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Abstract 

A computationally efficient two-surface plasticity model is assessed against crystal plasticity. Focus is laid on the mechanical behavior 

of magnesium alloys in the presence of ductility-limiting defects, such as voids. The two surfaces separately account for slip and twinning 

such that the constitutive formulation captures the evolving plastic anisotropy and evolving tension-compression asymmetry. For model 

identification, a procedure is proposed whereby the initial guess is based on a combination of experimental data and computationally 

intensive polycrystal calculations from the literature. In drawing direct comparisons with crystal plasticity, of which the proposed model 

constitutes a heuristically derived reduced-order model, the available crystal plasticity simulations are grouped in two datasets. A calibration 

set contains minimal data for both pristine and porous material subjected to one loading path. Then the two-surface model is assessed 

against a broader set of crystal plasticity simulations for voided unit cells under various stress states and two loading orientations. The 

assessment also includes microstructure evolution (rate of growth of porosity and void distortion). The ability of the two-surface model to 

capture essential features of crystal plasticity is analyzed along with an evaluation of computational cost. The prospects of using the model 

in guiding the development of physically sound damage models in Mg alloys are put forth in the context of high-throughput simulations. 

© 2023 Chongqing University. Publishing services provided by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. 
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1. Introduction 

Magnesium alloys are promising candidates for replac- 

ing conventional alloys in aerospace, automotive and defense 

applications. Magnesium alloys are highly anisotropic due 

to their hexagonal-close-packed crystalline structure. Their 

anisotropy manifests at various scales as it results from low 

crystal symmetry, strong crystallographic texture, and defor- 

mation twinning leading to tension-compression asymmetry. 

Thus, the plastic flow response is dependent upon orientation 

and loading mode. 

Much has been done in modeling the plastic flow of mag- 

nesium and its alloys using: (i) high-fidelity crystal plasticity 

[1–3] ; (ii) viscoplastic self-consistent (VPSC) schemes [4,5] ; 
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and (iii) phenomenological models [6] . In recent years, a sub- 

class of the latter have emerged, which aim at capturing the 

essential features of crystal plasticity via some reduction in 

degrees of freedom in terms of the internal variables involved 

[7–9] . These are not directly derived from crystal plasticity 

by standard reduced-order modeling, e.g. Michel and Suquet 

[10] , but they may be termed “heuristic reduced order mod- 

els” of crystal plasticity. So far, the assessment of these mod- 

els against crystal plasticity or experiments has been limited 

to relatively simple situations of macroscopically uniform de- 

formation. 

On the other hand, predicting damage progression to fail- 

ure in Mg alloys (or HCP materials in general) requires cou- 

pled plasticity-damage models, a field in infancy [11] . To 

guide the development of damage models, it is paramount 

that reduced order models of damage-free plasticity be first 

assessed against, say crystal plasticity simulations that in- 

corporate the key defects mediating ductile failure, namely 

voids. 

https://doi.org/10.1016/j.jma.2023.04.013 

2213-9567/© 2023 Chongqing University. Publishing services provided by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access 

article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) Peer review under responsibility of Chongqing University 

Please cite this article as: R. Vigneshwaran and A.A. Benzerga, Assessment of a two-surface plasticity model for hexagonal materials, Journal of Magnesium 

and Alloys, https:// doi.org/ 10.1016/ j.jma.2023.04.013 



2 R. Vigneshwaran and A.A. Benzerga / Journal of Magnesium and Alloys xxx (xxxx) xxx 

ARTICLE IN PRESS 
JID: JMAA [m5+; May 30, 2023;11:24 ] 

Unit cell analyses have recently been carried out on Mg 

alloys containing initial voids, spherical [12] or crack-like 

[13] . The analyses have revealed some aspects of plastic 

anisotropy that are captured by relatively simple porous mate- 

rial plasticity models [14] as well as crystallographic aspects 

that cannot be captured by these constitutive models. A first 

step towards developing physically sound but computationally 

tractable damage models is to investigate the capability of the 

heuristic reduced order models to reproduce crystal plasticity 

simulations of voided unit cells. This task is undertaken in 

this paper. 

Here, a rate-dependent version [9] of a two-surface plas- 

ticity model [8] is used to carry out voided cell analyses. The 

corresponding constitutive relation has been assessed against 

unprecedented experiments in Kondori et al. [9] . Whether 

such assessment is sufficient is part of what this study set out 

to investigate. The results of unit cell calculations are thus 

compared against similar calculations using crystal plasticity, 

which were published in Selvarajou et al. [12] . The paper 

is organized as follows. Section 2 introduces the constitutive 

equations of the two-surface model and Section 3 the unit 

cell setup. Section 4 addresses parameter identification while 

Section 5 presents our critical assessment of the model. Fi- 

nally, Section 6 discusses the computational efficiency of the 

model and alternative strategies for parameter identification. 

2. Constitutive equations 

Deformation of magnesium alloys is governed by two ma- 

jor deformation mechanisms: (i) dislocation glide (ii) twin- 

ning. The constitutive equations presented below, following 

[8,9] , account for both mechanisms at a macroscopic scale. 

The total rate of deformation is additively decomposed as: 

d = d 
e + d 

g + d 
t (1) 

where the elastic part d 
e is given by isotropic hypoelasticity 

d 
e = M : 

� 
σ, the symbol � denoting the Jaumann rate, σ the 

Cauchy stress and M the compliance tensor. 

The plastic rate-of-deformations d 
g and d 

t are respectively 

obtained from plastic potentials �g and �t assuming normal- 

ity, so that: 

d 
g = ˙ p 

g ∂�
g 

∂σ
and d 

t = ˙ p 
t ∂�

t 

∂σ
(2) 

where ˙ p 
g , ˙ p 

t are plastic multipliers, shown to be rate mea- 

sures of effective glide and twinning strain, and �g , �t are 

expressed as: 

�g = σ̄ g (σ) − R 
g (p 

g , p 
t ) (3) 

�t = σ̄ t (σ) − R 
t (p 

g , p 
t ) (4) 

Here, σ̄ g and σ̄ t are homogeneous functions of degree 1 in 

σ. Also, R 
g and R 

t are the glide and twin strengths taken as 

functions of both effective strain measures p 
g and p 

t . 

In a rate independent formulation, the plastic potentials 

have meaning of yield functions and the plastic multipliers 

˙ p 
g , ˙ p 

t are determined by writing Kuhn–Tucker conditions for 

each surface. In the extended rate-dependent formulation, on 

the other hand, the effective strain rates are obtained from a 

Norton law: 

˙ p 
i = ˙ εi 

0 

(

σ̄ i 

R i 

)n i 

i = 

{

g ( glide ) 

t ( twinning ) 
(5) 

where ˙ εi 
0 is a reference strain rate and n 

i is a strain rate 

sensitivity parameter. The rate-insensitive limit is approached 

for n 
i → ∞ . The present formulation may be extended to 

kinematic hardening by replacing the above defined effec- 

tive stresses with driving stresses. In particular, a back-stress 

formulation would be appropriate for twinning under non- 

monotonic loading. 

2.1. Deformation by dislocation glide 

Slip-induced plasticity in Mg is strongly anisotropic. Fol- 

lowing a classical approach, a transformed stress deviator is 

defined as 

s g = L 
g : σ (6) 

with L 
g being a fourth order tensor describing the anisotropy 

of yield strength due to slip. Here, L 
g has the following struc- 

ture (using Voigt’s notation and principal directions L, T, S) 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

1 
3 

(

l 
g 
TT + l 

g 
SS 

)

− 1 
3 
l 

g 
SS − 1 

3 
l 

g 
TT 0 0 0 

− 1 
3 
l 

g 
SS 

1 
3 

(

l 
g 
SS + l 

g 
LL 

)

− 1 
3 
l 

g 
LL 0 0 0 

− 1 
3 
l 

g 
TT − 1 

3 
l 

g 
LL 

1 
3 

(

l 
g 
LL + l 

g 
TT 

)

0 0 0 

0 0 0 l 
g 
LT 0 0 

0 0 0 0 l 
g 
TS 0 

0 0 0 0 0 l 
g 
SL 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

(7) 

If s 
g 
i denote the eigenvalues of s g then the effective stress for 

glide σ̄ g in Eq. (3) is written as 

σ̄ g = 

[

1 

2 

(

| s 
g 
1 − s 

g 
2 | 

a g + | s 
g 
2 − s 

g 
3 | 

a g + | s 
g 
3 − s 

g 
1 | 

a g 
)

]1 /a g 

(8) 

with a 
g an exponent that controls the shape of the yield 

surface. The choices defined by Eqs. (7) and (8) are a 

reformulation of the non-quadratic yield model of Barlat 

et al. [15] . 

2.2. Deformation by twinning 

Plastic deformation due to twinning introduces a strength 

differential effect. As above, a transformed stress deviator is 

defined as: 
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s t = L 
t : J : σ (9) 

where J is the deviatoric projector and L 
t a fourth-order ten- 

sor the components of which read in Voigt’s notation: 
⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

l t LL L 
t 
LT L 

t 
LS 0 0 0 

L 
t 
LT l t TT L 

t 
TS 0 0 0 

L 
t 
LS L 

t 
TS l t SS 0 0 0 

0 0 0 l t LT 0 0 

0 0 0 0 l t TS 0 

0 0 0 0 0 l t SL 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

(10) 

With s t i denoting the eigenvalues of s t , the effective stress for 

twinning σ̄ t that enters Eq. (4) is given by: 

σ̄ t = 

[ 
(

| s t 1 | − ks t 1 
)a t 

+ 

(

| s t 2 | − ks t 2 
)a t 

+ 

(

| s t 3 | − ks t 3 
)a t 

] 1 /a t 

(11) 

where a 
t controls the shape of the yield surface, and the pa- 

rameter k ( −1 < k < 1 ) accounts for the initial strength dif- 

ferential effect. For k > 0, the yield stress is larger in tension 

than in compression and the coefficients of L 
t are all positive 

[8] . 

The choices defined by Eqs. (10) and (11) are a reformu- 

lation of the non-quadratic yield model of Cazacu et al. [6] . 

Note that their model has been extensively used for HCP al- 

loys, in general, and Mg alloys, in particular. However, the 

two-surface formulation used here is essential for capturing 

proper evolution of plastic anisotropy, including the evolution 

of the net tension–compression asymmetry. In [6] the tension- 

compression asymmetry is fixed, which is inconsistent with 

experimental data. 

2.3. Strain hardening 

The flow strengths of individual mechanisms, R 
g and R 

t 

entering Eqs. (3) and (4) , are taken as a combination of 

Voce-like laws for self hardening and linear laws for latent 

hardening: 

R 
g = R 

g 
0 + Q 

g ( 1 − exp ( −b 
g p 

g ) ) + H 
tg p 

t (12) 

R 
t = R 

t 
0 + Q 

t 
(

exp 

(

b 
t p 

t 
)

− 1 

)

+ H 
t p 

t + H 
gt p 

g (13) 

Thus, four parameters ( R 
g 
0 , Q 

g , b 
g , H 

tg ) enter hardening by 

glide and five parameters ( R 
t 
0 , Q 

t , b 
t , H 

t , H 
gt ) enter harden- 

ing by twinning. 

3. Unit cell calculations 

Three-dimensional (3D) calculations of unit cells contain- 

ing a central spherical void were carried out, Fig. 1 (a). Plastic 

flow in the matrix was described using the constitutive rela- 

tion of Section 2 , which was implemented as a user material 

subroutine (UMAT) in the commercial finite element code 

ABAQUS. 

Fig. 1. (a) Full 3D unit cell embedding a spherical void. (b) Axisymmetric 

unit cell used in the optimization procedure. 

Macroscopic measures of stress and strain rate are defined 

as volume averages of their microscopic counterparts: 

Σ = 
1 

V 

∫ 

V 

σ dV, D = 
1 

V 

∫ 

V 

d dV. (14) 

In a given calculation, the unit cell is subjected to propor- 

tional stressing. Thus, the overall stress triaxiality ratio, T , 

and the Lode parameter, L, are kept fixed throughout the 

loading history. Not only do such loading conditions aid 

in analysis but also in making contact with similar calcu- 

lations using crystal plasticity for the matrix behavior [12] . 

The dimensionless stress state parameters are defined as: 

T = �eq / �m and L = ( 2�2 − �1 − �3 ) / ( �3 − �1 ) where 

�eq and �m are the equivalent and mean normal stresses, 
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respectively: 

�eq = 

√ 

3 

2 
Σ′ : Σ′ �m = 

1 

3 
tr Σ (15) 

the prime standing for the deviator, and the �i ’s denote prin- 

cipal stresses ( �1 ≤ �2 ≤ �3 ). 

Periodic boundary conditions were imposed. To achieve 

constant T and L load paths, the algorithm proposed by 

Zhu et al. [16] was employed using a custom coded multi- 

point constraint (MPC) subroutine in ABAQUS, the details of 

which are given elsewhere. 

Here, only axisymmetric stress states are considered with 

�1 = �2 . Thus, �eq = �3 − �1 , L = −1 and T may vary 

from one calculation to another. The calculations still need to 

be 3D because of matrix anisotropy. To simplify parameter 

calibration, however, auxiliary two-dimensional axisymmetric 

calculations were also carried out, Fig. 1 (b). Such calcula- 

tions are similar in their principle to those of Koplik and 

Needleman [17] , also used in subsequent work on anisotropic 

matrices [14,18] . 

Each calculation was post-processed in such a way that 

the void dimensions and volume are output at every time 

step. The void volume fraction (or porosity f ) is calculated 

from the total volume of sound material and the current di- 

mensions of the cell as in Koplik and Needleman [17] . This 

is exact, up to numerical errors. The void dimensions are 

approximately evaluated assuming an ellipsoidal shape with 

semi-axes a, b, c, with a along the semi major axis of the 

void. To this end, the URDFIL subroutine of Abaqus was 

used, which enabled real-time tracking of the void during de- 

formation. 

A monotonically increasing strain measure E eq is used to 

plot overall stress-strain responses as well as porosity versus 

strain evolution: 

E eq = 
2 

3 
( E 3 − E 1 ) , E i = ln (l i /L i ) (16) 

where l i and L i denote the current and initial dimensions of 

the cell in the x i direction. 

In the 3D and 2D calculations, linear C3D8 and CAX4 

elements were used. In Fig. 1 the number of elements is about 

40,000 and 400, respectively, but a coarser mesh was used in 

the optimization with 200 elements. 

In addition to the cell model calculations, material point 

simulations were also used for calibration. These consist of a 

single element calculation in simple tension using an eight- 

noded brick element with reduced integration (C3D8R). The 

loading direction is either L, which represents the prismatic 

loading orientation in Selvarajou et al. [12] , or S, which rep- 

resents the c-axis orientation in Selvarajou et al. [12] . The 

equivalent stress and strain measures for the material point 

simulations are respectively denoted by σeq and p, where 

p = p 
g + p 

t . 

4. Comparison with crystal plasticity 

4.1. Benchmark simulations 

The crystal plasticity calculations of Selvarajou et al. 

[12] serve as the main benchmark. These authors carried out 

unit cell calculations similar to those described above, but 

using a crystal plasticity constitutive relation for HCP met- 

als. Table 1 summarizes the eight cases they considered: four 

triaxiality values per loading orientation (prismatic or c-axis 

loading). In addition, uniaxial responses in simple tension 

( T = 1 / 3 ) were simulated in Selvarajou et al. [12] , which 

are referred to as “material point” simulations in the table. 

Under overall uniaxial loading ( T = 1 / 3 ) it is important 

to distinguish between the material point calculations for the 

pristine (void-free) material and the cell model with a void. 

The stress, strain and strain-rate states are uniform in the 

former, but not in the latter. For example, Selvarajou et al. 

[12] showed evidence of a void-induced hardening, resulting 

in a higher flow stress than with the pristine material for c- 

axis loading. This is due to the activation of more deformation 

systems around the void than would be expected on the mere 

basis of the overall stress state (which is uniaxial). 

Output data provided in Selvarajou et al. [12] includes 

overall stress–strain responses ( �eq versus E eq using the above 

definitions) as well as the evolution of porosity and main void 

axes. This is the only data that will be used in making com- 

parisons with the heuristic reduced order model (ROM) of 

Section 2 . Any details beyond that (e.g. microscopic fields) 

go beyond what is expected of a ROM. 

The crystal plasticity simulations in Selvarajou et al. 

[12] are divided into two datasets: a calibration dataset (iden- 

tified by (c) in Table 1 ) and an assessment dataset. The cali- 

bration dataset contains the minimum set of data needed for 

robust calibration. Note that the calibration data only includes 

stress-strain curves so that porosity versus strain data in the 

so-called calibration set is exclusively used for assessment, 

not for calibration of the ROM. 

4.2. Parameters of the ROM 

The crystal plasticity model and heuristic ROM do not 

have the same elasticity parameters. Young’s modulus E is 

obtained from the average initial slopes of the pure Mg single 

crystal stress-strain responses in Selvarajou et al. [12] under 

prismatic and c-axis loading. The value of Poisson’s ratio ν

is obtained from the literature for pure Mg. In addition to 

these, the ROM involves the following parameters, given in 

their order of appearance in Section 2 . 

1. The four (4) rate-sensitivity parameters, ˙ εi 
0 and n 

i enter- 

ing Eq. (5) (two per mode of deformation, glide versus 

twinning). 

2. The six glide anisotropy coefficients ( l 
g 
XY ) in Eq. (7) (of 

which only five (5) are independent) and the exponent 

a 
g in Eq. (8) . 
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3. The nine twinning anisotropy coefficients ( l t XY and L 
t 
XY ) 

in Eq. (10) (of which only eight (8) are independent), 

the exponent a 
t and the stress differential parameter k

in Eq. (11) . 

4. The four (4) glide hardening parameters ( R 
g 
0 , Q 

g , b 
g , 

H 
tg ) in Eq. (12) and five (5) twinning hardening pa- 

rameters ( R 
t 
0 , Q 

t , b 
t , H 

t , H 
gt ) in Eq. (13) . 

Therefore, there are 29 independent parameters in total en- 

tering the constitutive formulation. 

4.3. Simplification 

Since the anisotropy parameters are defined up to a mul- 

tiplicative constant, we take l 
g 
LL = 1 , l t LL = 1 with no loss 

of generality. Following Kondori et al. [9] , we also take 

a 
g = a 

t = 4. Furthermore, using some observations made by 

Selvarajou et al. [12] the hardening in glide due to twinning 

deformation is not well distinguished in their material. There 

is no case where deformation enters into the twinning-affected 

regime after a glide-dominated one. Also, the self-hardening 

in twinning is approximately linear. Hence the exponential 

function is avoided. We then simplify the hardening forms by 

taking H 
tg = 0 in Eq. (12) and Q 

t = 0, b 
t = 1 in Eq. (13) . 

Thus, only six hardening parameters are retained. 

Next, the Norton constants are taken to be the same for 

glide and twinning, just like in the CP calculations in Selvara- 

jou et al. [12] . Furthermore, their values in Selvarajou et al. 

[12] are adopted here. 

This leaves a total of 20 parameters to be identified. The 

goal is to identify these parameters from a minimal crystal 

plasticity simulation dataset, Table 1 . For reference, there are 

about 26 (free) parameters in the crystal plasticity formulation 

employed by Selvarajou et al. [12] . 

4.4. Optimization strategy 

An iterative procedure was followed for calibrating the 

ROM of Section 2 using the benchmark crystal plasticity sim- 

ulations in Selvarajou et al. [12] . The procedure is schemati- 

cally shown in Fig. 2 . 

Once a set of initial parameters is chosen, four finite el- 

ement simulations (two voided unit cells and two material 

point calculations) are carried out for the conditions identi- 

fied with a (c) in Table 1 . The “distance”, in terms of an 

error norm, between the ROM and CP simulations is eval- 

uated using a cost function, and a new set of parameters is 

determined using a Nelder–Mead optimization algorithm of 

the Z -set package [19] . This process is repeated until the cost 

function reaches a minimum value or further minimization is 

impossible. 

The cost function, E , is entirely based on the stress–strain 

responses, as noted above. For the cell model results, an es- 

sential feature is the abrupt stress drop corresponding to the 

onset of coalescence, which represents a measure of strain 

to failure. In order to give that measure a larger weight, we 

Fig. 2. Iterative procedure used for model calibration. 

define the cost function as follows: 

E = 

N 
∑ 

I=1 

E 
I (17) 

where N denotes the number of test simulations, i.e. elements 

in the calibration set (here 4) and 

E 
I = 

w 
I 
σ

εI 
max 

∫ εI 
max 

0 

(

σ I 
CP − σ I 

ROM 

)2 
dε

+ 
w 

I 
ε

2 

(

εI 
CP c − εI 

ROM c 

)2 
(18) 

For a given test I , E 
I quantifies the difference between the 

ROM and CP simulations in terms of the stress-strain curve 

and the strain to failure in the cell model. More specifically, 

w 
I 
σ , w 

I 
ε are weights, εI 

max is the total strain reached in a 

given simulation I , σ I 
CP , σ

I 
ROM denote appropriate equivalent 

stresses, and εI 
CP c , ε

I 
ROM c are the strains to failure (available 

only for cell simulations). The strain to failure is given a 
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Table 1 

Datasets from Selvarajou et al. [12] ’s crystal plasticity (CP) benchmark sim- 

ulations.Data marked with (c) was used for calibration. 

Dataset T Loading Simulation type 

1 (c) 1/3 Prismatic Material Point 

2 (c) 1/3 c-axis Material Point 

3 1/3 Prismatic Cell Model 

4 (c) 1 Prismatic Cell Model 

5 2 Prismatic Cell Model 

6 3 Prismatic Cell Model 

7 1/3 c-axis Cell Model 

8 (c) 1 c-axis Cell Model 

9 2 c-axis Cell Model 

10 3 c-axis Cell Model 

bigger weight where relevant. Hence, we take w 
I 
σ = 1 but 

w 
I 
ε = o(100) , for all I . 

To reduce computational cost, the axisymmetric 2D unit 

cell model calculations were used for optimization of the pa- 

rameters. After convergence, 3D cell calculations were carried 

out using the optimized parameters for purposes of model as- 

sessment. 

Finally, a word on initialization. The Nelder-Mead algo- 

rithm was chosen compared to other optimization algorithms 

available in Z-set, such as the Levernberg-Marquardt or se- 

quential quadratic programming (SQP) algorithms, as it is rea- 

sonably more robust to variations in initial conditions. Here, 

the initial set of parameters was determined in two steps. 

First, the parameters introduced by Kondori et al. [9] were 

employed. Since these were fit on experiments on a Mg alloy 

they were not particularly well suited for comparison with the 

crystal plasticity simulations in Selvarajou et al. [12] . There- 

fore, in a second step a recent set of large-scale polycrystal 

simulations by Indurkar et al. [20] were used. Their polycrys- 

tal stress-strain curves were used as input to an optimization 

scheme as above. Details of this step are provided in Ap- 

pendix. This initialization step has no major consequence on 

the message of the paper. However, it provides a reasonable 

initialization step when such data is available. 

5. Results 

The optimized ROM material parameters are listed in 

Table 2 . As expected, the initial strength of the twinning 

mode, R 
t 
0 = 17 . 4 MPa is lower than that for the glide mode 

R 
g 
0 = 72 MPa. Depending on the loading direction and the 

stress differential parameter (here k = 0. 57 ), the activation of 

twinning deformation is determined by the dominant poten- 

tial, Eqs. (3) and (4) . The large value of the latent hardening 

term H 
gt illustrates that as soon as a small glide deforma- 

tion occurs, twin strength increases drastically, and the de- 

formation transitions into a glide mode. The glide anisotropy 

coefficients vary between 1.72 and 2.13; compare with the 

range 1.09 to 1.69 for AZ31B in Kondori et al. [9] . The 

twinning anisotropy coefficients vary between 0.43 and 2.47; 

compare with the range 0.22 to 0.97 in Kondori et al. [9] . 

As expected, the anisotropy of a single crystal is stronger 

Fig. 3. Best fit of the ROM (this paper) on crystal plasticity (CP) simulations 

in Selvarajou et al. [12] for two loading orientations; see data labeled (c) in 

Table 1 . (a) Effective stress, σeq , versus effective strain, p, for uniaxial tension 

of pristine material. (b) Cell equivalent stress, �eq , versus equivalent strain, 

E eq , for voided cell with initial porosity f 0 = 1% and T = 1 . 

than that of a polycrystal with a basal texture. The fact that 

l 
g 
TT ≈ l 

g 
SS is a consequence of using axisymmetric elements in 

the calibration process. The consequences this may have in 

predicting the anisotropic evolution of microstructure will be 

discussed. 

5.1. ROM-CP comparison 

Figure. 3 evaluates the quality of the fit using the opti- 

mized ROM parameters against the calibration dataset from 

crystal plasticity, Table 1 . Uniaxial tension responses of the 

pristine Mg material are shown in Fig. 3 (a). The voided cell 

model responses are shown in Fig. 3 (b) for T = 1 under pris- 

matic and c-axis loading. The dashed lines correspond to the 

CP reference simulations and the solid lines correspond to 

ROM calculations. At least one triaxial tension data on the 

cell model and uniaxial tension data on pristine material are 

required for the ROM to capture the void-induced hardening 

as well as strain to coalescence observed in CP simulations. 

The following observations are in order. 
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Table 2 

Optimized material parameters. Stress-like parameters are expressed in MPa. The number of parameters for each group is indicated in parentheses. Parameters 

marked with an asterisk were fixed in the optimization process. 

Elasticity Isotropy (2) E ν

15000.0 ∗ 0.29 ∗

Viscoplasticity Norton’s law (2) ˙ ε0 n

0.001 ∗ 50.0 ∗

Glide Hardening (4) R 
g 
0 Q g b g H tg 

72.0 332.0 268.0 0.0 ∗

Anisotropy (7) l 
g 
LL l 

g 
TT l 

g 
SS l 

g 
LT l 

g 
TS l 

g 
SL a g 

1.0 ∗ 2.13 2.08 1.95 1.82 1.72 4.0 ∗

Twinning Hardening (5) R t 0 Q t b t H t H gt 

17.4 0.0 ∗ 1.0 ∗ 571.0 1 . 1 × 10 7 

Anisotropy (11) l t LL l t TT l t SS l t LT l t TS l t SL L t LT L t TS L t SL a t k

1.0 ∗ 2.47 0.52 0.43 1.0 1.07 1.79 1.56 1.68 4.0 ∗ 0.57 

• For the pristine material, unlike with standard J 2 plastic- 

ity, the crystal plasticity material exhibits an orientation- 

dependent macroscopic stress-strain response. The re- 

sults presented in Fig. 3 (a) show the extent of the 

differences. 

• Under c-axis loading , deformation occurs by twinning, 

resulting in a softer response initially, see Fig. 3 (a). 

The material linearly hardens in the twinning-affected 

regime. Then, as in CP, the deformation by glide be- 

comes dominant at a strain of about 5%, and the effect 

of latent hardening gradually deactivates the twinning 

deformation, while the flow stress increases. Eventually, 

the flow stress saturates at a value higher than for the 

prismatic loading case after 10% of strain. 

• Under prismatic loading , deformation by dislocation 

glide occurs first, as in the crystal plasticity simulation, 

resulting in a hard initial response, see Fig. 3 (a). The 

Voce-type hardening law captures stress saturation after 

5% of strain. 

The ROM captures the essential features of the CP simu- 

lations. That the ROM is capable of capturing such effects 

has already been established in Kondori et al. [9] . The 

errors are larger in Fig. 3 (a) than in Kondori et al. [9] be- 

cause of the additional constraint of satisfying void growth 

and coalescence simulations in Fig. 3 (b). 

• For the voided material, the macroscopic stress-strain re- 

sponses show a trend similar to the pristine material. How- 

ever, the presence of a void introduces a competition be- 

tween softening due to void growth, and void-induced 

hardening. 

• Under c-axis loading , the deformation due to twinning 

occurs first, resulting in a soft initial response that even- 

tually transitions into the glide mode, see Fig. 3 (b). 

Regions of tension and compression around the void 

undergo different deformation mechanisms due to the 

stress differential effect. This effect is more pronounced 

under c-axis loading; hence a harder response is ob- 

tained with higher flow stress levels, at least for low to 

moderate triaxialities ( T = 1 / 3 , 1 ), in comparison with 

the pristine case. The stress drop obtained at E eq ∼ 0. 6 

is due to the onset of void coalescence (see Benzerga 

[21] for background). 

• Under prismatic loading , the deformation by glide oc- 

curs first, resulting in a hard initial response, see 

Fig. 3 (b). Then, the porosity grows leading to soften- 

ing, and the load drops because of coalescence. The 

load drop occurs at E eq ∼ 0. 85 and E eq ∼ 1 . 0 for the 

CP and ROM simulations, respectively. 

The ROM captures the macroscopic stress-strain response, 

the void-induced hardening and the softening due to poros- 

ity growth under c-axis loading. However, under prismatic 

loading, the secondary hardening at E eq ∼ 0. 6 and the 

strain to coalescence are not captured well. 

5.2. Model assessment 

By model assessment we mean (i) conducting a series of 

comparisons for loading cases not used for calibration and 

(ii) porosity growth predictions for the loading cases used for 

calibration (recall that porosity versus strain curves were not 

used as input to the optimizer.) 

Figure 4 shows the porosity, f , versus strain, E eq , curves 

corresponding to the cell model responses shown in Fig. 3 (b). 

There is a tendency for the 2D ROM simulations to some- 

Fig. 4. Porosity, f , versus cell equivalent strain, E eq , for voided cell with ini- 

tial porosity f 0 = 1% and T = 1 , corresponding to the responses in Fig. 3 (b). 

The 3D cell response for prismatic loading is also shown for comparison. 
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Fig. 5. (a) Cell equivalent stress, �eq , (b) Porosity, f , versus cell equivalent 

strain, E eq , for voided cell with initial porosity f 0 = 1% under c-axis load- 

ing for T = 1 / 3 , 1 , 2, 3 . The dashed lines correspond to CP simulations in 

Selvarajou et al. [12] , and the solid lines correspond to ROM simulation. 

what underestimate the rate of porosity growth. However, 

keeping in mind that void growth results from microscopic 

plastic flow in the matrix and that microscopic fields are be- 

yond what is expected of a ROM by definition, overall the 

porosity evolution predictions are quite good. Note in passing 

the significant improvement in the prismatic case when using 

full 3D simulations. The c-axis simulations are not very de- 

pendent on dimensional order because the response is quasi- 

transversely isotropic in that case. In what follows, there- 

fore, 3D simulation results are only shown for the prismatic 

orientation. 

5.2.1. c-axis loading 

Figure 5 shows cell model curves of equivalent stress, 

�eq , versus equivalent strain, E eq , and corresponding curves 

of porosity, f , versus E eq for four values of the stress tri- 

axiality ratio T . The benchmark crystal plasticity results are 

plotted dashed whereas the ROM predictions are shown with 

solid lines. Figure 6 shows the corresponding evolution of 

the void’s semi-axes, normalized by their initial values, a 0 , 

Fig. 6. The major, a, intermediate, b, and minor, c, semi axes of the void, 

versus cell equivalent strain, E eq , for voided cell with initial porosity f 0 = 1% 

under c-axis loading for T = 1 / 3 , 1 , 2, 3 . The dashed lines correspond to CP 

simulations in Selvarajou et al. [12] , and the solid lines correspond to ROM 

simulation. 

b 0 , c 0 . Recall that the T = 1 case (shown red; color online) 

was used for calibration. Key features are as follows. 

• The sigmoidal character of the stress–strain response of 

the pristine material ( Fig. 3 (a)) affects all macroscopic 
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stress-strain responses in Fig. 5 (a), irrespective of triaxial- 

ity. However, except for T = 1 / 3 , the effective responses 

now have a softening component, which is porosity in- 

duced. The higher the triaxiality the more severe the soft- 

ening. Given that the hardening capacity is low after twin- 

ning is complete, the material behaves as nearly perfectly 

plastic. It is known, under such circumstances, that the 

porosity induced softening may take effect immediately as 

the cell transitions to a uniaxial deformation mode cor- 

responding to accelerated void growth after the onset of 

void coalescence [17] . This is the case for T = 2 and 

T = 3 . 

• It is remarkable that the ROM predictions in Fig. 5 (a) re- 

produce extremely well the crystal plasticity results for the 

T = 1 / 3 , T = 2 and T = 3 cases, which were not used for 

calibration. The accurate predictions include the strain to 

failure, defined as above (i.e. onset of void coalescence). 

• The evolution of porosity is also very well reproduced 

( Fig. 5 (b)), especially in cases for which the stress-strain 

curves were not used in calibration. The higher the tri- 

axiality the faster the void growth, as is well known 

[22] . 

• The evolution of the semi-axes of the void is also well re- 

produced at all triaxialities, Fig. 6 . For T = 1 / 3 the ROM 

predictions exaggerate the lateral void shrinkage. Overall, 

the predictions are remarkable given that the evolution of 

the semi-axes represents a deeper layer of detail in probing 

the ROM’s performance. 

• The case of overall uniaxial tension T = 1 / 3 merits special 

attention. 

– There is a void-induced hardening in this case, which 

was thoroughly discussed in Selvarajou et al. [12] . The 

effect is appreciated by noting that the flow stress in ten- 

sion for the pristine material is below 250 MPa (from 

Fig. 3 (a)). By way of contrast, in the voided material it 

is well above 250 MPa (see Fig. 5 (a)) even if the void 

actually tends to close while elongating. In the crystal 

plasticity simulations, this effect results from activation 

of multiple deformation systems beyond the favorable 

extension twinning. Not only does the ROM predict the 

void-induced hardening ( Fig. 5 (a)) but also the corre- 

sponding porosity decrease ( Fig. 5 (b)). 

– In standard J 2 plasticity, the typical prediction for T = 

1 / 3 is that the porosity saturates after a slight increase. 

Under c-axis loading there is actually a significant de- 

crease, which is well captured by the ROM, Fig. 5 (b). 

5.2.2. Prismatic loading 

Figure 7 shows cell model curves of �eq versus E eq and 

corresponding curves of porosity versus E eq for four values 

of the triaxiality T . The crystal plasticity and ROM predic- 

tions are plotted using dashed and solid lines, respectively. In 

addition, Fig. 8 depicts the evolution of the void’s semi-axes. 

Salient features are as follows. 

• The overall stress-strain responses in Fig. 5 (a) are domi- 

nated by glide from the outset of plastic flow. Unlike the 

Fig. 7. (a) Cell equivalent stress, �eq , (b) Porosity, f , versus cell equiv- 

alent strain, E eq , for voided cell with initial porosity f 0 = 1% under pris- 

matic loading for T = 1 / 3 , 1 , 2, 3 . The dashed lines correspond to CP sim- 

ulations in Selvarajou et al. [12] , and the solid lines correspond to ROM 

simulation. 

pristine material ( Fig. 3 ) the voided cells exhibit softening 

after sufficient straining, except for T = 1 / 3 . The soften- 

ing is induced by porosity growth, Fig. 5 (b). 

• The correspondence between ROM and CP results is not as 

good as in Fig. 5 for c-axis loading. A main part of this is 

that the CP simulations exhibit some secondary hardening 

for T = 1 / 3 and T = 1 after E eq ∼ 0. 6 , which the ROM 

does not capture. As a result, the ROM overestimates the 

softening at low triaxiality but underestimates it at high 

triaxiality. 

• Correspondingly, the ROM underestimates the growth of 

porosity in all but the T = 1 / 3 case. The relative error 

becomes important at high triaxiality. This point merits 

further discussion below. 

• The evolution of the semi-axes of the void is predicted 

reasonably well, Fig. 8 , with some discrepancies that are 

worth analyzing. Consider the T = 1 case for which the 

stress-strain curve was used for ROM calibration. The main 

axis of the void, a, is predicted quite well, Fig. 8 (a). How- 

ever, the transverse axes, b and c, are not. In fact, the 
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Fig. 8. The major, a, intermediate, b, and minor, c, semi axes of the void, 

versus cell equivalent strain, E eq , for voided cell with initial porosity f 0 = 1% 

under c-axis loading for T = 1 / 3 , 1 , 2, 3 . The dashed lines correspond to CP 

simulations in Selvarajou et al. [12] , and the solid lines correspond to ROM 

simulation. 

ROM predicts similar evolution for b and c whereas the 

CP predictions show strong transverse anisotropy, Fig. 8 (b) 

and (c). In other words, the initially spherical void devel- 

ops into a fully 3D void. The reason for this is obviously 

Table 3 

The computational cost for each simulation using the reduced order model 

(ROM). The average time consumed for every simulation case and the num- 

ber of CPUs considered are listed. 

T Loading Simulation type CPUs Time (s) 

1/3 Prismatic Material Point 1 30 

1/3 c-axis Material Point 1 30 

1/3 Prismatic 2D Cell Model 15 200 

1/3 c-axis 2D Cell Model 15 1100 

1 Prismatic 2D Cell Model 15 800 

1 c-axis 2D Cell Model 15 700 

2 Prismatic 2D Cell Model 15 400 

2 c-axis 2D Cell Model 15 700 

3 Prismatic 2D Cell Model 15 400 

3 c-axis 2D Cell Model 15 800 

1/3 Prismatic 3D Cell Model 48 15,000 

1 Prismatic 3D Cell Model 48 16,000 

2 Prismatic 3D Cell Model 48 9000 

3 Prismatic 3D Cell Model 48 8500 

the use of 2D axisymmetric calculations during calibration. 

This led to l 
g 
TT ≈ l 

g 
SS . 

6. Discussion 

6.1. Computational efficiency 

Table 3 lists the computational time and number of CPUs 

used per calculation for all simulations with the reduced order 

model. The data is for the 2D, 3D cell simulations and 3D ma- 

terial point simulations; see Section 3 . In the cell calculations, 

the CPU time is evaluated up to the onset of void coalescence, 

i.e. when the cell’s deformation becomes suddenly uniaxial. 

When the latter does not occur ( T = 1 / 3 ) calculations are 

stopped at E eq = 1 . 1 . Where relevant, the listed times are av- 

erages over the many iterations taken during optimization of 

the parameters. Calculations that involve multiple deformation 

modes, typically the c-axis loading cases, require more iter- 

ations. The 3D calculations employed for prismatic loading 

require about 4.5 h with 48 CPUs for the T = 1 case. The 

total cost of the 3D calculations (CPUs × Time) is about 65 

times their 2D counterparts. 

Selvarajou et al. [12] did not report CPU times for their 

calculations. However, there is a good order of magnitude dif- 

ference between the CPU times of CP and ROM simulations 

[23] . 

There are two aspects to the significant advantage of the 

reduced order model over crystal plasticity. First, consider 

model parameter reduction. As stated at the end of Sec- 

tion 4.2 , the ROM essentially involves 29 independent pa- 

rameters, twenty (20) of which were treated as free in model 

identification. While this number may appear as large, it is a 

significant reduction in comparison with the actual indepen- 

dent parameters of crystal plasticity. 

In a high-fidelity crystal plasticity formulation, the number 

of parameters scales with the number n of deformation sys- 

tems ( n = 30 for Mg, counting all variants). To each system 

are associated at least two strain-rate parameters, an initial 
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strength and n − 1 hardening parameters in the interaction 

matrix. This leads to ∼ n(n + 2) ≈ 960 parameters. Obvi- 

ously, no crystal plasticity simulation would utilize the full 

extent of its inherent parameterization. But this already illus- 

trates that conventional crystal plasticity is overly parameter- 

ized. In other words, the common usage of CP tacitly employs 

an ad hoc, and rather drastic, reduction in parameters. Typi- 

cally, the number of parameters is reduced by taking many of 

them to be independent of slip/twin system (e.g. the strain- 

rate parameters) or adopting functional forms for hardening 

that simplify the interaction matrix. In doing so, the formu- 

lation in Selvarajou et al. [12] for instance ends up with 26 

parameters out of a possible 960. 

Clearly, the huge reduction in putative model parameters 

is not the reason for computational gain when comparing the 

present ROM with CP for the numbers of free parameters are 

comparable (20 for the ROM versus 26 for CP). Besides, the 

number of parameters is only relevant for model identifica- 

tion. 

The computational efficiency of the ROM over crystal plas- 

ticity simply resides in the reduction of the number of internal 

variables: two (2) for the ROM ( p 
g , p 

t ) versus thirty (30) for 

CP (all the slip/twin rates). In addition, the memory require- 

ments to store the internal state variables are less with the 

ROM. 

6.2. Representation of physical mechanisms 

Kondori et al. [9] discussed some limitations of the re- 

duced order model in capturing certain aspects of crystal 

plasticity. First, the ROM does not account for the twinning- 

induced material reorientation. Second, the ROM cannot de- 

scribe mesoscale deformation features, such as texture evolu- 

tion. Furthermore, the hardening laws used do not account for 

detwinning, which is believed to have a lower (effective) criti- 

cal resolved shear stress. This effect could be incorporated us- 

ing a back-stress formulation (kinematic hardening). This may 

have an additional contribution to the tension-compression 

asymmetry as well as in any unloading process. However, 

in Kondori et al. [9] the model was shown to capture the 

orientation dependence of the stress–strain response in three 

principal and three off-axes directions, including through the 

thickness of the plate, for which experimental data is scarce. 

The model also captured the evolution of tension-compression 

asymmetry and of plastic anisotropy in the form of 3D Lank- 

ford coefficients. 

The present investigation goes one step further in prob- 

ing the capabilities of the two-surface ROM to capture the 

essential features of crystal plasticity simulations. The com- 

petition between void-induced hardening and void-growth- 

induced softening is captured well. In addition, the ROM 

captures the formation of regions of tension and compres- 

sive states around the void through the stress differential 

parameter. Overall, the matching of both stress–strain and 

porosity-strain responses is remarkable, especially for c-axis 

loading. 

The strain levels reached in the voided cells are larger than 

one would expect for a specimen-level strain to failure in a 

Mg alloy, even when dimpled fracture is the main mechanism, 

e.g. Kondori and Benzerga [ 24,25 ]. However, that large strains 

may be reached locally is not excluded. To make further con- 

tact with experiments, one would need multi-void simulations 

or employ homogenized failure models. Another important as- 

pect is that shear failure may occur in actual specimens. The 

role of plastic anisotropy in this regard is not well under- 

stood; see e.g. [26] . Here too, single-void simulations cannot 

reproduce that failure mechanism. 

6.3. Parameter optimization strategy 

Even for a simple anisotropic model such as Hill’s [27] , it 

is impossible to identify all parameters without, say uniaxial 

loading data along principal (L, T, S) and off-axes (LT, LS, 

TS) directions. Now, the reduced order plasticity model re- 

quires even more data to calibrate the anisotropic coefficients 

of glide, twin, and the stress asymmetry factor. Evidently, the 

datasets for a single crystal were incomplete, and only uniax- 

ial tension data under prismatic and c-axis loading directions 

on the pristine single crystal were available. Therefore, we 

chose parameters reported by Kondori et al. [9] as the ini- 

tial condition. We further improved the initial conditions of 

the 20 parameters by using CP simulations of a Mg poly- 

crystal in various loading directions; see Appendix A . This 

pre-optimization step provided some estimates for the shear 

anisotropy coefficients that were left unperturbed by the c-axis 

or prismatic pristine material data. 

One aim was to identify the parameters of the ROM using 

minimal data sets from Selvarajou et al. [12] . Several strate- 

gies have been attempted to achieve this: 

• Strategy 1: 

The ROM parameters are identified using uniaxial tension 

data on pure Mg along the prismatic and c-axis directions 

(Nos. 1 and 2 in Table 1 ). In this case, the uniaxial re- 

sponses were calibrated better than shown in Fig. 3 . How- 

ever, predictions of unit cell results (Nos. 3–10 in Table 1 ) 

were far from satisfactory. For example, the strain to failure 

in the T = 1 prismatic loading case was underestimated by 

25% relative error. Also, under c-axis loading, the maxi- 

mum flow stress was underestimated by over 20%. 

• Strategy 2: 

The ROM parameters are identified using only unit cell 

data for T = 1 and the prismatic direction (No. 4 in Ta- 

ble 1 ). This strategy improves the anisotropic coefficients, 

particularly the shear coefficients, as the cell model has 

regions of shear stress states around the void. Hence, it 

delivers a better estimate for pristine and cell model cases 

compared to strategy 1. But, the quantitative comparisons 

under c-axis loading for the cell model still underestimated 

by at least 20%. 
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• Strategy 3: 

The ROM parameters are identified using pristine mate- 

rial and cell data for T = 1 along the prismatic direction 

(Nos. 1, 2, 4 in Table 1 ). This strategy minimizes the cost 

function even further. However, the ROM still fails to cap- 

ture void-induced hardening, the flow stress level, and the 

strain to failure under c-axis loading. Hence, at least one 

unit cell data under c-axis loading is necessary. 

• Strategy 4: 

The ROM parameters are identified using uniaxial tension 

data sets on pristine and cell model along the prismatic and 

c-axis directions (Nos. 1, 2, 3, 7 in Table 1 ). This strategy 

captures the void induced hardening, and hence the flow 

stress levels at all triaxialities under prismatic and c-axis 

loadings. However, the ROM overestimates the strain to 

failure in comparison with CP simulations. Thus, at least 

one triaxial tension data on cell model under prismatic 

and c-axis directions are judged to be necessary for the 

optimization process. 

• Strategy 5: 

The ROM parameters are identified using pristine material 

and cell model data for T = 1 along both prismatic and 

c-axis directions (Nos. 1, 2, 4, 8 in Table 1 ). This is the 

strategy retained in Section 5 . 

Of course, using all available data would improve the pre- 

dictions, but that does not help in understanding the predictive 

capabilities of the ROM and computational cost as it would 

take more iterations to converge. 

There are two quantitative aspects that could be improved 

(i) the secondary hardening observed under prismatic loading 

at sufficiently low triaxiality (dashed curves in Fig. 7 ); and 

(ii) the transverse anisotropy of void growth, again for pris- 

matic loading (see Fig. 8 (b) and (c)). The former could be 

remedied by introducing a second Voce law in glide hard- 

ening, Eq. (12) . The latter can be captured with the model 

as is. It would only require that the optimization process be 

carried out using full 3D unit cells. 

On the computational side, some responses exhibited os- 

cillations. The solver embedded in the UMAT is a simple 

Newton solver. Hence, the solution oscillates or overshoots 

for multiple systems and sometimes requires too fine a time 

step for convergence. Using trust region solvers or coupling 

Newton’s iterative solver with line search techniques would 

reduce the computational time even further. 

7. Conclusions 

A reduced-order two-surface plasticity model was investi- 

gated by comparison against crystal plasticity simulations of 

voided and pristine unit cells. 

1. Although the calibration procedure uses only stress-train 

data, the constitutive model was found to capture the 

orientation-dependence of porosity evolution and the 

macroscopic response at all levels of stress triaxiality 

that were investigated. 

2. The well-known effect of triaxiality was observed. The 

higher the triaxiality the lower the strain to coalescence. 

Void closure under uniaxial loading was also captured 

for c-axis loading. 

3. The ROM captures the competition between void- 

induced hardening and porosity-induced softening. It 

captures the void-induced hardening through the ac- 

tivation of twinning or glide locally around the 

void due to regions of tension and compressive 

states. 

4. Two drawbacks of the ROM were identified under pris- 

matic loadings: the transverse anisotropy of void growth 

and the secondary hardening at low triaxiality. Both can 

be remedied in principle. 

5. The reduced order plasticity model is highly efficient for 

computation. The memory needed to store internal state 

variables is cheaper. The model constitutes therefore a 

good basis to build upon for developing predictive mod- 

els of damage accumulation to failure, especially in the 

context of high-throughput analyses for usage in ma- 

chine learning methodologies. 
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Appendix A. Initial parameter set 

To better calibrate the anisotropic shear coefficients and 

strength asymmetry factor, uniaxial tension and compression 

data in various directions are needed. Since the available data 

for single crystal Mg was incomplete, the initial conditions 

of the 20 parameters entered into the optimizer were obtained 

from a ROM calibration process using polycrystal Mg simu- 

lation data. 

The data is taken from Indurkar et al. [20] . These authors 

generated tension stress-strain responses of pure Mg poly- 

crystal data under L, T, S, LT, LS, and TS directions and 

uniaxial compression under L direction. Thus, the first op- 

timization procedure involves minimizing the difference be- 

tween the ROM and CP responses of pure Mg polycrystal 

data to identify initial parameters for further calibration. The 

calibration results are presented in Figs. 9 and 10 . The results 

also show the capability of the ROM to capture responses in 

multiple loading directions. The trends captured by the ROM 

agree well with the CP results with high computational effi- 

ciency as ROM calibration is performed using a single finite 

element. 
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Fig. 9. Best fit of the ROM on crystal plasticity (CP) simulations in Indurkar 

et al. [20] for multiple loading orientations. Effective stress, σeq , versus effec- 

tive strain, p, for uniaxial tension along L,T,S directions of the polycrystal. 

Fig. 10. Best fit of the ROM on crystal plasticity (CP) simulations in Indurkar 

et al. [20] for multiple loading orientations. Effective stress, σeq , versus ef- 

fective strain, p, for uniaxial tension along LT,LS,TS directions, and uniaxial 

compression along L direction of the polycrystal. 
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