
the pre-recombination expansion history [7–9], and even
relax the Hubble tension [10, 11], which is a discrepancy
between the present-day expansion rate inferred from lo-
cal measurements and that inferred from the cosmic mi-
crowave background (CMB) [12–14].

Significant entropy injections, such as those used to
transition out of an early matter-dominated era, must
be complete before neutrino decoupling in order to avoid
altering the light-element abundances predicted by stan-
dard Big Bang nucleosynthesis (BBN) and impacting the
CMB anisotropies. Therefore, significant entropy injec-
tion is generally constrained to have completed at tem-
peratures hotter than about 4 MeV [15, 16].

Minor entropy injections can occur during or after
BBN, but are heavily constrained by their influence on
the expansion rate, baryon-to-photon ratio, and photo-
disintegration of light nuclei [17–23]. Such scenarios have
been thoroughly considered in the context of decaying
axion-like particles [24–27] for which observations of pri-
mordial light-element abundances and the CMB provide
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stringent constraints. However, these investigations fo-
cus on specific axion models and therefore cannot place
comprehensive constraints on general entropy injection.

In this work, we test the assumption of entropy conser-
vation between BBN and recombination by considering
a generic massive particle that decays into a mixture of
photons and other relativistic species (e.g. dark radia-
tion). We explore the bounds that can be placed on the
particle decay rate, ΓY , and the contribution that the
particle makes to the energy composition of the Universe
before it decays. Since these constraints depend on what
relativistic species this massive particle decays into, we
also explore what bounds can be placed on fγ , the frac-
tion of the decaying particle’s energy that is transferred
to photons.

We restrict our analysis to particles with rest-energies
less than 3.2 MeV such that the maximum energy of any
decay products is less than the binding energy of beryl-
lium (1.59 MeV). Photons generated by decaying parti-
cles with larger masses would photodisintegrate light nu-
clei and alter the abundances of primordial elements such
as deuterium, helium, and lithium. Photodisintegration
of deuterium has been shown to place very stringent con-
straints on such entropy injections [22, 23, 27–31]. We
note that the injection of photons with energies between
1.59 and 2.22 MeV would destroy beryllium and not deu-
terium, leading to a potential solution to the lithium
problem (e.g. [32]). Although the inference of the pri-
mordial lithium abundance from observations of metal-
poor stars is subject to uncertainties in stellar modeling
[33, 34], these observations do establish a minimum pri-
mordial lithium abundance, and therefore rule out energy
injections that cause the lithium abundance to fall below
this level. We do not need to consider such bounds under
the assumption that the mass of the decaying particle is
less than 3.2 MeV.

For a particle that is in kinetic equilibrium with the
Standard Model to not contribute to the photodisinte-
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gration of beryllium and be non-relativistic at tempera-
tures less than 1 MeV, it must have a mass in the range
of 2.7 MeV . m . 3.2 MeV.1 However, this tight mass
window can be relaxed if the decaying particle is part of
a hidden sector that is not thermally coupled to the Stan-
dard Model [36–40]. Hidden sector particles could decay
into dark radiation [41, 42] or Standard Model particles
[43–45].

If the hidden sector was originally in kinetic equilib-
rium with the Standard Model particles and then decou-
pled while all of the Standard Model particles were rel-
ativistic, the hidden sector could be significantly colder
than the visible sector. For example, THS/TSM ≈ 0.465
when TSM = 1 MeV if the Y particles are the only
relativistic component of the hidden sector at decou-
pling. In this case, a hidden sector boson with a mass
of 1.3 MeV . m < 3.2 MeV would be non-relativistic at
proton-neutron freeze-out and be light enough such that
any entropy injection from the decay would not result
in photodisintegration of beryllium. It is also possible
that the hidden sector was never in kinetic equilibrium
with the Standard Model, in which case the hidden sector
could be arbitrarily cold. We assume the hidden sector
to be sufficiently cold such that the decaying particle is
non-relativistic by neutron-proton freeze-out. Under this
assumption, our calculations do not depend on the spe-
cific mass of the decaying particle.

To constrain a generic decaying particle we employ
Planck measurements of the CMB temperature and po-
larization anisotropies [46], the most recent measurement
of the primordial deuterium abundance [47], and the
COBE/FIRAS limit on spectral distortions [48, 49]. En-
tropy injection before recombination will alter the effec-
tive number of relativistic species, Neff, resulting in a
change in the expansion rate. Alterations to the pre-
recombination expansion history may be constrained by
observations of CMB anisotropies [50]. Specifically, alter-
ing the expansion rate via Neff affects the amplitude of
small scale perturbations [51, 52] and introduces a phase
shift to the baryon-photon acoustic oscillations [53–55].
Observations of the primordial deuterium abundance are
an excellent way to provide additional constraining power
on nonstandard models, with measurements now reach-
ing 1% precision [47]. Finally, scenarios that inject pho-
tons before recombination may be constrained by CMB
spectral distortions [56–58].

We combine the constraining power of CMB anisotropy
data, deuterium measurements, and CMB spectral dis-
tortions by employing a Markov Chain Monte Carlo
(MCMC) analysis. In doing so, we derive bounds on
the amount and type of radiation that can be injected by
a decaying hidden sector particle.

In many ways, our investigation generalizes the work of
Millea et al. [25] who considered non-photodisintegrating

1 A massive boson transitions from evolving as a−4 to a−3 at a
pivot temperature of Tp = m/2.7 [35].

injections from axion-like particles that decay solely into
photons between BBN and recombination. The specific
coupling of these axion-like particles to photons restricts
the possible parameter space that can be explored. We
remain agnostic regarding a specific particle model. In
doing so, this work has three key distinctions from Millea
et al. [25]: (1) we are able to derive a broadly applicable
bound on the maximum level of entropy injection allowed
between BBN and recombination, (2) we can consider
a particle that decays into photons and dark radiation,
and (3) our full analysis of CMB anisotropies allows us
to investigate the effects that entropy injection has on
standard cosmological parameters, including H0. We de-
termine that minor entropy injection from a hidden sec-
tor particle is not a promising avenue for addressing the
Hubble tension. A more exotic change to the Universe’s
radiation content, such as the inclusion of strongly inter-
acting radiation [11], is needed to significantly increase
the value of H0 inferred from observations of the CMB.

The structure of this paper is as follows. In Sec. II,
we describe the model for our decaying particle. In Sec.
III, we explore the primary effects that the decay has
on Neff and the primordial abundances of helium and
deuterium, and we review the expected constraints from
spectral distortions. We outline the choice of priors and
likelihood functions for our MCMC analysis in Sec. IV,
and Sec. V discusses the results of these analyses. We
conclude with a summary in Sec. VI, and we include
an Appendix that contains a derivation of our analytical
model and technical details of our modifications to the
public code known as CLASS (Appendix A), a derivation
for the post-decay Neff (Appendix B), and supplemental
MCMC results (Appendix C).

II. DECAYING PARTICLE MODEL

We consider a sub-dominant hidden sector Y particle
that decays into photons and other relativistic particles
(e.g. dark radiation) sometime between BBN and recom-
bination. The Eqs. governing the background evolution
for the energy density of the Y particle (ρY ), photons
(ργ), and other ultra-relativistic species (ρur), are

d

dt
ρY + 3HρY = −ΓY ρY , (1)

d

dt
ργ + 4Hργ = fγΓY ρY , (2)

d

dt
ρur + 4Hρur = (1− fγ)ΓY ρY , (3)

where ΓY is the decay rate of the Y particle, H ≡ ȧ/a is
the Hubble parameter (with the over-dot referring to a
proper time derivative), and fγ dictates what fraction of
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the decaying particle’s energy is transferred to photons.2

We define the reheat temperature, TRH, by

ΓY ≡
√

8π

3m2
pl

(
π2

30
g∗T 4

RH

)
, (4)

where mpl is the Planck mass and g∗ is the effective de-
grees of freedom of Standard Model relativistic particles.
Since we are only considering reheat temperatures after
BBN (TRH < 0.01 MeV), g∗ = 3.38.

We assume neutrinos are composed of two massless
species and one massive species with m3 = 0.06 eV. For
simplicity, we also assume the abundance of m3 does
not change due to the Y decay; while the injection of
photons from the Y particle does cause a non-standard
abundance of m3 (see Appendix A), no new active neu-
trinos are produced from the Y decay. Since we assume
that the Y particle decays after neutrino decoupling, any
active neutrinos produced by the decay would lead to a
non-thermal distribution, which would impact the matter
power spectrum [60–63]. However, the minimal assump-
tion of m3 = 0.06 eV is well below cosmological bounds
on the sum of neutrino masses [64]. Therefore, while we
assume no new active neutrinos are produced by the Y
decay, we do not expect relaxing this assumption to have
a significant impact on our results.

We include the two massless neutrinos in ρur and de-
note the energy density of the massive neutrino as ρncdm
(non-cold dark matter). Since the massive neutrino is rel-
ativistic prior to recombination, the total radiation en-
ergy density is ρr = ργ + ρur + ρncdm for the reheat
temperatures that we consider.

We parametrize how much energy density the Y par-
ticle contributes to the Universe via the maximum of
ρY /ρr, denoted as max(ρY /ρr). Under the assumption
of radiation domination, this ratio can be expressed as

max

(
ρY
ρr

)
= e

1
2 (Γ̃Y −1) ρY,i

ρr,i
Γ̃
−1/2
Y , (5)

where ρx,i ≡ ρx(ai) for species x, Γ̃Y ≡ ΓY /Hi, Hi ≡
H(ai), and ai is the initial scale factor of our numerical
solution (see Appendix A for a derivation).

We set ργ,i such that the energy density of photons af-
ter Y -induced entropy injection corresponds to the fidu-
cial Ωγ,0 determined by the measured CMB tempera-
ture of T0 = 2.7255 K. This initial condition for ργ is
set by the parameter Ω′γ,0 such that the initial photon

energy density is ργ,i = Ω′γ,0ρcrit,0 a
−4
i . The value of

Ω′γ,0 can be calculated directly from our decay parame-
ters max(ρY /ρr) and fγ (see Appendix A). We choose ai
to occur after electron-positron annihilation so the initial

2 More precisely, the terms on the right-hand side of these Eqs. are
proportional to mY nY [59], but mY nY = ρY if the Y particle
has negligible kinetic energy.

values for ργ,i and ρur,i are related by

ρur,i + ρncdm,i =
7

8
(3.044)

(
4

11

)4/3

ργ,i , (6)

where we enforce the effective number of neutrinos to be
3.044 pre-decay. The value of ρncdm,i is entirely deter-
mined by ργ,i (see Appendix A), and the initial Hubble
rate will be dominated by ρr,i = ργ,i + ρur,i + ρncdm,i.
From this, a value for ρY,i can be directly calculated from
the parameters max(ρY /ρr) and ΓY via Eq. (5). There-
fore, we can fully describe the decay of the Y particle
with the parameters max(ρY /ρr), fγ , and ΓY . Fig. 1

depicts a solution to Eqs. (1)–(3) for select values of Γ̃Y ,
fγ , and max(ρY /ρr).
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Figure 1. Numerical solution of Eqs. (1)–(3) for Γ̃Y = 10−6,
fγ = 0.6, and max(ρY /ρr) = 0.1. The Y particle, taken to be
non-relativistic, initially evolves as ρY ∝ a−3 until the expansion
rate equals the decay rate near a/ai ≈ 103. Both ργ and ρur scale
as ρ ∝ a−4 up until there is significant injection from the Y decay
at a/ai ≈ 103. Photons and other ultra-relativistic species gain
60% and 40% of the decay products, respectively. Then, ργ and
ρur continue again as a−4 after entropy injection. The comoving
energy densities (ρa4) for photons and other relativisitc particles
are plotted in the bottom panel to emphasize this evolution.

III. EFFECTS OF DECAYING PARTICLE

The decaying Y particle’s imprint on the CMB
anisotropy spectrum is primarily determined by two ef-
fects: the decay products change Neff at recombination
and they change the primordial helium (YHe) and deu-
terium (D/H) abundances by altering the expansion rate
and baryon-to-photon ratio at BBN. In this section, we
discuss these effects as well as distortions in the CMB fre-
quency spectrum induced by the Y decay. We compute
the CMB temperature anisotropy power spectrum and
spectral distortions with the Cosmic Linear Anisotropy
Solving System (CLASS) [65]. For a discussion of the
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Figure 2. Relationship between max(ρY /ρr) defined by Eq. (5)
and the ratio of comoving radiation energy densities before and
after Y entropy injection (black line). This relationship is inde-
pendent of the reheat temperature of the Y particle. We fit this
trend with a fourth order polynomial g(x) = 0.0274x4−0.1525x3 +
0.6458x2 + 2.0727x+ 1, where x = max(ρY /ρr) for shorthand (red
dashed line).

modifications made to CLASS during the implementa-
tion of our model, see Appendix A.

A. Post-decay Neff

Since the decay of the Y particle injects free-streaming
radiation before recombination, the effective number of
relativistic species, Neff, will deviate from the fiducial
value of 3.044. After electron-positron annihilation, en-
tropy conservation dictates that the temperature ratio
between neutrinos and photons is Tν/Tγ = (4/11)1/3.
Entropy injection from the Y decay will alter this tem-
perature ratio by adding either photons or other relativis-
tic species. We can parametrize this change in Tν/Tγ as
a change in Neff defined by

ρur + ρncdm =
7

8
Neff

(
4

11

)4/3

ργ . (7)

To relate the post-decay Neff to our model parameters,
we first define

g ≡
ρr,fa

4
f

ρr,ia4
i

, (8)

where ρr,ia
4
i and ρr,fa

4
f are the comoving radiation en-

ergy densities before and after the Y -induced entropy
injection, respectively. One would expect the change in
comoving radiation energy density as a result of the Y
decay to be directly dependent on ρY when H ∼ ΓY .
Indeed, g is a simple function of max(ρY /ρr). This can
be seen in Fig. 2 where we numerically calculate g for

various values of max(ρY /ρr) defined by Eq. (5) and fit
the function with a fourth order polynomial.3

We can employ g to determine the ratio of comoving
energy densities before and after the Y decay for the
individual decay species:

gγ ≡
ργ,fa

4
f

ργ,ia4
i

, (9)

= 1 + fγ (g − 1)

[
1 +

7

8
(3.044)

(
4

11

)4/3
]

;

gur ≡
ρur,fa

4
f

ρur,ia4
i

, (10)

= 1 +
(1− fγ) (g − 1)

Nur

[
3.044 +

8

7

(
11

4

)4/3
]
.

Here, Nur = 2.0308 is the effective number of ultra-
relativistic species before the Y decay, excluding the sin-
gle massive neutrino (see Appendix A).

The single massive neutrino species is still relativistic
at recombination and contributes to Neff. As shown in
Appendix B, it follows that the post-decay Neff is

Neff =
1

gγ
[3.044 +Nur(gur − 1)] . (11)

This relationship is shown in Fig. 3 where we plot con-
tours of the post-decay Neff for a range of decay scenarios
described by fγ andmax(ρY /ρr) (red dotted lines). Most
notably, there is a “sweet spot” fraction of fγ ' 0.59 that
maintains Neff = 3.044 after the decay for all values of
max(ρY /ρr) (shown by the solid red line). Fig. 3 shows
that fγ < 0.59 corresponds to an increase in Neff since
the decay of the Y particle increases the relative energy
density of ultra-relativistic species. Conversely, fγ > 0.59
decreases ρur/ργ and thereby results in a decrease in Neff.

Some combinations of fγ and max(ρY /ρr) will not
be favored by Planck data. This is demonstrated by
the orange contour in Fig. 3, showing the 2018 Planck
TT,TE,EE+lowE reported bounds on Neff [46]. For
scenarios in which fγ deviates from the “sweet spot”
value, Planck Neff bounds require smaller values of
max(ρY /ρr). However, it is important to note that
naively applying these Planck Neff bounds to our model
parameters would be incorrect, as doing so would ignore
the fact that there is a degeneracy between Neff and the
primordial helium abundance, YHe, which is also affected
by the Y particle and its decay products.

To understand this degeneracy with YHe, we must
first understand how changes in Neff affect the CMB
anisotropy spectrum. Increasing Neff increases the pre-
recombination expansion rate and therefore decreases the

3 If all of the Y energy density was instantaneously transferred to
ρr, then g would equal 1 + max(ρY /ρr). However, as can be
seen from Fig. 1, most of the change in ρra4 occurs after ρY /ρr
is maximized. As a result, g − 1 > max(ρY /ρr).
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Figure 3. Post-decay Neff contours determined by fγ and max(ρY /ρr) via Eq. (11) are shown by the dotted red lines. The fiducial Neff

value of 3.044 is maintained as long as the photon fraction is fγ = 0.5913 (solid red line). We include the 2018 Planck TT,TE,EE+lowE
95% confidence limits on Neff (orange shaded region) to illustrate the Y particle parameter space that is naively consistent with CMB
observations. Additionally, constraints on ηBBN derived from observations of the deuterium abundance [47] are shown by the blue shaded
region. The dashed purple lines show the values of ηBBN calculated via Eq. (12).

sound horizon rs ∝ 1/H. In order to maintain the pre-
cisely measured angular size of the sound horizon, θs, one
must increase H0 in order to decrease the angular diam-
eter distance to the CMB such that θs is fixed. Mean-
while, the photon diffusion length scales as rD ∝

√
1/H

and so increasing Neff while simultaneously keeping θs
fixed leads to an increase in the angular size of the dif-
fusion length, θD [51, 52]. In summary, an increase in
Neff results in more Silk damping on small angular scales
(and vice versa).

Altering the helium abundance can mitigate the effects
of changing Neff on the dampening tail. Decreasing YHe

results in more free electrons at recombination, which
decreases the Compton mean free path, resulting in less
photon diffusion and thus less damping of small-scale
anisotropies. This behavior is depicted in Fig. 4. The
dotted orange line shows an increase in Neff resulting in
more damping on small scales compared to ΛCDM (for
fixed ωb, zeq, and θs, where ωb ≡ Ωb,0h

2 is the present-day
baryon energy density and zeq is the redshift of matter-
radiation equality). Simultaneously decreasing YHe as
Neff increases, shown by the blue dashed line, can miti-
gate the damping. The phase shift observed in Fig. 4 is a
lingering effect of changing Neff; free-streaming relativis-
tic particles generate a unique phase shift in the acoustic
peaks [53–55].

Therefore, even though our model parameters fγ and
max(ρY /ρr) conspire to produce a non-zero ∆Neff, al-
tering YHe in a inverse manner (i.e. raising YHe as Neff

decreases, or vice versa) can mitigate the effects of Silk
damping that a changing Neff causes. Interestingly, our
model already necessitates an increase in YHe by altering
the expansion rate and baryon-to-photon ratio at BBN.

B. Change in primordial abundances

Since the injection of photons from the Y decay ne-
cessitates a decrease in ργ pre-decay, any fγ 6= 0 decay
alters the baryon-to-photon ratio at the time of BBN,
ηBBN. If η0 is the baryon-to-photon ratio at recombina-
tion inferred by η0 = 6.0 × 10−10 (ωb/0.022), then the
increased ratio prior to the decay of the Y particle is

ηBBN = g3/4
γ η0 . (12)

Given that gγ is completely determined by fγ and
max(ρY /ρr) via Eq. (9), we are able to place constraints
on our decay parameters via constraints on ηBBN. This
relationship is shown in Fig. 3 where we calculate ηBBN

as a function of fγ and max(ρY /ρr) for a fixed value of
ωb = 0.02238 (dashed purple lines). The blue contour
shows the parameter space that is allowed by the bounds
ηBBN = (6.119±0.100)×10−10 derived from observations
of the primordial deuterium abundance [47]. Since large
fγ values correspond to significant photon injection, any
increase in max(ρY /ρr) at a large fγ leads to a significant
change in ηBBN. On the other hand, we can see that large
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Figure 4. Effects on the CMB temperature power spectrum from
varying Neff and YHe at fixed ωb, zeq , and θs. Increasing Neff com-
pared to ΛCDM results in more damping on small scales (orange
dotted line). This effect can be mitigated by decreasing YHe (blue
dashed line). The beat frequency seen in these residuals is a direct
consequence of the free-streaming nature of neutrinos producing a
unique phase shift in the CMB acoustic peaks.

values of max(ρY /ρr) are allowed by bounds on ηBBN as
fγ → 0 since fewer photons are being injected by the
decay and so gγ approaches unity (i.e. ηBBN → η0).

Much like the bounds on Neff discussed in Sec. III A,
these bounds on ηBBN seen in Fig. 3 are only meant
to depict an approximation for the allowed parameter
space; the true bounds will be subject to uncertain-
ties in ωb, which are taken into account later. Further-
more, the inference of ηBBN from deuterium assumes a
standard expansion history during BBN. Decay scenarios
with large max(ρY /ρr) and short lifetimes that end soon
after the end of BBN (τY ≈ 104 sec) will contribute a
non-negligible energy density during BBN.

We therefore altered the BBN code PArthENoPe v3.0
[66] to include the contribution of ρY to the expansion
rate during BBN. We modified PArthENoPe to accept
a new input parameter, ρBBN

Y , which is the value of ρY
at a reference temperature of T = 0.1 MeV, and we as-
sume the Y particle is non-relativistic at all tempera-
tures less than 1 MeV so that ρY ∝ a−3. This ρBBN

Y
parameter is entirely determined by our decay parame-
ters max(ρY /ρr) and ΓY . Using our modified version
of PArthENoPe, we created lookup tables for CLASS
that read in ηBBN and ρBBN

Y and produce values for the
helium and deuterium abundances. These tables were
created with ∆Neff = 0 (our initial conditions ensure
that Neff = 3.044 at BBN) and a neutron lifetime of
τ = 879.4 s.

Since the Y particle is non-relativistic during BBN and
evolves as ρY ∝ a−3, its contribution to H cannot be
modeled with a constant ∆Neff. Instead, one can think
of the contribution of ρY to the expansion rate during

BBN as an evolving ∆Neff; at any given temperature,
there is a nonzero ∆Neff that matches the non-standard
Hubble rate due to the inclusion of ρY [67]. This behav-
ior is demonstrated in Fig. 5. The black solid lines track
the abundances of deuterium (D/H) and helium (YHe) as
a function of ηBBN for a specific decay scenario in which
the Y particle decays away right after the end of BBN
(TRH = 0.01 MeV). If we then match the Hubble rate
at a temperature of T = 1 MeV using a ∆Neff = 0.0865
(blue dashed line), then we mostly recover the correct
YHe since the abundance of helium is primarily set by
neutron-proton freeze-out near T = 1 MeV. However,
the abundance of deuterium is set when helium produc-
tion freezes out around T = 0.07 MeV. So, matching
at T = 1 MeV correctly approximates YHe, but fails to
yield the correct D/H. In a similar manner, matching
at T = 0.07 MeV with ∆Neff = 1.6944 (green dotted
line) results in a good approximation for the deuterium
abundance, but grossly overestimates the correct abun-
dance of helium. Therefore, the contribution of ρY to the
Hubble rate during BBN cannot be captured by a simple
constant change to Neff.
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Figure 5. Dependence of primordial abundances on ηBBN for a
decay scenario that decays right after the end of BBN (black solid
line). Matching the non-standard Hubble rate during BBN as a
result of ρY with a constant nonzero ∆Neff does not reproduce the
same abundances. Matching Hubble at T = 1 MeV when neutron-
proton freeze-out occurs (blue dashed line) is a good approximation
for YHe, but underestimates D/H. Matching Hubble at T = 0.07
MeV when helium production freezes out (green dotted line) is a
good approximation for D/H, but overestimates YHe.

The abundances of deuterium and helium are both sen-
sitive to ηBBN and the expansion rate. Increasing the ex-
pansion rate during BBN leads to an increase in both YHe

and D/H, while increasing ηBBN results in larger YHe and
smaller D/H. Any Y decay scenario in which the decay
products consist of photons sees an increase in both ηBBN

and H, and thus an increase in YHe. On the other hand,
the abundance of deuterium is predominately sensitive to
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changes in ηBBN. So, even though ρY increases the ex-
pansion rate during BBN, we expect an overall decrease
in D/H for any fγ 6= 0 decay scenario.

Finally, we note that all fγ 6= 0 scenarios result in a
larger YHe compared to ΛCDM while changes in Neff are
symmetric about fγ ≈ 0.59 (see Fig. 3). Therefore, we
expect an asymmetry in the small-scale Silk damping re-
sulting from decays of different fγ . Decays with fγ > 0.59
will have a lack of small scale damping from a decreased
Neff, but an increased YHe compensates by enhancing Silk
damping. On the other hand, scenarios with fγ < 0.59
will have combined damping effects of both an increased
YHe and Neff. This asymmetry suggests a preference for
decay scenarios with fγ > 0.59.

C. Spectral Distortions

Deviations from the blackbody spectrum of the CMB,
known as spectral distortions (SDs), are the result of
energy injection into the photon bath of the CMB at
a late enough time such that the photons do not ther-
malize before recombination [68–70]. The form of these
SDs depends on the time of energy injection; the era
of µ distortions occurs roughly in the redshift range of
5 × 104 < z < 2 × 106, while y-type distortions result
from injection at z < 5 × 104 [57, 71]. For z > 2 × 106,
thermalization processes are very efficient and so any
energy injection results in a temperature shift to the
observed blackbody. Since we will be considering re-
heat temperatures that correspond to a range of about
105 < z < 4.5 × 107, µ distortions will have the most
constraining power.

We calculate the distortions in CLASS using a new
SD module based on the work of Lucca et al. [57]. This
module calculates µ and y distortions by

d̃ =
∆ργ
ργ

∣∣∣∣∣
d

≡
∫
dQ/dz

ργ
· Jd(z)dz , (13)

where d indexes the distortion type,4 dQ/dz is the en-
ergy injection rate, and Jd(z) is a branching ratio that
dictates the contribution of an energy injection to a spe-
cific distortion type. The energy injection rate can be
recast as a rate with respect to proper time, t, via

dQ/dz

ργ
= − Q̇

(1 + z)Hργ
, (14)

and we define the energy injection rate of our decaying
model as

Q̇(t) = ρY (t)fγΓY e
−ΓY t . (15)

4 Lucca et al. [57] uses “a” to index distortion type, but we choose
to use “d” in order to avoid confusion with scale factor.

10−4 10−3 10−2

TRH [MeV]

0.0

0.2

0.4

0.6

0.8

1.0

f γ

106 107
redshift z

Figure 6. Example of expected µ distortion constraints for a value
of max(ρY /ρr) = 0.01. The green shaded region shows the param-
eter space allowed by the COBE/FIRAS constraint |µ| < 9×10−5.
Reheat temperatures cooler than TRH ≈ 9 × 10−4 MeV are only
allowed by SDs if fγ → 0.

The distortion parameters are then determined by Eq.
(13) and setting µ = 1.4µ̃ and y = ỹ/4.

The COBE/FIRAS satellite measured the blackbody
spectrum of the CMB and determined upper bounds on
the distortions to be |µ| < 9× 10−5 and |y| < 1.5× 10−5

(95% C.L.) [48, 49]. In Fig. 6, we calculate |µ| for
a range of fγ and TRH values using CLASS and de-
pict the parameter space allowed by the COBE/FIRAS
bound by the green shaded region. Here we see that
the COBE/FIRAS bound on µ allows photon injection
for reheat temperatures hotter than about 9 × 10−4

MeV, but requires that fγ quickly approaches zero for
TRH . 9× 10−4 MeV (ΓY . 3.08× 10−7 s−1 ).

Since the CMB angular scales that are accessible to
Planck (` . 2500) are dominated by modes that enter
the horizon at a temperatures below 2 × 10−5 MeV, we
can neglect perturbations related to the Y particle for
cases in which fγ & 0.01 because those values will only
be allowed by SDs when TRH & 9× 10−4 MeV. However,
scenarios with fγ = 0 are not restricted in reheat temper-
ature by SDs, and therefore require consideration of the
Y perturbation Eqs. as well as corrections to the ultra-
relativistic species perturbations. We reserve the inclu-
sion of these perturbations for a subsequent analysis and,
in this work, focus solely on fγ ≥ 0.01. Nevertheless, our
results can be extended to smaller values of fγ , provided
that TRH > 9.5 × 10−4 MeV (ΓY > 3.43× 10−7 s−1 ).
For these decay rates, the posteriors for all parameters
are the same when comparing fγ fixed at either fγ = 0.01
or fγ = 0 (see Fig. 11 in Appendix C).
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IV. ANALYSIS METHOD

We derive constraints for ΓY , max(ρY /ρr), and fγ by
conducting a MCMC analysis using MontePython-v3
[72, 73] with our modified version of CLASS. This analy-
sis is implemented with a Metropolis-Hastings algorithm
and flat priors on the base six cosmological parameters
{ωb, ωcdm, θs, As, ns, τreio}. We assume neutrinos are
composed of two massless and one massive species with
m3 = 0.06 eV. In order to account for the fact that the
Y particle decaying into photons changes Tν/Tγ , we pro-
vide CLASS with a corrected temperature of the massive
neutrino (see Appendix A). We employ Planck high-`
TTTEEE, low-` TT, and low-` EE likelihood functions
[64] and refer to the combination of these data as Planck.

As discussed in Sec. III B, the Y decay affects the abun-
dances of YHe and D/H through its influence on ηBBN and
the expansion rate during BBN. Current measurements
of the deuterium abundance have reached a ∼ 1% preci-
sion level with (D/H) = (2.527±0.030)×10−5 [47]. How-
ever, we note that this bound only includes measurement
uncertainty (i.e. σMEAS = 3.0 × 10−7). Cooke et al. [47]
cite uncertainties associated with BBN calculations for
two different values of the d(p, γ)3He cross-section; us-
ing the computationally inferred cross-section leads to a
2σ discrepancy with CMB measurements of ηBBN, while
utilizing the measured cross-section suggested by Adel-
berger et al. [74] yields ηBBN = (6.119± 0.100)× 10−10.
Millea et al. [25] fold in uncertainty associated with nu-
clear reaction rates to D/H by assuming σNUCL = 4.5×
10−7 and adding uncertainties in quadrature such that
σDH = 5.4 × 10−7. It is unclear which d(p, γ)3He cross-
section is used for this uncertainty, and Millea et al. [25]
assume a linear relationship between D/H and η. There-
fore, we translate the ηBBN = (6.119 ± 0.100) × 10−10

bounds reported by Cooke et al. [47] into an uncertainty
in D/H. We calculate D/H for a range of ηBBN with our
modified version of PArthENoPe for ∆NBBN

eff = 0 and a

neutron lifetime of 879.4 sec. We find that D/H ∝ η−1.65
BBN

for the range of ηBBN relevant to this work and that this
fit is relatively insensitive to small changes in NBBN

eff . We
use this power law to infer a new fractional uncertainty
on D/H (σDH/DH = 1.65 × σηBBN

/ηBBN). Doing so re-
sults in (D/H) = (2.527 ± 0.068) × 10−5. We create a
Gaussian likelihood function in MontePython for D/H
for which the mean and standard deviation are set to be
µDH = 2.527×10−5 and σDH = 6.83×10−7, respectively.
We denote this Gaussian likelihood as D/H.

Finally, we calculate the spectral distortions µ and y in
CLASS according to Sec. III C. Similar to our constraint
on D/H, we add a Gaussian likelihood for both µ and y.
These Gaussian likelihood functions were taken to have
a mean of zero and a 2σ deviation equal to the respective
upper bounds |µ| < 9× 10−5 and |y| < 1.5× 10−5 deter-
mined by COBE/FIRAS. We refer to the combination of
these µ and y likelihoods as SD.

We used the Gelman-Rubin [75] criterion |R − 1| <

Table I. Summary of priors used for decay parameters with each
likelihood combination.

Planck, Planck+SD Planck+SD+D/H
fγ [0.01, 1]

TRH [MeV] [9.5 × 10−4, 10−2]
max(ρY /ρr) [0, 0.8] [0, 0.07]

0.04 to asses convergence of our MCMC chains.5 Post-
processing of chains was done using GetDist [76] and
removing the first 30% of points as burn-in.

A. Initial priors

Figure 3 demonstrates that naive bounds from Neff

would leave max(ρY /ρr) unconstrained if fγ is such that
Neff = 3.044 after the Y decay. The addition of ηBBN

bounds, however, suggests that max(ρY /ρr) would be
limited to less than 0.05. Therefore, we choose to sample
max(ρY /ρr) = [0, 0.07] when including the D/H like-
lihood. Otherwise, when only considering Planck or
Planck+SD, we sample max(ρY /ρr) = [0, 0.8] in order
to sufficiently explore the asymptotic behavior around
the “sweet spot” fγ shown in Fig. 3. A value of
max(ρY /ρr) = 0 corresponds to standard ΛCDM.

As discussed in Sec. III C, the smallest scale accessible
to Planck enters the horizon at a temperature of about
2× 10−5 MeV. Therefore, a full perturbation analysis of
the Y particle and its decay products is required for re-
heat temperatures TRH . 2× 10−5 MeV. We retain this
for a subsequent analysis and instead restrict our cur-
rent work to TRH > 2×10−5 MeV. Furthermore, CLASS
begins evolving a given perturbation mode outside the
cosmological horizon with adiabatic initial conditions. In
order to avoid the Y decay influencing these initial condi-
tions, we choose to only consider TRH ≥ 9.5× 10−4 MeV
so that Y -induced entropy injection is complete by the
time CLASS begins evolving perturbation modes rele-
vant to Planck (k . 0.18 Mpc−1 or ` . 2500). Assuming
BBN has completed by T ≈ 0.01 MeV, this restriction
on TRH leads to a prior of TRH = [9.5× 10−4, 10−2] MeV
( ΓY = [3.43× 10−7, 3.80× 10−5] s−1).

Spectral distortions will confine fγ to be very small
as TRH approaches 9.5× 10−4 MeV. Therefore we would
like to sample small values of fγ for colder reheat tem-
peratures, but explore fγ of order unity when TRH �
9.5 × 10−4 MeV. A flat prior of fγ = [0, 1] fails to suf-
ficiently sample small values of fγ as TRH → 9.5 × 10−4

MeV, but using a flat prior on log10 fγ does not prop-
erly depict the parameter space of large fγ . Furthermore,
small values of fγ , such as fγ = 10−5, would be indicative

5 All ΛCDM runs have |R − 1| < 0.01. This bound of 0.04 was
selected due to the non-Gaussian nature of the posteriors of our
decay parameters.
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of a finely tuned decay scenario. To avoid these scenar-
ios and achieve sufficient sampling, we choose to sample
fγ = [0.01, 1]. The initial priors used in our analysis are
summarized in Table I.

V. RESULTS

Figure 7 shows the resulting posterior distributions
of the decay parameters as well as ωb, ωcdm, As, ns,
H0, YHe, and D/H, with 68% and 95% CL contours
for Planck, Planck+SD, and Planck+SD+D/H datasets.
Table II summarizes the mean and 2σ errors for each pa-
rameter. For the posteriors of all base six cosmological
parameters, see Fig. 12 in Appendix C.

In Fig. 7, it can be seen that the Planck data favors
changes in ωb, ωcdm, As, andH0 in order to accommodate
a Y decay scenario. For cases in which fγ is greater than
the “sweet spot” value of 0.5913, Neff is less than 3.044,
which results in a larger zeq compared to ΛCDM. The
Planck data, being very sensitive to zeq via the early ISW
effect, favors a decrease in ωcdm in order to restore zeq to
its fiducial value. Furthermore, the Y induced entropy
injection directly alters the pre-recombination expansion
history and therefore the size of the sound horizon, rs.
In the case of fγ > 0.5913, rs is increased compared to
ΛCDM. The decrease in ωcdm that is required to maintain
a fixed zeq results in a larger angular diameter distance,
dA. However, the rate of change for rs is greater than
that of dA and thus leads to an increase in the angular size
of the sound horizon θs. Since θs sets the anisotropy peak
locations, the Planck data tend to reduce this increase in
θs by decreasing H0.

This process of fixing zeq and θs is illustrated in Fig.
8. The top left panel of Fig. 8 depicts the power spectra
for two decay scenarios described by max(ρY /ρr) = 0.2,
TRH = 3.16× 10−3 MeV, and either fγ = 0.4 (dotted red
line) or fγ = 0.7826 (dashed blue line). These values
of fγ correspond to equivalent deviations in either direc-
tion about the sweet spot fγ = 0.5913. Then, in the top
right panel of Fig. 8, we alter ωcdm in order to fix zeq
and change h ≡ H0/(100 km s−1 Mpc−1) to compensate
for the change in θs. Even though θs is fixed, there is a
lingering offset in peak locations. As mentioned in Sec.
III A, this phase shift is caused by the addition of extra
free-streaming radiation [53–55]. Furthermore, the alter-
ation of ωcdm results in an amplification or suppression of
all modes. Therefore, Planck data adjusts the amplitude
As. The bottom panel of Fig. 8 shows a continuation of
the top right panel, with corrections to ωcdm and h, but
now with an additional change in As such that the first
peak height is the same as that of the best-fit ΛCDM
spectrum.

The lingering small-scale damping effects of Neff and
YHe discussed in Sec. III A are now seen in the bottom
panel of Fig. 8. The case of fγ = 0.7826 (Neff < 3.044)
has a lack of small scale damping compared to ΛCDM
whereas the fγ = 0.4 (Neff > 3.044) case has too much

damping on small scales. Changing the spectral index,
ns, can compensate for this non-standard Silk damping
[52]. Non-standard damping can also be compensated
by changes in ωb such that the number of free electrons
increases or decreases and alters the mean free path of
photons. However, changing ωb has the unintended con-
sequence of affecting the height ratio of odd and even
peaks and is therefore a costly approach to accommodat-
ing a Y decay scenario.

The corrections to ωcdm, h, As, ns, and ωb, described
above are apparent in the Planck 1D posteriors of Fig. 7.
However, note that there is an asymmetry in these cor-
rections. The 1D posterior of ωcdm, for example, is not
symmetric about the ΛCDM distribution. This asymme-
try is due to the increase in YHe discussed in Sec. III B.
For fγ > 0.5913, the decrease in Neff is partially compen-
sated by an increase in YHe. Therefore, decreasing ns or
ωb can compensate for values of fγ > 0.59, making these
scenarios more viable than the naive Planck bounds on
Neff would imply.

On the other hand, if fγ < 0.5913, then Neff > 3.044,
leading to too much damping on small scales. Planck
will try to compensate by increasing ns or ωb. However,
YHe is still larger compared to ΛCDM in this fγ < 0.5913
regime. So, any increase in ns or ωb is fighting against
the combined damping effects of increasing both Neff and
YHe. Therefore, Planck tends to favor fγ > 0.59 rather
than fγ < 0.59.

This asymmetric effect can also be seen in the residuals
of the bottom panel of Fig. 8. The case of fγ = 0.7826
has smaller residuals on small scales than that of the
fγ = 0.4 scenario because the increased YHe is helping
to compensate for the lack of damping caused by a de-
creased Neff. The fγ −max(ρY /ρr) plane in Fig. 7 fur-
ther demonstrates the Planck preference for fγ > 0.5913.
When only Planck data is considered, max(ρY /ρr) is un-
constrained as long as fγ is near the “sweet spot” value
that maintains Neff ' 3.0 after the Y -induced entropy
injection. However, the Planck 1D posterior peaks at
fγ = 0.632 rather than fγ = 0.5913 (gray dashed line),
which would give Neff = 3.044.

In theory, Planck would accept even larger
max(ρY /ρr) at the sweet spot fγ until reaching a
limit that corresponds to the Planck bounds on YHe;
Planck 2018 high-` TT,TE,EE+low-` EE places a 2σ
upper bound of YHe = 0.283 [46]. Indeed, we obtain sim-
ilar results when using a prior of max(ρY /ρr) = [0, 1.2].
However, exploring the max(ρY /ρr) corresponding to
this YHe Planck upper bound is unnecessary since the
addition of our D/H bounds greatly constrains YHe.6

Since marginalizing over fγ leaves max(ρY /ρr) uncon-
strained for Planck and Planck+SD, we do not report
an upper bound on max(ρY /ρr) for these likelihoods in
Table II. We also note that the steep dropoff seen at

6 Additionally, the accuracy of the approximation in Eq. (5) begins
to diminish as max(ρY /ρr)→ 1. See Appendix A.
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Figure 7. 1D and 2D posterior distributions of decay and cosmological parameters for different combinations of Planck high-` TT,TE,EE,
low-` TT, and low-` EE (Planck) data, CMB spectral distortions (SD) bounds, and bounds on the observed deuterium abundance
(D/H). We include the 1D posteriors for ΛCDM constrained by Planck (dashed black line). The dotted gray line traces fγ = 0.5913,
which maintains Neff = 3.044 at recombination.

large YHe in the posteriors shown in Fig. 12 results from
the MCMC sampling reaching the max(ρY /ρr) = 0.8
upper bound of our selected prior.

The inclusion of SD constraints with Planck anisotropy
data (Planck+SD) has the added power of restrict-
ing TRH to hotter reheat temperatures, as expected.
SDs constrain the reheat temperature to be TRH >
2.24× 10−3 MeV (ΓY > 1.91× 10−6 s−1) at 95% C.L.

Otherwise, SDs provide no additional constraining power
on cosmological parameters.

It is clear from Fig. 7 that the addition of a bound
on D/H greatly constrains Y decay scenarios compared
to Planck+SD. First, the D/H constraint favors fγ →
0 to minimize changes in ηBBN. This agrees with our
assessment in Fig. 3. The combination of this preference
for fγ → 0 with the Planck+SD 1D posterior for fγ that
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Table II. Mean and 2σ errors on decay and cosmological parameters from MCMC analysis with different combinations of datasets.

ΛCDM Planck Planck+SD Planck+SD+D/H

fγ ... 0.66+0.26
−0.21 0.66+0.32

−0.17 ...
log10(ΓY /s

−1) ... ... > −5.72 > −6.15
log10(TRH/MeV) ... ... > −2.65 > −2.86
max(ρY /ρr) ... ... ... < 0.0235
H0 [km s−1 Mpc−1] 67.3+1.2

−1.2 66.2+2.8
−3.0 66.2+2.9

−3.0 67.4+1.7
−1.5

YHe 0.24683+0.00013
−0.00012 0.2508+0.0050

−0.0041 0.2508+0.0055
−0.0042 0.24696+0.00026

−0.00021

105D/H 2.522+0.056
−0.056 1.52+0.96

−0.93 1.58+0.92
−0.97 2.484+0.077

−0.087

10−2ωb 2.234+0.030
−0.029 2.225+0.040

−0.042 2.226+0.041
−0.043 2.232+0.030

−0.029

ωcdm 0.1202+0.0027
−0.0027 0.1172+0.0065

−0.0067 0.1172+0.0061
−0.0067 0.1208+0.0037

−0.0034

100θs 1.04186+0.00058
−0.00058 1.0424+0.0013

−0.0011 1.0424+0.0013
−0.0011 1.04176+0.00066

−0.00075

ln 1010As 3.045+0.033
−0.031 3.036+0.036

−0.037 3.037+0.036
−0.038 3.045+0.033

−0.031

ns 0.9642+0.0087
−0.0087 0.959+0.015

−0.016 0.959+0.015
−0.016 0.965+0.010

−0.0096

τreio 0.054+0.016
−0.015 0.053+0.015

−0.015 0.054+0.016
−0.015 0.054+0.016

−0.015

peaks around fγ ≈ 0.632 results in a relatively flat fγ
posterior for Planck+SD+D/H.

The constraint on D/H disfavors large values of
max(ρY /ρr). Non-zero values of fγ mean new pho-
tons will be injected by the Y decay and therefore
the photon density at BBN will be decreased accord-
ingly. D/H prefers to minimize this effect by restrict-
ing max(ρY /ρr) to be less than 0.0235 (95% C.L.). This
limit on max(ρY /ρr) propagates to all other parameters;
large values of YHe are no longer permitted and any cor-
rections to the base six parameters that Planck favored
are no longer needed because Neff is not deviating much
from the standard value of 3.044. Therefore, the full
Planck+SD+D/H combination is in excellent agreement
with ΛCDM values for the base six parameters {ωb, ωcdm,
θs, As, ns, τreio} and H0 (see Table II).

The posterior of ΓY for Planck+SD+D/H extends
to smaller decay rates than that of Planck+SD. This
is a symptom of the D/H bounds heavily constraining
max(ρY /ρr). Small decay rates (ΓY . 10−6 s−1) were
disfavored by Planck+SD because max(ρY /ρr) was free
to vary up to a value of 0.8. However, by restricting
max(ρY /ρr) to smaller values, the addition of D/H made
smaller decay rates more probable. Therefore, the combi-
nation of SD+D/H constraints leads to a slightly broader
posterior on ΓY than that obtained from SDs alone. Oth-
erwise, the addition of D/H has no influence on ΓY .
While the combination of ΓY and max(ρY /ρr) does in-
fluence how much the Y particle increases the expansion
rate during BBN, the D/H abundance is far more sensi-
tive to changes in ηBBN than changes to H.

While stringent, the addition of bounds on D/H does
not make constraints from Planck obsolete. Fig. 9 shows
a comparison of the 2D posterior bounds on fγ and
max(ρY /ρr) for different implementations of constraints.
The hatched region corresponds to the overlap between
the Neff and ηBBN contours seen in Fig. 3. These limits
were predicted using a fixed value of ωb, so this hatched
region can be considered the most naive bounds on fγ
and max(ρY /ρr). The dashed orange lines illustrate the
68% and 95% contours resulting from constraining fγ

and max(ρY /ρr) with a Gaussian likelihood constructed
with the 2018 Planck bounds of Neff = 2.92+0.36

−0.37 and
a Gaussian likelihood created with the bounds ηBBN =
(6.119±0.100)×10−10. These contours were also created
for a fixed value of ωb. Here we see that marginalizing
the bounds on Neff and ηBBN through an MCMC ap-
proach extends the allowed max(ρY /ρr)− fγ parameter
space compared to that of the naive bounds on Neff and
ηBBN. The filled contours in Fig. 9 show the 2D posteri-
ors for max(ρY /ρr) and fγ when constraining with a full
Planck likelihood rather than just a Gaussian likelihood
on Neff, as well as Gaussian likelihood with 1σ bounds
(D/H) = (2.527 ± 0.068) × 10−5. The full Planck anal-
ysis not only accounts for uncertainties in cosmological
parameters such as ωb and ns, but also includes the in-
terplay between YHe and Neff discussed in Sec. III A. The
Planck preference for fγ ≈ 0.632 permits values of fγ
that are otherwise ruled out by the bounds on just Neff

and ηBBN. Therefore, the effects of the Y decay on Neff

and YHe still manifest in the Planck+D/H posteriors even
though max(ρY /ρr) is significantly restricted compared
to the Planck posteriors.

Finally, we note that even though this analysis con-
sidered the range of fγ = [0.01, 1], our results can be
extended to smaller values of fγ for the limited range
of ΓY = [3.43 × 10−7, 3.80 × 10−5] s−1. Fig. 11 in Ap-
pendix C demonstrates that the posteriors for all pa-
rameters are indeed identical when comparing fγ = 0
and fγ = 0.01 for TRH = [9.5 × 10−4, 10−2] MeV (
ΓY = [3.43 × 10−7, 3.80 × 10−5] s−1). We show a sub-
set of these Planck+SD posteriors in Fig. 10 and include
the 1σ and 2σ bounds on H0 (vertical bands) reported
by the SH0ES collaboration [77]. When only consider-
ing Planck+SD, both the fγ = 0 and fγ = 0.01 cases
favor values of H0 larger than the best-fit ΛCDM value
of H0 = 67.3 km s−1 Mpc−1. While the addition of D/H
bounds will restrict max(ρY /ρr) in the fγ = 0.01 case
so that the H0 posterior is in further disagreement with
SH0ES, fγ = 0 decays will not affect ηBBN and thus we
do not expect the addition of D/H constraints to sub-
stantially change the Planck+SD constraints for fγ = 0
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Figure 8. Power spectra for decays with max(ρY /ρr) = 0.2, TRH = 3.16× 10−3 MeV, and either fγ = 0.4 (dotted red line) or fγ = 0.7826
(dashed blue line). Top left: power spectra of two decay scenarios compared to spectrum of best-fit ΛCDM parameters (solid black line)
with no other parameters being altered. Top right: ωcdm and h are simultaneously altered in order to fix zeq and θs, respectively.
Bottom: A change in As, in addition to ωcdm and h, brings the spectra of these decays scenarios close to the best-fit ΛCDM spectrum.
The remaining small-scale residuals are asymmetric; the fγ = 0.7826 case is aided by the increase in YHe and therefore has a smaller
residual than the fγ = 0.4 case.

seen in Fig. 10. For fγ = 0, the only additional con-
straints that D/H would place on max(ρY /ρr) would
come from the increased expansion rate during BBN
changing D/H. This change in H, however, has a small
effect on D/H and can be reduced by decreasing TRH.
Therefore, it is likely that the Planck+SD+D/H poste-
riors for fγ = 0 decays with colder reheat temperatures
would not significantly differ from those for Planck+SD
shown in Fig. 10. As mentioned in Sec. III C, investi-
gating reheat temperatures TRH . 9× 10−4 MeV would
require consideration of perturbations. It is not yet clear
if the inclusion of Y perturbations and corrections to the
perturbations of ultra-relativistic species would relax the
Planck+SD+D/H bounds on an fγ = 0 decay.

VI. SUMMARY AND CONCLUSIONS

In this work, we test the robustness of the common as-
sumption of entropy conservation between BBN and re-
combination by considering the decay of a massive hidden
sector Y particle. We assume the hidden sector is suf-
ficiently cold compared to the visible sector of Standard
Model particles such that the particle is non-relativistic
during BBN. These decay scenarios alter the effective
number of relativistic species at recombination, Neff, as
well as the baryon-to-photon ratio and expansion rate at
BBN. By employing observations of Planck temperature
and polarization anisotropies, CMB spectral distortions,
and the primordial deuterium abundance, we determine
constraints on the decay rate of the Y particle (ΓY ), its
maximum contribution to the energy density of the Uni-
verse (max(ρY /ρr)), and the fraction of the Y particle’s
energy density that is transferred to photons (fγ).
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Figure 9. Comparison of the bounds on fγ and max(ρY /ρr) from
different implementations of constraints. The hatched region is the
overlap of the Neff and ηBBN contours in Fig. 3 which held ωb fixed.
The dashed orange lines show the 68% and 95% contours from a
Gaussian likelihood constructed with the 2018 Planck bounds of
Neff = 2.92+0.36

−0.37 and a Gaussian likelihood created with the bounds

ηBBN = (6.119±0.100)×10−10. Using the entire Planck+D/H like-
lihood (filled 68% and 95% contours) incorporates any uncertainty
in cosmological parameters and the asymmetric preference Planck
has for large fγ .

If the Y particle decays into a mixture of photons and
other ultra-relativistic particles such as dark radiation,
then there is a sweet spot photon fraction, fγ = 0.5913,
that will keep Neff fixed at the fiducial 3.044. How-
ever, the injection of photons from the Y particle leads
to an increase in ηBBN due to the requirement that
T0 = 2.7255 K (see Appendix A). This increase in ηBBN

increases YHe which results in Planck observations of the
CMB temperature and polarization anisotropies prefer-
ring a larger photon fraction, with the 1D posterior for
fγ peaking at 0.632. For fγ between 0.555 and 0.707,
CMB anisotropies permit significant entropy injections
in which the energy density of the Y particle equals at
least half of the radiation density prior to its decay. If
fγ deviates from the sweet spot value, then cosmological
parameters like ωcdm, H0, As, ωb, and ns must be altered
from their standard ΛCDM values in order to match the
observed Planck temperature power spectrum.

Upper limits on µ and y spectral distortions of the
CMB restrict the decay rate of the Y particle to ΓY =
1.91× 10−6 s−1 (95% C.L.) such that maximum lifetime
of the Y particle is 5.25× 105 sec. The Primordial In-
flation Explorer, which proposes to measure the CMB
blackbody spectrum with three orders of magnitude bet-
ter sensitivity than the results of COBE/FIRAS [78],
would enhance bounds on µ and y distortions and there-
fore place even more restrictive bounds on the lifetime of
the particle.

The deuterium abundance, D/H, proves to have the
most constraining power on Y -induced entropy injection.
We apply bounds of D/H = (2.527±0.068)×10−5, which
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H
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Figure 10. Comparison between H0 posteriors of Planck+SD
likelihood for TRH = [9.5 × 10−4, 10−2] MeV and either fγ = 0
(dotted maroon outline) or fγ = 0.01 (filled purple contour) with
68% and 95% C.L. contours. We include the 1D H0 posterior
for ΛCDM constrained by Planck (dashed gray line) and the ver-
tical band shows the 1σ and 2σ bounds determined by SH0ES
(H0 = 73.30± 1.04 km s−1 Mpc−1).

we translate from bounds on the baryon-to-photon ratio
reported by Cooke et al. [47]. This uncertainty in D/H
includes measurement uncertainty and uncertainties in
nuclear reaction rates.7 This bound on deuterium limits
the energy density of the Y particle to be no more than
2.35% (95% C.L.) the total energy density of radiation.
Using the fit described in Fig. 2, this upper bound cor-
responds to g < 1.05, which translates to a 5% increase
in the comoving energy density of radiation. Limits on
D/H will likely tighten as more absorption systems are
observed and as laboratory measurements of nuclear re-
action rates improve.

Photodisintegration of light nuclei by the injection of
photons can generate even tighter constraints on en-
tropy injection scenarios. Balázs et al. [27] recently per-
formed an analysis in which they explored the constraints
that could be placed on axion-like particles with masses
greater than 2.2 MeV decaying into photons between

7 After our analysis was complete, Yeh et al. [79] released a new
computation of the deuterium abundance that employs updated
cross-section measurements from the LUNA Collaboration [80].
Assuming a fixed value of η and Neff = 3.044, Yeh et al. [79] re-
port values for σDH due to uncertainties in three reaction rates.
These uncertainties combine to give a theoretical uncertainty in
D/H of 7.5× 10−7. When combined with the measurement un-
certainty of 3.0×10−7, this result gives σDH = 8.1×10−7, which
is less stringent than the D/H bound used in this work.
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BBN and recombination by employing CMB anisotropy
and spectral distortion data as well as detailed BBN
constraints via ηBBN and photodisintegration of nuclei.
The addition of photodisintegration restricts the maxi-
mum energy density of the axion-like particle, ρa, to be
ρa/ρtot < 10−3. A decaying particle with a mass be-
low 3.2 MeV evades these photodisintegration limits; the
stringent BBN bounds on max(ρY /ρr) derived here only
consider the effects of a Y decay on ηBBN and the expan-
sion rate during BBN. We find max(ρY /ρr) < 0.0235
(95% C.L.), demonstrating that a small level of entropy
injection could be possible in the regime of a sub-3.2 MeV
decay for which photodisintegration bounds are irrele-
vant.

Even though bounds on deuterium proved to be the
most restrictive on a general entropy injection scenario,
we demonstrated that there exist subtleties in the depen-
dence of the decay on degeneracies between Neff and YHe

that require a full CMB analysis (Figure 9). Further-
more, we investigated the effects that entropy injection
has on standard cosmological parameters, including H0.
In doing so, we find that any injection that includes pho-
tons is heavily restricted by observations of the CMB and
D/H such that H0 = 67.4+1.7

−1.5 km s−1 Mpc−1 (95% C.L.).

We marginalized results over the range of 0.01 ≤ fγ ≤
1 and therefore we cannot speak with absolute confi-
dence regarding an fγ = 0 injection scenario. If fγ = 0,
then spectral distortions would not restrict the Y par-
ticle lifetime (see Fig. 6), allowing for reheat temper-
atures at which the scales accessible to Planck enter
the horizon. It would therefore be necessary to con-
sider perturbation dynamics for the Y particle and how
its decay products affect the evolution of other per-
turbations. However, we are able to extend our re-
sults to fγ = 0 for a limited range of reheat tempera-
tures; when considering TRH = [9.5 × 10−4, 10−2] MeV
( ΓY = [3.43 × 10−7, 3.80 × 10−5] s−1), we can neglect
any influences the Y particle has on perturbations. For
this limited range of reheat temperatures, we show that
the posteriors for fγ = 0 and fγ = 0.01 are identical
when constraining with Planck anisotropies and spectral
distortions (Figure 11). While the addition of bounds
on D/H would restrict max(ρY /ρr) in the fγ = 0.01
case, decays with fγ = 0 would leave ηBBN unaltered
and only minimally affect the deuterium abundance by
increasing the Hubble rate during BBN. Therefore, sce-
narios with the Y particle decaying fully into dark radi-
ation are less restricted than the fγ 6= 0 cases studied in
this work. Such decays into dark radiation increase H0

and begin to mitigate the Hubble tension. When consid-
ering only Planck anisotropies and spectral distortions,
fγ = 0 decays in this limited range of decay rates re-

sult in H0 = 68.1+1.9
−1.8 km s−1 Mpc−1 (95% C.L.), which

only slightly reduces the Hubble tension. As was demon-
strated by the progression of early dark energy models
[81–83], however, the inclusion of perturbations can lead
to significant changes in results. For long-lived Y sce-
narios, altering perturbations could potentially relax the

bounds on the injection of dark radiation and alleviate
the Hubble tension even further. We reserve an in-depth
investigation of the fγ = 0 case for a future work.

We have demonstrated that the injection of new radi-
ation between BBN and recombination, be it photons or
other ultra-relativistic species such as dark radiation, is
highly constrained: a massive particle whose decay prod-
ucts include photons can make up at most 2.35% of the
energy density of the Universe. This stringent limit im-
plies that cosmological parameters, including the Hubble
constant, cannot be adjusted by introducing changes in
the photon abundance between BBN and recombination.
Our results uphold the standard cosmological picture and
the assumption that entropy is conserved.
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Appendix A: INITIAL CONDITIONS FOR CLASS

Here we describe how to recast our set of descriptive
parameters for the Y decay model into a set of initial
conditions. We start by making the approximation that
H(a) ≈ Hi(a/ai)

−2 during radiation domination (RD).
This assumption, along with taking ρY = ρY,i when a =
ai, allows us to analytically solve Eq. (1):

ρY (a) = ρY,i

(ai
a

)3

e
1
2 Γ̃Y [1−(a/ai)

2] . (A1)

Additionally, we define the reheat scale factor by ΓY ≡
Hi(ai/aRH)2: aRH/ai = Γ̃

−1/2
Y , where Γ̃Y ≡ ΓY /Hi. It

follows from Eq. (A1) that the maximum value for ρY /ρr
occurs at aRH/ai. Therefore, an analytical expression for
max(ρY /ρr) can be found by evaluating Eq. (A1) at aRH

and taking ρr(aRH) = ρr,i(ai/aRH)4:

max

(
ρY
ρr

)
= e

1
2 (Γ̃Y −1) ρY,i

ρr,i
Γ̃
−1/2
Y . (A2)

Eq. (A2) defines the max(ρY /ρr) decay parameter
used throughout this work. This analytical expres-
sion for max(ρY /ρr) deviates from the exact numer-
ical maximum of ρY /ρr as max(ρY /ρr) approaches
unity. Comparing Eq. (A2) to the numerically calculated
max(ρY /ρr) for various decay scenarios, we find that Eq.
(A2) is accurate within 1% for max(ρY /ρr) < 0.079 and
within 10% for max(ρY /ρr) < 0.945. Seeing that a value
of max(ρY /ρr) > 1 translates to a period Y domination,
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it is consistent that our radiation domination approxima-
tion would begin fail as max(ρY /ρr) approaches 1.

In order to determine a value for ρY,i from Eq. (A2),
we need to find the initial condition ρr,i = ργ,i + ρur,i +
ρncdm,i. For decay scenarios with fγ 6= 0, we must de-
crease the photon energy density pre-decay such that the
photon injection from the Y decay results in a present
day temperature of T0 = 2.7255 K. Since we only con-
sider reheat temperatures after BBN (TRH . 0.01 MeV),
we must decrease ργ at the time of neutrino decoupling
and therefore we must also rescale the initial energy
density of ultra-relativistic species, ρur,i. To do so, we
parametrize the initial energy densities by Ω′x,0 such that

ρx,i = Ω′x,0ρcrit,0 a
−4
i for species x. In Eq. (8), we define

the ratio of comoving radiation energy density before and
after decay as

g ≡
ρr,fa

4
f

ρr,ia4
i

, (A3)

where the i and f subscripts denote before and after de-
cay, respectively. This g parameter is entirely dependent
on max(ρY /ρr) defined by Eq. (A2). Let us denote the
comoving energy density of species x as ρ̄x,j = ρx,ja

4
j .

Then the change in comoving radiation density is

∆ρ̄r = ρ̄r,f − ρ̄r,i = (g − 1) ρ̄r,i . (A4)

From this, we can specify the change in individual species
with the photon fraction as

∆ρ̄γ = fγ (g − 1) ρ̄r,i , (A5)

∆ρ̄ur = (1− fγ) (g − 1) ρ̄r,i . (A6)

Now we can determine the g factor for each species that
receives energy injection from the decay:

gγ =
ρ̄γ,f
ρ̄γ,i

=
ρ̄γ,i + ∆ρ̄γ

ρ̄γ,i

= 1 +
∆ρ̄γ
ρ̄γ,i

= 1 + fγ (g − 1)
ρr,i
ργ,i

, (A7)

gur =
ρ̄ur,f
ρ̄ur,i

=
ρ̄ur,i + ∆ρ̄ur

ρ̄ur,i

= 1 +
∆ρ̄ur
ρ̄ur,i

= 1 + (1− fγ) (g − 1)
ρr,i
ρur,i

. (A8)

We assume the minimal convention in which neutrinos
are composed of two massless species (ur) and one mas-
sive with mncdm = 0.06 eV. The massive neutrino, or
non-cold dark matter (ncdm), will be relativistic at early
times and therefore contribute to the initial radiation en-
ergy density. If we denote Nur as the contribution to Neff

from the ultra-relativistic species and Nncdm as the con-
tribution from the massive neutrino, then we enforce that
Nur + Nncdm = 3.044 at the time of BBN. With these

definitions, we can write

ρr,i
ργ,i

=
ρncdm,i + ρur,i + ργ,i

ργ,i
=
ρncdm,i
ργ,i

+
ρur,i
ργ,i

+ 1

=
7

8
Nncdm

(
4

11

)4/3

+
7

8
Nur

(
4

11

)4/3

+ 1

=
7

8
(3.044)

(
4

11

)4/3

+ 1 , (A9)

and

ρr,i
ρur,i

=
ρncdm,i + ρur,i + ργ,i

ρur,i
=
ρncdm,i
ρur,i

+ 1 +
ργ,i
ρur,i

=
Nncdm
Nur

+ 1 +
8

7

1

Nur

(
11

4

)4/3

=
3.044−Nur

Nur
+ 1 +

8

7

1

Nur

(
11

4

)4/3

=
1

Nur

[
3.044 +

8

7

(
11

4

)4/3
]
. (A10)

It follows that the ratio of comoving energy density for
each species is

gγ = 1 + fγ (g − 1)

[
1 +

7

8
(3.044)

(
4

11

)4/3
]
, (A11)

gur = 1 +
(1− fγ) (g − 1)

Nur

[
3.044 +

8

7

(
11

4

)4/3
]
.

(A12)

If Ωγ,0 is the photon energy density corresponding to
T0 = 2.7255 K, then the initial values are found by ρx,i =

Ω′x,0ρcrit,0 a
−4
i and

Ω′γ,0 =
Ωγ,0
gγ

=
Ωγ,0

1 + fγ (g − 1)
[
1 + 7

8 (3.044)
(

4
11

)4/3] ,
(A13)

Ω′ur,0 =
Ωur,0
gur

=
7

8
Nur

(
4

11

)4/3

Ω′γ,0 . (A14)

In Eq. (A14), Ωur,0 = (7/8)Npost
ur (4/11)

4/3
Ωγ,0, where

Npost
ur is the effective number of ultra-relativistic species

after decay (see Appendix B). Since g is purely a func-
tion of max(ρY /ρr) (Figure 2), we can determine the
initial conditions ργ,i and ρur,i directly from our decay
parameters fγ and max(ρY /ρr). In the case of fγ = 0
(no decays into photons), we do not need to decrease ργ
at early times. Indeed, plugging fγ = 0 into Eq. (A13)
leads to Ω′γ,0 = Ωγ,0 and the initial condition is simply

ργ,i = Ωγ,0ρcrita
−4
i . The contribution to Neff from the

ultra-relativistic neutrino species before decay is deter-
mined by Nur = 3.044−Nncdm, where Nncdm is the con-
tribution that the massive neutrino makes to Neff prior
to recombination.
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Massive neutrino (ncdm) calculations performed by
CLASS derive the number density, energy density, and
pressure of massive neutrinos based on the input tem-
perature Tncdm,0/Tγ,0. By default, CLASS assumes this
temperature to be Tncdm,0 = 0.71611Tγ,0 in order to
obtain a mass-to-density ratio of m/ωncdm = 93.14 eV.
However, this default value inherently assumes that both
Tncdm and Tγ scale as T ∝ a−1 after electron-positron
annihilation. While this scaling is indeed true for Tncdm,
any Y decay scenario that injects photons will result in
Tγ not consistently scaling as a−1. The photon tem-
perature at some scale factor, ai, which occurs between
electron-positron annihilation and energy injection from
the Y decay, will depend on the initial photon energy
density determined by Eq. (A13). Specifically,

Tγ,iai =

(
Ω′γ,0
Ωγ,0

)1/4

Tγ,0a0, (A15)

where a0 is the present-day scale factor. Assuming that
Tncdm,i = 0.71611Tγ,i after electron-positron annihila-
tion and before the Y particle alters the evolution of Tγ ,

Tncdm,0 = 0.71611

(
Ω′γ,0
Ωγ,0

)1/4

Tγ,0 . (A16)

If there is no photon injection from the decay, then Ω′γ,0 =
Ωγ,0 and we recover the default assumption of CLASS.
We emphasize that this change in the energy density of
massive neutrinos is a result of the Y decay altering the
scaling of Tγ . As discussed in Sec. II, we assume that the
Y decay does not produce any new active neutrinos.

The contribution that the massive neutrino makes to
Neff, which we denote as Nncdm, is

Nncdm =

(
0.71611

(4/11)1/3

)4

= 1.0132 . (A17)

This value is used to determine the number of ultra-
relativistic species pre-decay, Nur, by enforcing 3.044 =
Nur +Nncdm at BBN.

Appendix B: POST-DECAY Neff

We define the post-decay Neff to be the number of rel-
ativistic species immediately after entropy injection from

the Y decay has completed. For the reheat temperatures
that we consider in this work, this means that massive
neutrinos are still relativistic and therefore contribute to
Neff immediately after decay. As discussed in Sec. A, the
contribution that the massive neutrino makes to Neff be-
fore the decay is Nncdm = (11/4)4/3(0.71611)4 = 1.0132.
While the Y particle does not inject any new massive
neutrinos, the ratio of ρncdm/ργ will change due to the
decay creating new photons. Therefore, the contribution
that the massive neutrino makes to Neff will change post-
decay. This post-decay number of massive neutrinos is

Npost
ncdm =

Nncdm
gγ

=

(
11

4

)4/3
(0.71611)4

gγ
, (B1)

where gγ is defined by Eq. (A11). Additionally, the effec-
tive number of ultra-relativistic species will change due
to the Y decay. If Nur is the effective number of relativis-
tic species before decay, then we denote the contribution
of the ultra-relativistic species to the post-decay Neff as
Npost
ur . It follows that

Ωur,0 = Ω′urgur

7

8
Npost
ur

(
4

11

)4/3

Ωγ,0 =
7

8
Nur

(
4

11

)4/3

Ω′γ,0gur

Npost
ur =

Ω′γ,0
Ωγ,0

gurNur

Npost
ur =

gur
gγ

Nur , (B2)

where gur is defined by Eq. (A12). Therefore, the total
post-decay Neff is

Npost
eff = Npost

ncdm +Npost
ur =

1

gγ

[(
11

4

)4/3

(0.71611)4 + gurNur

]

=
1

gγ
[3.044 +Nur(gur − 1)] , (B3)

where Nur = 2.0308. Since both gγ and gur are ulti-
mately functions of max(ρY /ρr) and fγ , we are able to
calculate the post-decay Neff directly from our decay pa-
rameters.
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Appendix C: ADDITIONAL MCMC RESULTS
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which maintains Neff = 3.044 at recombination.
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