Jointly Optimal Routing and Caching
with Bounded Link Capacities

Yuanyuan Li,' Yuchao Zhang,3’2 Stratis Toannidis,' and Jon Crowcroft?
'Northeastern University, 2University of Cambridge, *Beijing University of Posts and Telecommunications
Email: yuanyuanli@ece.neu.edu, yczhang@bupt.edu.cn, ioannidis @ece.neu.edu, jon.crowcroft@cl.cam.ac.uk

Abstract—We study a cache network in which intermediate
nodes equipped with caches can serve requests. We model the
problem of jointly optimizing caching and routing decisions with
link capacity constraints over an arbitrary network topology.
This problem can be formulated as a continuous diminishing-
returns (DR) submodular maximization problem under multiple
continuous DR-supermodular constraints, and is NP-hard. We

propose a poly-time alternating primal-dual heuristic algorithm,

in which primal steps produce solutions within 1 — é approxi-

mation factor from the optimal. Through extensive experiments,
we demonstrate that our proposed algorithm significantly out-
performs competitors.

Index Terms—cache networks, DR-submodular, Lagrangian,
primal dual, Frank Wolfe

I. INTRODUCTION

The problem of optimally storing content in a network
arises in a broad array of networking applications and sys-
tems, including information-centric networks (ICNs) [1], [2],
content-delivery networks (CDNs) [3], [4], wireless/femtocell
networks [5]-[7], web-cache design [8]-[10], and peer-to-peer
network [11], [12],0 name a few. It has recently been the
focus of several studies that aim to design cache networks
with optimality guarantees [5], [13]-[18]. Such works opti-
mize either caching decisions alone [13]-[15] or caching and
routing jointly [14], [16]. Objectives include, e.g., minimizing
aggregate transfer costs [13], [15] or queuing delays [18]-[20],
maximizing a fairness objective [17], [21] or throughput [22],
[23], etc.

Following Ioannidis and Yeh [16], we consider a network
in which a fixed set of servers store content permanently.
Nodes corresponding to customer-facing gateways generate
requests and choose among several different routes to send
requests to these servers. Intermediate, cache-enabled nodes,
corresponding to storage-augmented routers over the path,
can also store contents, and immediately serve requests for
content they store. The network designer’s goal is to determine
(a) how to route requests, as well as (b) where to place
contents, to minimize overall transfer costs. Even though this
problem is NP-hard, Ioannidis and Yeh [16] provide a polytime
approximation algorithm, and show that joint optimization of
caching and routing decisions can reduce transfer costs by
three orders of magnitude, in practice.

The authors gratefully acknowledge support from National Science Foun-
dation grants NeTS-1718355 and CCF-1750539, National Natural Science
Foundation of China under Grant 62172054 and the National Key R&D
Program of China under Grant 2019YFB1802603.

This analysis assumes infinite link capacities, which is
implausible for real-life networks. We depart by introducing
link capacity constraints: we assume every edge in the network
can carry at most a constant amount of traffic per second.
This is clearly more realistic, but also leads to optimization
problems of a vastly different nature than the ones considered
by loannidis and Yeh. For example, unbounded capacities
result in deterministic optimal solutions, whereby each demand
is routed over a single, unique path. In contrast, introducing
link capacity constraints gives rise to multi-path optimal so-
lutions: optimal traffic may split across multiple routes. From
a technical standpoint, introducing link capacities drastically
changes our optimization problem. In contrast to the vast
majority of prior research in the area [5], [16], [19], our
constraints no longer form a matroid; this requires a very
different algorithm than the one employed by [16].

Our contributions are as follows:

o We model the problem of joint optimization of caching
and routing decisions with link capacity constraints over
an arbitrary topology. Our model yields a continuous
DR-submodular maximization problem under a set of
continuous DR-supermodular constraints.

o The objective is not concave and constraints are not con-
vex. We propose a polynomial-time Lagrangian primal-
dual algorithm for this problem. Though the combined,
end-to-end algorithm is a heuristic, we show that a 1 — %
approximation guarantee holds during primal steps.

o Finally, we conduct extensive experiments over both
synthetic and trace-driven networks: our proposed al-
gorithm outperforms several baselines significantly w.r.t.
both cache gain and feasibility.

The remainder of this paper is organized as follows. In
Sec. II, we review related work. Sec. III introduces the model
of cache networks and formulates joint caching and rout-
ing optimization problem with both cache and link capacity
constraints. Sec. IV describes our analysis of the problem
and proposed algorithm. We present numerical experiments
in Sec. V and conclude in Sec. VL.

II. RELATED WORK

Optimization Objectives. Several works assign a constant
cost to each edge in the network, and aim at making caching
decisions that minimize expected routing costs. This objective
has been studied in the context of femtocaching systems
[5], arbitrary cache networks [15], [16], small cell networks

[24], parallel computing frameworks [25] and in proactive
(i.e., predictive) cache networks [26], to name a few. Content
placements that maximize the number of requests served by
caches are studied in hierarchical caching networks [27],
in cellular networks with moving users [28], in arbitrary
congestible networks [22], [23], and in multi-cell mobile edge
computing networks with storage, computation, and commu-
nication constraints [29].

To minimize the expected delay experienced by all the

requester, Domingues et al. [30] study the interplay between
content search and content placement and Poularakis et al.
[31] study the content placement of layered-video. Yeh et al.
[2] focus on maximizing throughput, i.e., user demand rate
satisfied by the network. Li. et al. [18], [20] and Mahdian
et al. [19] minimize non-linear costs, which capture queuing
networks in cache networks. Extending [18]-[20] our model
could also capture queuing delay, yielding however a more
complex objective than the one we encounter here. Wang et
al. [17] analyze the proportional fairness of the total cost,
Avrachenkov et al. [32] study the fair caching problem in a
video-on-demand system, and Liu et al. [21] consider fairness
w.r.t. the utilities of caching gain rates. Our model, objective,
and, most importantly, constraints, significantly depart from
the ones considered in the above works.
Joint Optimization. Dehgan et al. [33], Poularakis et al. [7],
[29], Ioannidis and Yeh [16] and Liu et al. [22] consider the
joint optimization of caching and routing in networks; the first
two in particular study routing in the bipartite setting, while
the last two do so in arbitrary topologies. Caching and routing
decisions are formulated as binary variables in those works. Li
et al. [18], [20] consider queuing networks and jointly optimize
caching and service rate, which is a mixed integer optimization
problem. Zafari et al. [34] jointly optimize data compression
rate and data placement in a tree topology, posing this as a
mixed integer problem; they solve this by a spatial branch-
and-bound search strategy, which comes with no poly-time
approximation guarantees.

Kamran et al. [23] jointly optimize content placements
and rate admission controls to avoid congestion in the cache
network. Mentioning congestion control, Dehgan et al. [33],
Poularakis et al. [7], [29] all consider link capacities con-
straints. However, their network model and results do not apply
to arbitrary topologies.

Closer to us, Liu et al. [22] consider arbitrary topologies,
and provide approximation guarantees, but have a different
objective (throughput maximization) and constraints. In par-
ticular, there is no notion of routing costs, as incorporated
in our setting. Moreover, their problem setup, objective, and
constraints, do not give rise to the DR-submodular structures
we observe in our problem; altogether, their proposed algo-
rithms cannot be applied to solve the optimization problem
we encounter in our setting.

Submodular Maximization. Maximizing a monotone sub-
modular function subject to a matroid constraint is classic.
Krause and Golovin [35] show that the greedy algorithm
achieves a 1/2 approximation ratio. Calinescu et al. [36]

Fig. 1: A cache network.

propose a continuous greedy algorithm improving the ratio
to 1 — 1/e, that applies a Frank-Wolfe [37] variant to the
multilinear extension of the submodular objective. With the
help of auxiliary potential functions, Filmus and Ward [38] run
a non-oblivious local search after the greedy algorithm, and
also produce a 1 — 1/e approximation ratio. Further improve-
ments are made by Sviridenko et al. [39] for a more restricted
class of submodular functions with bounded curvature. Bian et
al. [40] show that the same Frank-Wolfe variant can be used
to maximize continuous DR-submodular functions within a
1 —1/e ratio.

In followup work, Bian et al. [41] also show that another
Frank-Wolfe variant achieves 1/e approximation guarantee
for non-monotone DR-submodular function. Nevertheless, all
these algorithms require either matroid constraints for set
functions, or down-closed convex constraint for continuous
functions. For general convex constraints, Hassani et al. [42]
prove that projected gradient ascent yields a 1/2 approximation
factor from the optimal. More close to our setting, Iyer et al.
[43] and Crawford et al. [44] minimize/maximize a submod-
ular function subject to a submodular/supermodular function
inequality. However, none of above solve submodular maxi-
mization problems under multiple supermodular constraints in
the continuous domain; this is the structure of the problems
we consider here.

III. MODEL

We follow the model of lIoannidis and Yeh [16], with
(a) an additional constraint on network capacities and (b) a
shifted focus on probabilistic strategies w.r.t. both caching and
routing. We also depart by considering a more general request
arrival process, rather than Poisson. Our model is illustrated
in Fig. 1.

Network Model and Content Requests. We consider a
network represented as a directed, symmetric' graph G(V, E).
Content items (e.g., files, or file chunks) of equal size” are to
be distributed across network nodes. We denote by C the set
of content items, i.e., the catalog. The network serves requests
for items in C routed over the G. A request (i, s) is determined
by (a) the item i € C requested, and (b) the request source
s € V. We denote by R C C x V the set of all requests. As

A directed graph is symmetric when (i,5) € F implies that (j,1) € E.
2This is w.l.o.g; see Section IIT below.

in prior work [15], [16], for each i € C, there exists a fixed
set of designated server nodes S; C V, that always store 7. A
node v € §; permanently stores i in excess memory outside
its cache. Thus, the placement of items to designated servers
is fixed and outside the network’s design. A request (i, s) is
routed over a path in G towards a designated server. However,
forwarding terminates upon reaching any intermediate cache
that stores ¢. At that point, a response carrying ¢ is sent over the
reverse path, i.e., from the node where the cache hit occurred,
back to s. Both caching and routing decisions are network
design parameters, while request arrivals are problem inputs.
We define all three below.

Request Arrival Process. Requests arrive according to an
ii.d. process: time is slotted and, at each timeslot ¢ € N,
a random subset R(t) C R of requests occur. We make no
prior assumption on the distribution of i.i.d. variables R(t).We
denote by

Ais) = Pl(i;5) e R € [0,1], (i) €R, (1)

the marginal probability that request (i, s) occurs.

We note that the assumption that items are of equal size
comes without any loss of generality [15], [16], [18]. This
is precisely because a set of requests R(t) C R are issued at
each timeslot. Hence, files of unequal size, split in equal-size
chunks, can be captured in our model through simultaneous
requests of all of their constituent chunks from the same
source s within a single slot. We also note that, for notational
simplicity, we assume that R(t) is a set (i.e., each element
(i,8) € R appears at most once), but our analysis can be
easily extended to the case where R(t) is a multiset (i.e., an
item ¢ is requested multiple times from the same node s). This
would be the case if, e.g., a node represents an access point
serving multiple end users, that issue overlapping requests.
Caching Strategies. Each node has a cache that can store a
finite number of items. We denote by ¢, € N the capacity at
node v € V: exactly ¢, content items can be stored in v. For
each node v € V, vector x, € {0, 1}/l indicates v’s caching
state: x, ; € {0,1}, for ¢ € C, is the binary variable indicating
whether v stores content item 7. We assume that vectors @,
are random and independent across v € V. As v can store no
more than ¢, items, we have:

> @y < ey, forallveV.)
ieC
The global caching state is the vector € = [2yi]vev.icc €

{0, 1}IVII€l " whose elements comprise the node caching state
variables.

We define the system’s caching strategy to be a station-
ary probability distribution over valid caching states = €
{0,1}IVII€l, ie., ones that (a) satisfy Eq. (2) and (b) have
a product form over v € V (as states x,, v € V, are

independent). We denote by
é-'u,i = P[‘rv,i = 1] = E[m’v,i} S [07 1]7 for Z S C7 (3)

the marginal probability that node v caches item ¢, and by
€ = [&ilveviec = Elx] € [0,1)VII€]] the corresponding

TABLE I: Notation Summary

Common Notation
G(V,E) Network graph, with nodes V' and edges F
C Item catalog

Cy Cache capacity at node v € V'
R Set of requests (i, s), with ¢ € C and source
seV
Adi,s) Marginal probability that request (i,s) € R
S; Set of designated servers of i € C
Toi Variable indicating whether v € V stores i € C
£, Marginal probability that v stores ¢
X Global caching strategy of x,,s, in
{0, 1}\VIX|CI
I3 Expectation of caching strategy matrix X
Wy v weight/cost of edge (u,v)
Source Routing
Pi,s) Set of paths request (i,s) € R can follow
Pror Total number of paths

D A simple path of G

kp(v) The position of node v € p in path p.

T(i,s),p variable indicating whether (i,s) € R is
forwarded over p € P;)

P(i,s),p ~ Marginal probability that s routes request for
i over p

r Routing strategy ~ of 7) ,S, in
{0’ 1}2(@',5)672 ‘P('iw5)|.

p Expectation of routing strategy vector r

expectation of the caching strategy. By Eq. (2) and Eq. (3):

Zg’u,i <y, forallveV. (4)
ieC

Source Routing Strategies. Recall that requests are routed
towards designated server nodes. For every request (i, s) € R,
we assume that there exists a set P(; ;) of paths that the request
can follow towards a designated server in S;. A source node
s can forward a request among any of these paths; however,
responses are constrained to reversely follow the same path
as the request they serve. A path p of length |p| = K is
a sequence {p1,p2,...,pKx} of nodes pr € V such that
(pk, pr+1) € E, forevery k € {1,...,|p|—1}. Following [15],
[16], we assume that paths in P(i75) are well-routed, i.e., they
satisfy the four natural conditions: for every p € P(; 5): (a) p
starts at s, i.e., p; = s; (b) p is simple, i.e., it contains no loops;
(c) the last node in p is a designated server for item ¢, i.e., if
Ip| = K, px € S;; and (d) no other node in p is a designated
server for i, i.e., if |p| = K, pyp ¢ S, for k=1,..., K — 1.
Given a path p and a v € p, let k,(v) be the position of v in p;
ie., ky(v) equals to k € {1,...,|p|} such that p;, = v. Given
sets P(;), (i,5) € R, the routing state of a source s € V
w.rt. request (i,5) € R is a vector r(; ;) € {071}”’(%5)‘,
where 7(; 5) , € {0,1} is a binary variable indicating whether

s selects path p € P(;). These satisfy:

Z T(i,s),p = 1, forall (i,s) € R,
PEP(i,s)

®)

indicating that exactly one path is selected. We again assume
that 7(; ;) are independent random variables across (i,8) € R.
Let Prgr = Z(i’s)eR |P(i,s)|, be the total number of paths. We
refer to the vector © = [r(; o) p](i.5)erR peP, .., € {0, 1} P01 as
the global routing state vector.

The system’s routing strategy to be a stationary distribution
over valid routing states, i.e., states that (a) satisfy Eq. (5) and
(b) have a product form over (i,s) € R (as routing states
T(;,s) are independent across (i,s) € R). For p € P(; ,), let

Pi,s),p = P[T(i,s),p = 1] = E[T(i,s),p] € [Oa 1]7 (6)

be the marginal probability that path p is selected by s.
Then, the routing strategy is determined by p = [p(; s)]
(4,5)ER,PEP(;,5) = E['I‘] € [07 1}PTDTaWhere» by EqS (5) and (6)’

Z Pi,s)p = 1, forall (i,5) € R.
PEP(i,s)

(7

Link Capacities. Every edge (u,v) € E is associated with
a capacity ft,, > 0, indicating the maximum traffic it can
sustain: in expectation, the traffic at (u,v) must not exceed
Mo Formally, since cache states across nodes in the path
p € P;,s) are independent, we have that for all (u,v) € E:

kp(v)
Z A(i,s) Z Pli,s).p H (1=&,) < Hupw- B)
(i,8)ER PEP(,s):(v,u)Ep k'=1

Costs and Objective. To capture costs (e.g., latency, money,
etc.), we associate a weight w,, ,, > 0 with each edge (u,v) €
E, representing the cost of transferring an item across (u,v).
We assume that costs are solely due to response messages that
carry an item, while request forwarding costs are negligible.
We assume that costs are non-symmetric, i.e., Wy, 7 Wy u,
generally. Again, by independence, the expected transfer cost

for serving a request (i,s) € R given pair (€, p) is:
lp|—1 k

C(i,s) (gvp) = Z p(i,s),p Z wpk+1,Pk: H (1_fpk/,i)~ (9)
k=1

PEP (0 k=1

Intuitively, Eq. (9) states that C(; s includes the cost of an

edge (pr+1,pr) in the path p if (a) p is selected by the routing

strategy, and (b) no cache preceding this edge in p stores .
We wish to minimize the total expected transfer cost:

MINCOST

Minimize: C(£€,p) = > AisClis)(&p) (102)
(i,8)ER

subj. to: Egs. (3),(4), (6),(7), and (8). (10b)

This problem is NP-hard [5], [16]. We note that, the constraint
set is not a convex polytope, due to Eq. (8), and the objective
is not convex. Compared to the setting considered by loannidis
and Yeh [16], we account for additional capacity constraints

via Eq. (8), which in turn lead to the non-convexity of the
constraint set.

IV. MAIN RESULTS

Despite the lack of convexity of Problem (10), we show
that after an appropriate change of variables the objective can
be written as a continuous DR-submodular function [40]. This
gives rise to a primal-dual heuristic, in which primal steps are
approximable via a polytime algorithm.

A. Conversion to a Continuous DR-submodular Problem

To convert Problem (10) to a problem amenable through a
solution via algorithms that exploit DR-submodularity, we first
introduce the auxiliary variables, for all p € P;), (i,5) € R:

Pi,s)p =1 = PGis)p € [0,1]. (11)

Le., these are the “complements” of the routing variables;
we also denote the corresponding vector comprising these
complement variables by p € [0,1]Fr. Let Cy = D o(is)eR

-1 . .
Alis) 2opepis., s Wy, ,py.- Observe that this is a univer-

sal constant, not depending or p or £. We define the objective:

lp|—1
= Z >\(1',,s) Z Z ka+17Pk'(1_
(i,s)€ER PEPG o k=1 (12)
k
(1= payp) [T = &),
k'=1

as the expected cache gain. Observe that F' is monotone in-
creasing w.r.t. all of its variables. Thus, Prob. (10) is equivalent
to the following cache gain maximization problem:

Maximize: F'(&, p) (13a)
subj. to: (3),(4),(11) (13b)
Z (1= pasyp) =1, forall (i,s) € R, (13c)
PEP(i,s)
Guv(& p) <0, forall (u,v)€E, (13d)

where we define the flow over edge (u,v) € E to be
kp(v)

)\(u,v) (£>ﬁ) = Z Z)\(i,s)(l_ﬁ(i,s),p) H (1_§pkr,i)7

(i,8) ER PEP(; &y k'=1
(v,u)ep
(14)
and the overflow at (u,v) € E to be
Gu,’u(sv i)) = >\(u,v) (57 i)) — M- (15)

The objective is not concave, and the constraints involving
overflow functions above are not convex. Nevertheless, the
following can be shown using the earlier analysis of [16], [40]:

Lemma 1. Function F, defined in Eq. (12), is non-decreasing
and continuous diminishing-returns (DR) submodular, and
functions G, for all (u,v) € E, defined in Eq. (15), are
non-increasing and continuous DR-supermodular.

Formally, a twice-differentiable function F' is continuous
diminishing returns (DR) submodular (supermodular) [35] if
the off-diagonal elements of its Hessian V2F are non-positive
(non-negative). Existing algorithms for DR-submodular maxi-
mization [40], [42], [43] do not directly apply to our optimiza-
tion problem, as they require constraints either being convex or
containing at most one supermodular constraint. Nevertheless,
we exploit this property in our primal-dual algorithm.

B. Lagrangian and Duality

Consider the Lagrangian:

L(E»ﬁﬂﬁ) = F(£7ﬁ) - ZeGE wu,v : Gum(saﬁ)a

where vector ¥ = [y] (u,0)eE 18 the non-negative dual vari-
ables associated with the constraint (13d). Intuitively, the La-
grangian function L penalizes the infeasibility of the link ca-
pacity constraints. The following theorem is an immediate
consequence of Lemma 1:

(16)

Theorem 1. Function L is non-decreasing and continuous
DR-submodular:

To motivate our approach, assume we were given proper
dual variables 1. Then, optimizing the Lagrangian converts
the cache gain maximization problem (13) to the following:

L&, p,y) (17a)
£&peD (17b)

where D is the set defined by constraints: (3), (4), (11), and
(13c). Prob. (17) has a non-decreasing, continuous DR sub-
modular objective, and convex constraints D. For arbitrary
convex constraint, projected gradient ascent [42] achieves an
% approximate ratio. If, in addition, it were down-closed, 3a
Frank-Wolfe algorithm variant [36], [40] would attain a more
favorable 1 —% approximation. Nevertheless, even though it is
not down-closed, we show that this problem can indeed attain
this improved approximation via a Frank-Wolfe algorithm (see

Thm. 2), by an appropriate relaxation of its constraints.

C. Primal-Dual Algorithm

Motivated by the above observation, we propose solving
Prob. (13) via a primal-dual algorithm. The primal steps of the
algorithm reduce to solving, Prob. (17) which is a monontone
DR-submodular optimization problem with affine constraints;
though not down-closed convex or even not convex, we are
able to solve this via a polytime algorithm within a 1 — 1/e
approximation guarantee.

1) Algorithm Overview: For brevity, we join £(t) and p(t)
as one variable y(t) = (&(t), p(t)), and denote by it primal
variables. The primal-dual algorithm starts from (0) = 0
and iterates over:

y(t+1) = ayargmax L(y,(t)) + (1 — a)y(t), (18a)
yeD

Maximize:

subj. to:

Vet + 1) = [the(t) 4+ B:Ge(y(t+1)]" ,for all e € E, (18b)

3Aset S C Ri is down closed if for all @ € S and all ' € Ri for
which '’ < x, =’ € S.

Algorithm 1: Primal-Dual Algorithm

Input: L(y,v), D.
1t 0, ¥(0)« 0.
2 while ¢ < 7 convergence condition is not met do
3 | y(t+1) = agargmax ,cp L(y, $(6)+(1—an)y(?)
4| Pe(t+1) =

[$e(t) + BiGe (y(t + 1)), forall e € E

5 t+t+1
¢ end
7 return y,

Algorithm 2: Frank-Wolfe variant for L(y,(t))

Input: L(y,v(t)), D', step size v € (0, 1].
17+ 0,k 0, y,« 0.
2 while 7 <1 do
3 vy 4 arg max,cps (v, VL(y, ¥ (t)))
4 i < min{vy,1 — 7}
5 Yol = Yp T VeV T T+ Ve B k41

¢ end
7 return y,
where o; = f-&-% is the parameter of momentum, 3; = %

is the step size, c is a constant, and [z]T = max{z,0}. We
summarize this also in Alg. 1, and discuss each step in detail
below:

Primal Step (18a): The primal step updates primal variables
y given dual variables). It first solves Prob. (17); then, it
utilizes a momentum parameter to alleviate the change of
primal variables. Since y(t+1) is a convex combination of two
points in feasible set D, it still lies in D. We describe how
to solve (17) approximately in Sec. IV-C2. The smoothing
process via the momentum is crucial, as it helps with the
convergence of the algorithm: we observe this experimentally
in Sec. V-E.

Dual Step (18b): Finally, the dual step updates dual variables
1) given primal variables y via dual ascent.

2) Primal Variables via Frank-Wolfe Algorithm: We solve
Problem (18a) through a variant of Frank-Wolfe algorithm,
summarized in Alg. 2. Starting from y, = (&,, py) = 0, the
variant of Frank-Wolfe algorithm iterates over:

vy, = argmax (v, VL(y, ¥ (1))) (19a)
veD’

Yi+1 = Yi T VVk, (19b)
where ~;, is the proper step size satisfying), v = 1, gradient
ViL(y,(t)) = L(y, ¥ (t)|lyi=1) — L(y, ¥ (t)|y;=0), (20)
and D’ is the set:
(3),),(11),
Zpep(i75)(1 - ﬁ(i,s),p) > 1,

(21a)

for all (i,s) € R, (21b)

The difference between D and D’ lies in having inequalities
in Eq. (21b), which relaxes Eq. (13c). Note that D’ is a down-
closed convex set while D is not. The following theorem
states the approximation guarantee we attain for this algorithm
w.r.t. the (non-relaxed) Prob. (17).

Theorem 2. Let y* be an optimal solution to Prob. (17), and
Yy e the output of the Frank-Wolfe variant Alg. 2. Then, Y
belongs to D, and given any p:

Llypw) + O 2 (1= (L %) +C)— e

where constant C' = 3 c g ¥e(D_(;)er Mivs) — He)r M =
2L(1,%)(|V||C| + Pror)? is the Lipschitz continuous constant,
and K = % is the number of iterations.

(22)

The proof can be found in Appendix A. Note that, if we
choose a large enough K, the offset % can become arbitrary
small. The constant C' is necessary to obtain an approximation
guarantee as, in general, the Lagrangian (16) can become neg-
ative, and adding this term ensures positivity. In practice, we
found that setting the scaling factor c¢ in 3;, defined in (18b),
so that the Lagrangian remains always positive is preferable
experimentally: in some sense, ensuring the positivity of L
strikes a good balance between the two components (cache
gain and constraint penalization) of the objective. In contrast,
a negative Lagrangian indicates a high penalization of infeasi-
bility, and a discount of the cache gain. Furthermore, given a
gradient, algorithm (19) requires polynomial time in the num-
ber of constraints and variables, which are O(|V||C|+|E||R]).
We iterate (19) at most O(|V||C|) times [19].

V. EXPERIMENTS

We conduct both synthetic and trace-driven experiments.

A. Synthetic Experiment Setup

Networks. To evaluate our proposed algorithm, we perform
experiments over five synthetic graphs, namely, Erd6s-Rényi
(ER), balanced tree (BT), hypercube (HC), grid_2d (grid),
small-world (SW) [45], and a counter example designed to
demonstrate suboptimality of competitors (Ex). We also ex-
periment with three backbone network topologies: Deutsche
Telekom (DT), GEANT, Abilene [46]. The parameters of
different topologies are summarized in Tab. II. The weights of
each edge w,, ., (u,v) € & are selected uniformly at random
(u.a.r) from 1 to 100. Each node v € V has ¢, storage to
cache items from a catalog of size |C|. Each item ¢ € C is
stored permanently in one designated server S; which is picked
v.a.r. from V; the item is stored outside the designated server’s
cache. For Ex and Abilene, we select parameters in a way
demonstrated in Figs. 2a and 2b, respectively.

Requests. We generate requests synthetically as follows. We
select u.a.r. a set of Q nodes from V' as the possible query
nodes. The set of requests R C C x Q is then generated by
sampling from the set C x Q, u.ar. For each such request
(i,s) € R, we select the request arrival probability A)
according to a Zipf distribution with parameter 1.2. For each

request (i,5) € R, we generate at most |P(; ,)| paths from
the source s € V to the designated server S;, where the
source s and the designated server S; are not the same node.
In all cases, this path set includes the shortest path to the
designated server. We consider only paths with stretch at most
4; that is, the maximum cost of a path in P(i,s) is at most 4
times the cost of the shortest path to the designated source.
We follow a different synthetic request generation process
for Ex and Abilene. Requests are designed based on the
“hard” examples we describe in Appendix B, on which we
prove that competitors may fail to produce feasible solutions
(c.f. Section V-C). Parameter details are specified in Fig. 2a
and Fig. 2b, for Ex1 and Abilenel, respectively. Parameters
for the remaining two topologies are described in Appendix C
Link Capacities. To control the level of congestion in the
network, we determine link capacities ft,,,, (u,v) € E as
follows. We first assume random caching and routing, both
set v.a.r. That is, we randomly sample ¢, items ¢ and set
i = 1, for all v € V, and set f(;q), = W{sﬂ’ for all
p € P, (i,8) € R. Then, we set the link capacities as
Py = KA(u,0) (€, p) correspondingly, where A,) is the flow
on edge (u,v), given by Eq. (14), and xk > 1 is a looseness
coefficient: the higher x is, the easier it is to satisfy the link
capacity constraints. Note that, for every link (u,v) € E,

if fly > G’(u’v)(0,0) = D (i.5)eR 2oreP (A (i,s)» then the

link capacity constraint at that link is tri(\l/}{gl)leypsatisﬁed. In our
experiments, we set 1 < k < max(; s)er |Pi,s)| to avoid this.
Link capacities of Ex1 and Abilenel is given in Fig. 2a
and Fig. 2b respectively.

B. Trace-Driven Experiment Setup

Finally, we also conduct trace-driven simulations using data
from a short video application, Kuaishou (XS) [47]. This com-
prises more than 8 million requests of 2 million items/videos
reaching 488 Kaishou edge servers deployed at 31 provinces
in China from 8:00pm to 8:05pm on 12/04/2018. The net-
work topology (including nodes, links, and link and cache
capacities) are determined from an actual cache deployment
by Kuaishou. We preprocess the data to create two instances
(KS1 and KS2), whose statistics are summarized in Tab. II,
as follows.

We select the largest connected subgraph, and utilize %
and % of caches equipped by each node for our experiments
KS1 and KS2, respectively. In KS1, we restrict traffic of top
2000 popular requests, while in KS2 we restrict traffic to the
top 5000 popular requests; the request distribution of latter is
shown in Fig. 3. We again generate all paths of stretch at most
4; we drop any request that does not contain any paths in the
largest connected component, leading to the numbers reported
in Table II. We use these to compute request probabilities
A(i,s) € [0,1]; to do so, we normalize each request frequency
by the frequency of the most popular request. As we limit
traffic to a subset of the entire demand, we scale link capacities
in KS1 and KS2 both by 5.

TABLE II: Graph Topologies and Experiment Parameters

Gaph VI Bl Q] IRl [Puyl el w el FL F
synthetic topology experiments
ER 100 1044 10 4949 1-5 10-20 1-100 1000 2314.9 2318.1
BT 364 726 10 4988 1-5 10-20 1-100 1000 1665.2 1666.3
HC 128 896 10 4960 1-5 10-20 1-100 1000 3228.5 32294
grid 100 360 10 4954 1-5 10-20 1-100 1000 5753.2 5753.7
SW 100 503 10 4953 1-5 10-20 1-100 1000 4482.1 4484.3
Ex1 398.8 388.7
Ex2 7 14 2 3 1-2 0-1 1-100 2 3518 365.4
backbone network experiments
GEANT 22 66 4 4761 1-5 10-20 1-100 1000 4436.2 4440.7
DT 68 546 4 4929 1-5 10-20 1-100 1000 2014.7 2030.0
Abilenel 814.3 901.0
Abilencz | %8 3 4 12 0-1 1-100 4 7614 7894
trace-driven experiments
Ks1l 152 22952 101 1988 1-5 25-3195 1-100 526 19938.5 19946.7
KS2 152 22952 103 4963 1-5 50-6390 1-100 1207 35353.1 353494
(100, 100) New-York
I D I . 800
@ @ _ (100, 100) § oo
(100, 100) D“v 100(1&0/1) (100, mrﬁ (moéggl)es (100, 100) r\a(ris’a;g)wwk i, 7100) (1035:2:;_;mn = -
@ Q = \(&100) (1,.100) Atlanta l
(100, 1095/ 1, 10\ Ag7= (100 SN (>
N 0

©

l:1

I

(a) Ex1 with k = 1

)\:)\ =1

Fig. 2: Topologies and parameters of Ex1 and Abilenel with designed requests and
bandwidths. There is a pair (red, green) for edge (u,v), where the first red number is
the weight w, .) and the second green number is the link capacity fi(y,u)-

C. Algorithms

We implement our algorithm and several competitors* for
comparison purposes. Our main building blocks when con-
structing competitors are combinations of algorithms that make
caching and routing decisions separately.

In particular, building blocks for caching are: (a) uniform
caching, whereby cache contents are selected uniformly among
requests that traverse the cache, (b) greedy caching, whereby
the greedy algorithm [35] is used to allocate items to caches,
and (c) Frank-Wolfe variant caching, where the Frank-Wolfe
variant algorithm [40] is used to determine cache contents;
all three variants (a)—(c) are classic, but ignore edge capacity
constraints. The classic greedy algorithm starts from empty
caches and makes placements incrementally that maximizes
objective (12) subject only to cache capacity constraints. This
caching decision is a 1/2 approximation [19], [35] if one ig-
nores the edge capacity constraints. The Frank-Wolfe variant
[40] that maximizes objective (12) subject to constraints (21),

4Our implementation is publicly available at https:/github.com/neu-
spiral/CacheRateNetwork.

(b) Abilenel with k = 1

0 20 40 60 80
Query Node

/\= /\=1

Fig. 3: Request distribution for
KS2. The radius of each point is
proportional to the number of re-
quests for that item during the ob-
servation period.

i.e., ignoring routing constraints, in a manner siminar to Alg. 2.
This is a 1-1/e approximation algorithm if one ignores the
edge capacity constraints, as the corresponding problem is
DR-submodular maximization over down-closed convex set.
We combine these caching algorithms with optimal routing,
which amounts to fixing a caching strategy (computed via uni-
form caching, greedy, etc.), and computing routing decisions
by solving Prob. (13) w.r.t. routing decisions alone; this is a
convex optimization problem with affine constraints, and can
be solved in polynomial time.

Overall, we implement the following combinations of these
building blocks:

e Randoml consists of two steps. First, we assume all
paths are active, and use uniform caching: we select caching
decisions by placing items in a cache selected u.a.r. from
requests that traverse it. Having made caching decisions
this way, we then set routing variables via optimal rout-
ing. Formally, in Step 1, we first initialize p = 0, and

then &, ; = min{%,l}, forallve V,ieC. In
1€

C:vEp,
pEP(i

Step 2, keeping £ fixed, we optimize the Prob. (13) w.r.t.

https://github.com/neu-spiral/CacheRateNetwork
https://github.com/neu-spiral/CacheRateNetwork

a Il PrimalDual E=3 Random1l ™ Random?2 [Greedyl E= Greedy2 [Alternating
u\? 1.0
T 1
- of
5 08 B
O
o 06 g
<
o 04 o)
© o2
. 0. 0
£
S 0.0-
P4 i dtelekom abilenel abilene2 examplel example2 KS1 KS2
Topology
J N
g \ \ :
> 10 N N 4
2 N N
3 10
2 \ \ ;
b 10-¢ i § A
L
€ 102 q= N E = o
N 5= N N [3!
geant dtelekom abilenel abilene2 examplel example2 KS1 KS2
Topology
10* =
g 3 . A
102 = = i
£ 0 d 4 3
[q b
100 g - N O
o b 4 g of
d ol o b STl N3 b
ER grid HC BT SwW geant dtelekom abilenel abilene2 examplel example2 KS1 KS2
Topology
(a) Looseness coefficient k = 1
a B PrimalDual EX3 Randoml [0 Random2 [0 Greedyl [E=3 Greedy2 [Alternating
S
w
< N
c \ 9
ﬁ V"\ i 0
: P
o
: B 3
o
8 \ |
£ I |
5 N |
P4 dtelekom abilenel abilene2 examplel example2 KS2
Topology
L 10
> |
2 10724
|
@ 1074
©
$ e |
€ 1072 | 3
geant dtelekom abilenel abilene2 examplel example2 KS2
Topology
10% Ao e
£ z ;
o INIE BN LEH BN EE E | BN FE B NI P | BN LE
| ¢ A N [\ NIt R ot Ko 5
grid HC BT SwW geant dtelekom abilenel abilene2 examplel example2 KS1 KS2
Topology

(b) Looseness coefficient k = 3

Fig. 4: Comparison w.r.t. gain, InF and running time. Missing bars in cache gain plots indicate infeasibility, while missing bars in InF
plots indicate O violation. PrimalDual and competitors perform very well when they are feasible. Nevertheless, PrimalDual is always
feasible for all topologies, while competitors fail to get a feasible solution in some cases. This comes at the cost of the increased complexity
of PrimalDual, reflected also on the running time. However, when « is large, i.e., kK = 3, as PrimalDual converge faster, it takes even

less execution time compared to competitors.

routing variables p.

Random?2 also consists of two steps. In Step 1, we use
optimal routing assuming empty caches: that is, we solve
Prob. (13) w.r.t. the routing variables p assuming & = 0.
In Step 2, we again fix p as computed from the previous
step, and determine £ via uniform caching, as in the first
step of Randoml.

Greedyl consists of the following two steps. In Step 1,
we initialize p = 0, and then use greedy caching, i.e.,
make caching decisions using the classic greedy algo-

rithm [35]. In Step 2, having £ from greedy caching, we
determine routing variables p via optimal routing.
Greedy?2 also consists of two steps; in Step 1, we ini-
tialize £ = 0 (i.e., empty caches), and determine routing
variables p via optimal routing. In Step 2, fixing p from
Step 1, we determine & via greedy caching.
Alternating solves Prob. (13) via alternating max-
imization between caching and routing variables, until
convergence. It first initializes p = 0, and then updates
caching decisions £ and routing decisions p alternately.

le2 le2

le2 le2

—— Lagrangian L —— Lagrangian L

—— Lagrangian L —— Lagrangian L

.0 ﬂ Cache Gain F 40 ‘F Cache Gain F § 4.0 | Cache Gain F 4.01 Cache Gain F
] /‘(\!\,«/—M’*v’\/\/—wa 35| S 3941 3.9
3.81 § |
36 3.89 | 3.81
> 3.7 ?h‘”'—'“—""’"——— 3.7 I
3.4 34 | 1
36 3.6 ‘
324, " 324, . : . : : - 351, : : : : :
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Iterations Iterations

— — Infeasibility InF —/ — — Infeasibility InF —

Iterations Iterations

— —— Infeasibility InF - — — Infeasibility InF —/

8 Max Infeasibility MaxInF 84 | Max Infeasibility MaxInF 2011 Max Infeasibility MaxInF 2.04 Max Infeasibility MaxInF
| |
6 61| 159 | 1.54
| i
4 41 | 1.0 1.04
E . | |
2 2 k - 0.5 L 0.5 h
0 R I — = o0 0.0 e ‘
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Iterations Iterations

(a) with momentum and x = 1 (b) without momentum and xk = 1

Iterations Iterations

(¢) with momentum and kK = 3 (d) without momentum and kK = 3

Fig. 5: Convergence over topology Ex1, w.r.t. the cache gain, the Lagrangian L, and infeasibility metrics InF and MaxInf. With momentum,

algorithm converges faster and smoother.

When updating caching decisions &, we fix p and de-
termine & through the Frank-Wolfe variant [40]; that is,
maximize objective (12) subject to constraints (21), i.e.,
ignoring routing constraints, through the Frank-Wolfe vari-
ant [40]. When updating routing decisions p, we fix £ and
determine the new p via optimal routing. We repeat this
process for at most 25 iterations (we observe experimen-
tally that Alternat ing converges within 10 iterations).

e PrimalDual is our algorithm (Algorithm 1). We set the
number of iterations to 1000 steps.

We discuss convergence criteria in Section V-D. We implement
all algorithms in Python, and use the CVXPY toolbox to solve
constituent convex optimization problems (e.g., during opti-
mal routing). Overall, the above competitors decompose the
problem into two subproblems: determining caching decisions
& and routing decisions p, and edge capacities are taken into
account in the latter optimization. This decoupling may lead
to infeasibility; we prove this formally in Appendix B, where
we construct several counterexamples under which the above
algorithms lead to solutions violating edge capacity constraints
and experimentally in Sec. V-E.

D. Performance Metrics

We use cache gain, defined in Eq. (12), as one metric to
measure the performance of different algorithms. Also, we
define an Infeasibility metric to measure how much solutions
violate link capacity constraints. Intuitively, we measure infea-
sibility as the average overflow, normalized by edge capacities,
across all active edges in the network. Formally:

1
124 2

(u,v)ERE’

Guw(§ P) e, (&p)>0
Hu,v

InF =

. (23)

where overflow G, (&, p) is defined in Eq. (15), and E' =
{e € E : \((&,p) > 0} is the set of edges with non-zero

flow, and flow). is defined in Eq. (14). We say algorithms
Alternating and PD algorithm converge, when InF <
0.001 and cache gain changes less than 0.001 compared to the
last iteration. We also report MaxInF, which is the maximum
rather than average over E’, i.e.,

Cunl&,)G, (e
max { uw(&:P) Gun(€2)>0y

(u,v)EE’ Mo,

Clearly, larger InF/MaxInf indicates more violations and
worse performance. For our algorithm PrimalDual, we ex-
pect some negligible edge capacity constraint violation, of
the order of InF ~ 1072. Whenever CVXOPT fails to find
a feasible solution, we are unable to compute this score (as
no p is provided to evaluate this), so we set InF = 108, to
indicate a severe feasibility failure.

MaxInF = 24)

E. Experiment Results

Different Topologies. We first compare the proposed algo-
rithm (PrimalDual) with baselines in terms of the normal-
ized cache gain FLPD’ Infeasibility InF, and running time of
algorithms, shown in Fig. 4. The cache gain Fyp, is obtained by
PrimalDual algorithm, and its value is reported in Tab. II:
F}, is the cache gain when x = 1, while F3, when x =
3. When algorithms obtain no feasible solutions, normalized
cache gain and infeasibility are set 0 and 10°, correspond-
ingly. Observe that PrimalDual, Greedyl, Greedy2 and
Alternating behave great w.r.t. cache gain when they are
feasible. However, even though PrimalDual always pro-
duces a feasible solution (with InF ~ 1072 consistently),
solutions of other algorithms are infeasible in some topologies.
This is because PrimalDual jointly optimizes both caching
and routing decisions. In other words, in every intermediate
step, it takes link capacity constraints into consideration. In
contrast, competitors decouple routing and caching optimiza-
tion, ignoring link capacity constraints in the latter. This ver-

le2 le3

o
o

41

v

@
»
o

8.0
1.995
=~ PrimalDual lﬂ'm =~ PrimalDual =~ PrimalDual
75 Random1 44 Random1l 1.994 Random1l
w Random?2 w Random?2 W 1.993 Random2
_% 7.0 { M= L e e - Greedyl _% 4.3 Greedy1l ‘rEn 1.992 Greedy1l
o == Greedy2 o == Greedy2 o == Greedy2
AP, i - i 1.991 P, i
_GC) 65 =« Alternating g 42 =« Alternating _GC) =« Alternating
] F 3 1.990
O O (8]

1.989

1.988

1.0 15 2.0 25 3.0 1.0 15 2.0
Looseness k

(a) Abilene2

25
Looseness k

(b) GEANT

1.987

3.0 1.0 15 2.0 2.5 3.0

Looseness k

(c) Ks1

Fig. 6: Effect of looseness. PrimalDual is best or competitive with other algorithms, but also finds a feasible solution for a wider range

of k values.

ifies the suboptimality of competitors. These advantages of
PrimalDual come at the cost of increased running time;
nevertheless, with larger looseness x, PrimalDual converges
faster, sometimes even outperforming simpler methods.
Convergence. We focus on Ex1 to understand the conver-
gence of proposed PrimalDual. Instead of terminating the
algorithm based on convergence, we execute the algorithm
for 1000 iterations. Figs. 5a and S5c demonstrate the con-
vergence with momentum (defined in Eq. (18a)). Both cache
gain and infeasibility converge smoothly and quickly. On the
other hand, without momentum, i.e., for a; = 1, both cache
gain and infeasibility exhibit jitter, as shown in Figs. 5b and 5d
Compared to momentum, algorithms without momentum tend
to converge to a more infeasible solution. Overall, incorporat-
ing momentum in primal steps avoids oscillations in primal
variables and promotes faster and smoother convergence.
Effect of Looseness. Figs. 4, 5, 6 and Tab. II all present
results with different looseness coefficient . When looseness
k is small, i.e., link capacity constraints are strict and hard to
satisfy, competitors are more likely to lead to infeasibility. It is
clear from Fig. 4 and Tab. II that, in general, higher « leads to
higher cache gain and less infeasibility. This is also indicated
directly in Fig. 6: if algorithms have no results at some &,
this indicates infeasibility. In contrast, although not always
obtaining the highest cache gain, our proposed PrimalDual
always yields a solution, and is near-optimal. In Fig. 5 and
running time in Fig. 4, we observe that higher x results in
lower infeasibility (see y-axis), and faster convergence (less
execution time).

VI. CONCLUSION

We jointly optimize both caching and routing decisions un-
der bounded link capacity constraints over an arbitrary net-
work. We propose a poly-time primal-dual algorithm, where
only primal steps have an approximation guarantee. We use
a momentum method to alleviate sharp changes in primal
variables. Instead, we could explore a proximal method [48],
[49] to realize it. As we only provide approximation guarantees
for primal steps, another direct and crucial future direction is to
propose an algorithm with end-to-end optimality guarantees.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

(10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

REFERENCES

V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in CoNEXT, 2009.
E. Yeh, T. Ho, Y. Cui, M. Burd, R. Liu, and D. Leong, “VIP: A
framework for joint dynamic forwarding and caching in named data
networks,” in ICN, 2014.

W. Jiang, S. loannidis, L. Massoulié, and F. Picconi, “Orchestrating
massively distributed cdns,” in Proceedings of the Sth International
Conference on Emerging Networking Experiments and Technologies,
ser. CONEXT ’12. New York, NY, USA: ACM, 2012, pp. 133-144.
[Online]. Available: http://doi.acm.org/10.1145/2413176.2413193

M. Dehghan, A. Seetharam, B. Jiang, T. He, T. Salonidis, J. Kurose,
D. Towsley, and R. Sitaraman, “On the complexity of optimal routing
and content caching in heterogeneous networks,” in INFOCOM, 2014.
K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless content delivery through distributed
caching helpers,” Transactions on Information Theory, vol. 59, no. 12,
pp. 8402-8413, 2013.

K. Naveen, L. Massoulié, E. Baccelli, A. Carneiro Viana, and
D. Towsley, “On the interaction between content caching and request
assignment in cellular cache networks,” in ATC, 2015.

K. Poularakis, G. losifidis, and L. Tassiulas, “Approximation caching and
routing algorithms for massive mobile data delivery,” in GLOBECOM,
2013.

N. Laoutaris, S. Syntila, and I. Stavrakakis, “Meta algorithms for
hierarchical web caches,” in ICPCC, 2004.

H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems:
Modeling, design and experimental results,” Selected Areas in Commu-
nications, vol. 20, no. 7, pp. 1305-1314, 2002.

Y. Zhou, Z. Chen, and K. Li, “Second-level buffer cache management,”
Farallel and Distributed Systems, vol. 15, no. 6, pp. 505-519, 2004.
E. Cohen and S. Shenker, “Replication strategies in unstructured peer-
to-peer networks,” in SIGCOMM, 2002.

S. Toannidis and P. Marbach, “Absence of evidence as evidence of
absence: A simple mechanism for scalable p2p search,” in INFOCOM,
2009.

Y. Wang, Z. Li, G. Tyson, S. Uhlig, and G. Xie, “Optimal cache allo-
cation for content-centric networking,” in 2013 21st IEEE International
Conference on Network Protocols (ICNP). 1EEE, 2013, pp. 1-10.

M. Dehghan, A. Seetharamz, T. He, T. Salonidis, J. Kurose, and
D. Towsley, “Optimal caching and routing in hybrid networks,” in 20714
IEEE Military Communications Conference. 1EEE, 2014, pp. 1072—
1078.

S. Toannidis and E. Yeh, “Adaptive caching networks with optimality
guarantees,” in ACM SIGMETRICS, 2016.

, “Jointly optimal routing and caching for arbitrary network topolo-
gies,” IEEE Journal on Selected Areas in Communications, vol. 36, no. 6,
pp. 1258-1275, 2018.

L. Wang, G. Tyson, J. Kangasharju, and J. Crowcroft, “Faircache:
Introducing fairness to ICN caching,” in 2016 IEEE 24th International
Conference on Network Protocols (ICNP), 2016, pp. 1-10.

Y. Li and S. Ioannidis, “Universally stable cache networks,” in IEEE IN-
FOCOM 2020-IEEE Conference on Computer Communications. 1EEE,
2020, pp. 546-555.

http://doi.acm.org/10.1145/2413176.2413193

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

(371

[38]

[39]

[40]

[41]

M. Mahdian, A. Moharrer, S. Ioannidis, and E. Yeh, “Kelly cache
networks,” IEEE/ACM Transactions on Networking, vol. 28, no. 3, pp.
1130-1143, 2020.

Y. Li and S. Ioannidis, “Cache networks of counting queues,” IEEE/ACM
Transactions on Networking, 2021.

Y. Liu, Y. Li, Q. Ma, S. Ioannidis, and E. Yeh, “Fair caching networks,”
ACM SIGMETRICS Performance Evaluation Review, vol. 48, no. 3, pp.
89-90, 2021.

B. Liu, K. Poularakis, L. Tassiulas, and T. Jiang, “Joint caching and
routing in congestible networks of arbitrary topology,” IEEE Internet of
Things Journal, vol. 6, no. 6, pp. 10105-10118, 2019.

K. Kamran, A. Moharrer, S. Ioannidis, and E. Yeh, “Rate allocation and
content placement in cache networks,” in IEEE INFOCOM 2021-IEEE
Conference on Computer Communications. 1EEE, 2021, pp. 1-10.

S. E. Hajri and M. Assaad, “Energy efficiency in cache-enabled small
cell networks with adaptive user clustering,” [EEE Transactions on
Wireless Communications, vol. 17, no. 2, pp. 955-968, 2017.

Z. Yang, D. Jia, S. Ioannidis, N. Mi, and B. Sheng, “Intermediate data
caching optimization for multi-stage and parallel big data frameworks,”
in 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD). IEEE, 2018, pp. 277-284.

S. Shukla and A. A. Abouzeid, “Proactive retention aware caching,” in
IEEE INFOCOM 2017-1EEE Conference on Computer Communications.
IEEE, 2017, pp. 1-9.

K. Poularakis and L. Tassiulas, “On the complexity of optimal content
placement in hierarchical caching networks,” IEEE Transactions on
Communications, vol. 64, no. 5, pp. 2092-2103, 2016.

——, “Code, cache and deliver on the move: A novel caching paradigm
in hyper-dense small-cell networks,” IEEE Transactions on Mobile
Computing, vol. 16, no. 3, pp. 675-687, 2016.

K. Poularakis, J. Llorca, A. M. Tulino, 1. Taylor, and L. Tassiulas,
“Service placement and request routing in mec networks with storage,
computation, and communication constraints,” IEEE/ACM Transactions
on Networking, 2020.

G. Domingues, E. d. S. e Silva, R. M. Leao, D. S. Menasche, and
D. Towsley, “Enabling opportunistic search and placement in cache
networks,” Computer Networks, vol. 119, pp. 17-34, 2017.

K. Poularakis, G. losifidis, A. Argyriou, I. Koutsopoulos, and L. Tas-
siulas, “Distributed caching algorithms in the realm of layered video
streaming,” IEEE Transactions on Mobile Computing, vol. 18, no. 4,
pp. 757-770, 2018.

K. Avrachenkov, J. Goseling, and B. Serbetci, “Distributed coopera-
tive caching for utility maximization of vod systems,” in IEEE 20th
International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC 2019), 2019.

M. Dehghan, A. Seetharam, B. Jiang, T. He, T. Salonidis, J. Kurose,
D. Towsley, and R. Sitaraman, “On the complexity of optimal routing
and content caching in heterogeneous networks,” in /IEEE INFOCOM
2015-1EEE Conference on Computer Communications. 1EEE, 2015,
pp. 936-944.

F. Zafari, J. Li, K. K. Leung, D. Towsley, and A. Swami, “Opti-
mal energy tradeoff among communication, computation and caching
with qoi-guarantee,” in 2018 IEEE Global Communications Conference
(GLOBECOM). 1IEEE, 2018, pp. 1-7.

A. Krause and D. Golovin, “Submodular function maximization.” 2014.
G. Calinescu, C. Chekuri, M. Pal, and J. Vondrdk, “Maximizing a
monotone submodular function subject to a matroid constraint,” SIAM
Journal on Computing, vol. 40, no. 6, pp. 1740-1766, 2011.

D. P. Bertsekas, Nonlinear programming. Athena scientific Belmont,
1999.

Y. Filmus and J. Ward, “Monotone submodular maximization over a
matroid via non-oblivious local search,” SIAM Journal on Computing,
vol. 43, no. 2, pp. 514-542, 2014.

M. Sviridenko, J. Vondrdk, and J. Ward, “Optimal approximation for
submodular and supermodular optimization with bounded curvature,”
Mathematics of Operations Research, vol. 42, no. 4, pp. 1197-1218,
2017.

A. A. Bian, B. Mirzasoleiman, J. Buhmann, and A. Krause, “Guaranteed
non-convex optimization: Submodular maximization over continuous
domains,” in Artificial Intelligence and Statistics. ~ PMLR, 2017, pp.
111-120.

A. Bian, K. Levy, A. Krause, and J. M. Buhmann, “Continuous dr-
submodular maximization: Structure and algorithms,” Advances in Neu-
ral Information Processing Systems, vol. 30, 2017.

[42] H. Hassani, M. Soltanolkotabi, and A. Karbasi, “Gradient methods for
submodular maximization,” in Proceedings of the 31st International
Conference on Neural Information Processing Systems, 2017, pp. 5843—
5853.

R. K. Iyer and J. A. Bilmes, “Submodular optimization with submod-
ular cover and submodular knapsack constraints,” Advances in neural
information processing systems, vol. 26, 2013.

V. Crawford, A. Kuhnle, and M. Thai, “Submodular cost submodular
cover with an approximate oracle,” in International Conference on
Machine Learning. PMLR, 2019, pp. 1426-1435.

J. Kleinberg, “The small-world phenomenon: An algorithmic perspec-
tive,” in STOC, 2000.

D. Rossi and G. Rossini, “Caching performance of content centric
networks under multi-path routing (and more),” Telecom ParisTech,
Tech. Rep., 2011.

“Kuaishou,” 2022. [Online]. Available: https://www.kuaishou.com

J. Bolte, S. Sabach, and M. Teboulle, “Proximal alternating linearized
minimization for nonconvex and nonsmooth problems,” Mathematical
Programming, vol. 146, no. 1, pp. 459-494, 2014.

S. Bitterlich, R. I. Bot, E. R. Csetnek, and G. Wanka, “The proximal
alternating minimization algorithm for two-block separable convex op-
timization problems with linear constraints,” Journal of Optimization
Theory and Applications, vol. 182, no. 1, pp. 110-132, 2019.

[43]
[44]

[45]

[46]

[47]
[48]

[49]

APPENDIX A
PROOF OF THEOREM 2

Proof. Frank-Wolfe variant algorithm shown in Alg. 2 is a
classic method [40] for:

2
max (25)

which is a continuous DR-submodular maximization prob-
lem under down-closed convex constraint. We first prove that
constraints D’ are binding, i.e., there exists an optimal point

Y™ = argmax ,p L(y,), such that the inequality (21b)
in D'
> Gw < IPugl =1, forall (i,5) €R, (26)
PEP(i,s)
holds with equality (13c) in D, i.e.:
> Bl = Pusl—1, forall (i,s) eR, (27)

PEP(i,s)

hence, y** € D. Suppose that equality (27) does not hold
for any optima y**, i.e., Zpep(i,s> Pii,s)p < |Pa,sy| — 1, for
some (i,s8) € R. Hence, there must exist a y' > y** (at
least for one coordinate y; > yI*), s.t. ¥y’ € D’, while also
y' € D (i.e., constraints bind). By the monotonicity of L,
we would then have L(y’,v) > L(y**,v). Hence, y' € D
is also an optimum (in D’). This binding indicates that there
exists a y** = argmax ,cp, L(y,) also being a solution
to (17). As an optimal solution to problem (17), y* implies
L(y*,v) > L(y**,). Furthermore, feasible set D’ is larger
than D because of (21b), thus L(y**, 1) > L(y*,). To sum
itup, L(y™, %) = L(y",).

Similarly, because of monotonicity of (v, VL(y, ¢ (t))), there
exists an optima vy, such that (21b) in D’ holds with equality
(13¢c) in D. Thus, Yy, = >, VkVk, Where >, 7 =1, as a
convex combination of points in D, also in D.

According to Bian et al. [40], the Frank-Wolfe variant al-
gorithm has the following performance guarantee:

https://www.kuaishou.com

Lemma 2. For a non-negative DR-submodular continuous
Sfunction [maximization problem under down-closed convex
constraint, a fixed number of iterations K, and constant step-
size v, = v = K1, Alg. 2 provides the following approxi-
mation guarantee:

1
Fly) = f(0) = (1=) (f(y™) -
where Yy is the output of Alg. 2.

M

10) -5 @8

Lagrangian L, defined by Eq. (16), could attain negative val-
ues. To provide an optimality factor, we offset L by a constant;
ie., let f(y) = L(y,¥) +C, where C =3 ¥e(X(; 5)er
A(i,s) — Me) is an upper bound on » Yy - Guw(§, P).
Then, f is DR-submodular, non-negative, and f(0) = 0. We
thus have:

Lemma 2 1 o M
L(ypw,) +C > (1=)(L(y™,) +C)—-—
e 2K
1 M
p— 1 —_—— * —_—
(1=)Ly) + O)— o,
(29)
where M = 2L(1,%)(|V||C| + Pror)? is the Lipschitz contin-
uous constant, and the theorem follows. O
APPENDIX B

PROOF OF SUBOPTIMALITY OF COMPETITORS

In examplel and k = 1, the optimal caching decision is
Eapie = 1, &5 plue = 1, €3,0range = 1 and else equal to 0.

o Randoml generates &4 plue = &4,0range = 0.5, &5 plue = 1,
&3.0range = 1 and else equal to 0 in Step 1. Thus, no p
can satisfy link capacities of edges (2,4) and (5, 7).

e Random? has no feasible solution of determining routing
variables p in Step 1.

o Greedyl generates {4 orange = 1, &50me = 1, and else
equal to O in Step 1. Similar to Randoml, no p can
satisfy link capacities of edges (2,4) and (5, 7).

e Greedy?2 encounters the same infeasibility as Random?2.

e Alternating generates &4 plue = &4 0range = 0.5, &5 blue =

1, &3,0range = 1 and else equal to 0, when updating &.
Similar to Random1, no p can satisfy link capacities of
edges (2,4) and (5,7).

e PrimalDual generates a feasible solution with infeasi-
bility InF = 0 as shown in Figs. 5a and 4a.

This example verifies the suboptimality of our competitors,
although they perform pretty well when feasible.

From Fig. 4, we see that Greedy has poor performance,
compared with Random, while in all other cases, Greedy
perform better. From Figs. 4 and 6, we see that in Abilene,
our proposed PrimalDual outperforms competitors for any
K.

APPENDIX C
PARAMETERS FOR EXAMPLE AND ABILENE

Parameter details are specified Fig. 7a and Fig. 7b, for
Ex2 and Abilene2, respectively. The differences between
Ex1 and Ex2, Abilenel and Abilene?2 are different link

»
- F8

Chicago

(100, 100) NewYork

’“I - (I = (1, 00N eanoglis.
N 2L : | (100, 100)
o0, s00f | ““Do'm/“’/' ‘“’“"””’b (100, 700} “aﬁagf‘;”\ 1,100) ashingion
JRASRTORA L) fos Angeles . \ o o0
(3) i 4 5) —
py \\7/.\ y I
(100, 100) (mm)\\ G0 A=1
o W
& o Fouston
l:l l/\:/\:1)\:)\ =1

(a) Ex2 with Kk = 1 (b) Abilene2 with k =1

Fig. 7: Topologies and parameters of Ex2 and Abilene2 with
designed requests and bandwidths. There is a pair (red, green)
for edge (u,v), where the first red number is the weight w, . and
the second green number is the link capacity fi(y,u)-

capacities for some of edges. In particular, Ex1 and Ex2
differ on edge (2,4). This change is designed to make sub-
optimal algorithms infeasible in Ex1 and have high cost in
Ex2. Abilenel and Abilene?2 differ on edge (Indianapo-
lis,Chicago), (Indianapolis,Kansas City), and (Sunnyvale to
Denver). The differences are designed again so that the first
topology is infeasible and the second leads to high cost under
suboptimal algorithms.

	Introduction
	Related Work
	Model
	Main Results
	Conversion to a Continuous DR-submodular Problem
	Lagrangian and Duality
	Primal-Dual Algorithm
	Algorithm Overview
	Primal Variables via Frank-Wolfe Algorithm

	Experiments
	Synthetic Experiment Setup
	Trace-Driven Experiment Setup
	Algorithms
	Performance Metrics
	Experiment Results

	Conclusion
	References
	Appendix A: Proof of Theorem 2
	Appendix B: Proof of suboptimality of competitors
	Appendix C: Parameters for Example and Abilene

