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Abstract

A computationally efficient two-surface plasticity model is assessed against crystal plasticity. Focus is laid on the mechanical behavior
of magnesium alloys in the presence of ductility-limiting defects, such as voids. The two surfaces separately account for slip and twinning
such that the constitutive formulation captures the evolving plastic anisotropy and evolving tension-compression asymmetry. For model
identification, a procedure is proposed whereby the initial guess is based on a combination of experimental data and computationally
intensive polycrystal calculations from the literature. In drawing direct comparisons with crystal plasticity, of which the proposed model
constitutes a heuristically derived reduced-order model, the available crystal plasticity simulations are grouped in two datasets. A calibration
set contains minimal data for both pristine and porous material subjected to one loading path. Then the two-surface model is assessed
against a broader set of crystal plasticity simulations for voided unit cells under various stress states and two loading orientations. The
assessment also includes microstructure evolution (rate of growth of porosity and void distortion). The ability of the two-surface model to
capture essential features of crystal plasticity is analyzed along with an evaluation of computational cost. The prospects of using the model
in guiding the development of physically sound damage models in Mg alloys are put forth in the context of high-throughput simulations.
© 2023 Chongqing University. Publishing services provided by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
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1. Introduction and (iii) phenomenological models [6]. In recent years, a sub-
class of the latter have emerged, which aim at capturing the
Magnesium alloys are promising candidates for replac-  €ssential features of crystal plasticity via some reduction in

degrees of freedom in terms of the internal variables involved
[7-9]. These are not directly derived from crystal plasticity
by standard reduced-order modeling, e.g. Michel and Suquet
[10], but they may be termed ‘“heuristic reduced order mod-
els” of crystal plasticity. So far, the assessment of these mod-
els against crystal plasticity or experiments has been limited

Thus, the plastic flow response is dependent upon orientation (O relatively simple situations of macroscopically uniform de-
and loading mode. formation.

Much has been done in modeling the plastic flow of mag- On the other hand, predicting damage progression to fail-
nesium and its alloys using: (i) high-fidelity crystal plasticity =~ Ur® in Mg alloys (or HCP materials in general) requires cou-

[1-3]; (ii) viscoplastic self-consistent (VPSC) schemes [4,5]; pled plasticity-damage models, a field in infancy [I1]. To
guide the development of damage models, it is paramount

that reduced order models of damage-free plasticity be first
assessed against, say crystal plasticity simulations that in-
corporate the key defects mediating ductile failure, namely

ing conventional alloys in aerospace, automotive and defense
applications. Magnesium alloys are highly anisotropic due
to their hexagonal-close-packed crystalline structure. Their
anisotropy manifests at various scales as it results from low
crystal symmetry, strong crystallographic texture, and defor-
mation twinning leading to tension-compression asymmetry.
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Unit cell analyses have recently been carried out on Mg
alloys containing initial voids, spherical [12] or crack-like
[13]. The analyses have revealed some aspects of plastic
anisotropy that are captured by relatively simple porous mate-
rial plasticity models [14] as well as crystallographic aspects
that cannot be captured by these constitutive models. A first
step towards developing physically sound but computationally
tractable damage models is to investigate the capability of the
heuristic reduced order models to reproduce crystal plasticity
simulations of voided unit cells. This task is undertaken in
this paper.

Here, a rate-dependent version [9] of a two-surface plas-
ticity model [8] is used to carry out voided cell analyses. The
corresponding constitutive relation has been assessed against
unprecedented experiments in Kondori et al. [9]. Whether
such assessment is sufficient is part of what this study set out
to investigate. The results of unit cell calculations are thus
compared against similar calculations using crystal plasticity,
which were published in Selvarajou et al. [12]. The paper
is organized as follows. Section 2 introduces the constitutive
equations of the two-surface model and Section 3 the unit
cell setup. Section 4 addresses parameter identification while
Section 5 presents our critical assessment of the model. Fi-
nally, Section 6 discusses the computational efficiency of the
model and alternative strategies for parameter identification.

2. Constitutive equations

Deformation of magnesium alloys is governed by two ma-
jor deformation mechanisms: (i) dislocation glide (ii) twin-
ning. The constitutive equations presented below, following
[8,9], account for both mechanisms at a macroscopic scale.
The total rate of deformation is additively decomposed as:

d=d°+d®+d 6))

where the elastic part d® is given by isotropic hypoelasticity
de =M: g’, the symbol V denoting the Jaumann rate, o the
Cauchy stress and M the compliance tensor.

The plastic rate-of-deformations d& and d' are respectively
obtained from plastic potentials ®& and &' assuming normal-
ity, so that:

. ,gaq>g . ,l8<I>‘
d®*=p*—— and d =p — 2)
Jdo o

where pg, p' are plastic multipliers, shown to be rate mea-
sures of effective glide and twinning strain, and ®¢, ®' are
expressed as:

Ot =g8(a) — RE(pS, p) 3)

o' =5'(o) —R'(p, ph) 4)

Here, 5¢ and &' are homogeneous functions of degree 1 in
o. Also, R and R' are the glide and twin strengths taken as
functions of both effective strain measures p¢ and p'.

In a rate independent formulation, the plastic potentials
have meaning of yield functions and the plastic multipliers
P&, p* are determined by writing Kuhn-Tucker conditions for
each surface. In the extended rate-dependent formulation, on
the other hand, the effective strain rates are obtained from a
Norton law:

G 5_i " . g (glide)
p_e()(Ri) 1_{t(twinning) ®)

where €} is a reference strain rate and n' is a strain rate
sensitivity parameter. The rate-insensitive limit is approached
for n' — oco. The present formulation may be extended to
kinematic hardening by replacing the above defined effec-
tive stresses with driving stresses. In particular, a back-stress
formulation would be appropriate for twinning under non-
monotonic loading.

2.1. Deformation by dislocation glide

Slip-induced plasticity in Mg is strongly anisotropic. Fol-
lowing a classical approach, a transformed stress deviator is
defined as

ss=1L¢:o (6)

with IL& being a fourth order tensor describing the anisotropy
of yield strength due to slip. Here, L% has the following struc-
ture (using Voigt’s notation and principal directions L, T, S)

%(l% + lgs) _%lsgs _%l%l‘ 0 0 0
_%lgs %(lgs + II%L) _%IEL 0 0 0

o %I%T - _%IEL % (ZEL + l”l%T) 0 0 0

0 0 0 iy 0 0

0 0 0 0 I 0

0 0 0 0 0 I

(N

If 5% denote the eigenvalues of s¢ then the effective stress for
glide ¢ in Eq. (3) is written as

1/a®
- 1 o 0 a8 o 0 a8 g
3t = |5t =S 15— 81 1 = 1) ®

with a® an exponent that controls the shape of the yield
surface. The choices defined by Eqs. (7) and (8) are a
reformulation of the non-quadratic yield model of Barlat
et al. [15].

2.2. Deformation by twinning

Plastic deformation due to twinning introduces a strength
differential effect. As above, a transformed stress deviator is
defined as:
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ss=L'":J:o 9

where J is the deviatoric projector and L' a fourth-order ten-
sor the components of which read in Voigt’s notation:

by Lir Lis 0 0
Lir I Lrg 00
Lis Lrs I 00
0 0 0 Iy 0
0 0 0 0 I 0
O 0 0 0 0 I

0
0
0
0 (10)

With s} denoting the eigenvalues of s', the effective stress for
twinning &' that enters Eq. (4) is given by:

t t 11/a
&t = [(Ish] = kst) "+ (Iss] = ksh)” + (Iss] = kst)" ] 1y

where a' controls the shape of the yield surface, and the pa-
rameter k (—1 < k < 1) accounts for the initial strength dif-
ferential effect. For k > 0, the yield stress is larger in tension
than in compression and the coefficients of L' are all positive
[8].

The choices defined by Eqs. (10) and (11) are a reformu-
lation of the non-quadratic yield model of Cazacu et al. [6].
Note that their model has been extensively used for HCP al-
loys, in general, and Mg alloys, in particular. However, the
two-surface formulation used here is essential for capturing
proper evolution of plastic anisotropy, including the evolution
of the net tension—compression asymmetry. In [6] the tension-
compression asymmetry is fixed, which is inconsistent with
experimental data.

2.3. Strain hardening

The flow strengths of individual mechanisms, RS and R’
entering Eqs. (3) and (4), are taken as a combination of
Voce-like laws for self hardening and linear laws for latent
hardening:

R® = RS + Q%(1 — exp (—b%p®)) + H'Ep' (12)

R' =R\ + Q'(exp (b'p") — 1) + H'p' + HE p® (13)

Thus, four parameters (RS, O%, b2, H'®) enter hardening by
glide and five parameters (RY, Q', b', H', H&) enter harden-
ing by twinning.

3. Unit cell calculations

Three-dimensional (3D) calculations of unit cells contain-
ing a central spherical void were carried out, Fig. 1(a). Plastic
flow in the matrix was described using the constitutive rela-
tion of Section 2, which was implemented as a user material
subroutine (UMAT) in the commercial finite element code
ABAQUS.

(a)

Fig. 1. (a) Full 3D unit cell embedding a spherical void. (b) Axisymmetric
unit cell used in the optimization procedure.

Macroscopic measures of stress and strain rate are defined
as volume averages of their microscopic counterparts:

1 1
2=—/adv, D= —/ddV. (14)
Vv Vv

In a given calculation, the unit cell is subjected to propor-
tional stressing. Thus, the overall stress triaxiality ratio, T,
and the Lode parameter, L, are kept fixed throughout the
loading history. Not only do such loading conditions aid
in analysis but also in making contact with similar calcu-
lations using crystal plasticity for the matrix behavior [12].
The dimensionless stress state parameters are defined as:
T =%/Zn and L = (2%, — X1 — X3)/(Z3 — Xy) where
Yeq and X, are the equivalent and mean normal stresses,
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respectively:

3 1
Eeq = 52/ 1YY Em = gtl'z (15)

the prime standing for the deviator, and the X;’s denote prin-
cipal stresses (X1 < Xp < X3).

Periodic boundary conditions were imposed. To achieve
constant 7 and L load paths, the algorithm proposed by
Zhu et al. [16] was employed using a custom coded multi-
point constraint (MPC) subroutine in ABAQUS, the details of
which are given elsewhere.

Here, only axisymmetric stress states are considered with
Y1 = %. Thus, ¥¢q =33 — Xy, L=—1 and T may vary
from one calculation to another. The calculations still need to
be 3D because of matrix anisotropy. To simplify parameter
calibration, however, auxiliary two-dimensional axisymmetric
calculations were also carried out, Fig. 1(b). Such calcula-
tions are similar in their principle to those of Koplik and
Needleman [17], also used in subsequent work on anisotropic
matrices [14,18].

Each calculation was post-processed in such a way that
the void dimensions and volume are output at every time
step. The void volume fraction (or porosity f) is calculated
from the total volume of sound material and the current di-
mensions of the cell as in Koplik and Needleman [17]. This
is exact, up to numerical errors. The void dimensions are
approximately evaluated assuming an ellipsoidal shape with
semi-axes a, b, c, with a along the semi major axis of the
void. To this end, the URDFIL subroutine of Abaqus was
used, which enabled real-time tracking of the void during de-
formation.

A monotonically increasing strain measure Eeq is used to
plot overall stress-strain responses as well as porosity versus
strain evolution:

2
Eeq = g(E-j — El)’ E,‘ = ln(l,/L,) (16)

where /; and L; denote the current and initial dimensions of
the cell in the x; direction.

In the 3D and 2D calculations, linear C3D8 and CAX4
elements were used. In Fig. | the number of elements is about
40,000 and 400, respectively, but a coarser mesh was used in
the optimization with 200 elements.

In addition to the cell model calculations, material point
simulations were also used for calibration. These consist of a
single element calculation in simple tension using an eight-
noded brick element with reduced integration (C3D8R). The
loading direction is either L, which represents the prismatic
loading orientation in Selvarajou et al. [12], or S, which rep-
resents the c-axis orientation in Selvarajou et al. [12]. The
equivalent stress and strain measures for the material point
simulations are respectively denoted by o.q and p, where

p=pt+ph.

4. Comparison with crystal plasticity
4.1. Benchmark simulations

The crystal plasticity calculations of Selvarajou et al.
[12] serve as the main benchmark. These authors carried out
unit cell calculations similar to those described above, but
using a crystal plasticity constitutive relation for HCP met-
als. Table 1 summarizes the eight cases they considered: four
triaxiality values per loading orientation (prismatic or c-axis
loading). In addition, uniaxial responses in simple tension
(T =1/3) were simulated in Selvarajou et al. [12], which
are referred to as “material point” simulations in the table.

Under overall uniaxial loading (T = 1/3) it is important
to distinguish between the material point calculations for the
pristine (void-free) material and the cell model with a void.
The stress, strain and strain-rate states are uniform in the
former, but not in the latter. For example, Selvarajou et al.
[12] showed evidence of a void-induced hardening, resulting
in a higher flow stress than with the pristine material for c-
axis loading. This is due to the activation of more deformation
systems around the void than would be expected on the mere
basis of the overall stress state (which is uniaxial).

Output data provided in Selvarajou et al. [12] includes
overall stress—strain responses (Xeq versus Eeq using the above
definitions) as well as the evolution of porosity and main void
axes. This is the only data that will be used in making com-
parisons with the heuristic reduced order model (ROM) of
Section 2. Any details beyond that (e.g. microscopic fields)
go beyond what is expected of a ROM.

The crystal plasticity simulations in Selvarajou et al.
[12] are divided into two datasets: a calibration dataset (iden-
tified by (c) in Table 1) and an assessment dataset. The cali-
bration dataset contains the minimum set of data needed for
robust calibration. Note that the calibration data only includes
stress-strain curves so that porosity versus strain data in the
so-called calibration set is exclusively used for assessment,
not for calibration of the ROM.

4.2. Parameters of the ROM

The crystal plasticity model and heuristic ROM do not
have the same elasticity parameters. Young’s modulus E is
obtained from the average initial slopes of the pure Mg single
crystal stress-strain responses in Selvarajou et al. [12] under
prismatic and c-axis loading. The value of Poisson’s ratio v
is obtained from the literature for pure Mg. In addition to
these, the ROM involves the following parameters, given in
their order of appearance in Section 2.

1. The four (4) rate-sensitivity parameters, ) and n' enter-
ing Eq. (5) (two per mode of deformation, glide versus
twinning).

2. The six glide anisotropy coefficients (I%y) in Eq. (7) (of
which only five (5) are independent) and the exponent
a® in Eq. (8).
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3. The nine twinning anisotropy coefficients (/% and L)
in Eq. (10) (of which only eight (8) are independent),
the exponent a' and the stress differential parameter k
in Eq. (11).

4. The four (4) glide hardening parameters (RS, Qf, be,
H'®) in Eq. (12) and five (5) twinning hardening pa-
rameters (R}, O', b', H', H&) in Eq. (13).

Therefore, there are 29 independent parameters in total en-
tering the constitutive formulation.

4.3. Simplification

Since the anisotropy parameters are defined up to a mul-
tiplicative constant, we take lfL =1, liL =1 with no loss
of generality. Following Kondori et al. [9], we also take
a® = a' = 4. Furthermore, using some observations made by
Selvarajou et al. [12] the hardening in glide due to twinning
deformation is not well distinguished in their material. There
is no case where deformation enters into the twinning-affected
regime after a glide-dominated one. Also, the self-hardening
in twinning is approximately linear. Hence the exponential
function is avoided. We then simplify the hardening forms by
taking H'® = 0 in Eq. (12) and Q' =0, ' =1 in Eq. (13).
Thus, only six hardening parameters are retained.

Next, the Norton constants are taken to be the same for
glide and twinning, just like in the CP calculations in Selvara-
jou et al. [12]. Furthermore, their values in Selvarajou et al.
[12] are adopted here.

This leaves a total of 20 parameters to be identified. The
goal is to identify these parameters from a minimal crystal
plasticity simulation dataset, Table 1. For reference, there are
about 26 (free) parameters in the crystal plasticity formulation
employed by Selvarajou et al. [12].

4.4. Optimization strategy

An iterative procedure was followed for calibrating the
ROM of Section 2 using the benchmark crystal plasticity sim-
ulations in Selvarajou et al. [12]. The procedure is schemati-
cally shown in Fig. 2.

Once a set of initial parameters is chosen, four finite el-
ement simulations (two voided unit cells and two material
point calculations) are carried out for the conditions identi-
fied with a (c¢) in Table 1. The “distance”, in terms of an
error norm, between the ROM and CP simulations is eval-
uated using a cost function, and a new set of parameters is
determined using a Nelder—Mead optimization algorithm of
the Z-set package [19]. This process is repeated until the cost
function reaches a minimum value or further minimization is
impossible.

The cost function, &, is entirely based on the stress—strain
responses, as noted above. For the cell model results, an es-
sential feature is the abrupt stress drop corresponding to the
onset of coalescence, which represents a measure of strain
to failure. In order to give that measure a larger weight, we

Initialize parameter set
(Glide: 5 anisotropy and 3 hardening parameters)
(Twinning: 9 anisotropy/asymmetry and 3 hardening parameters)
Total: 20 optimization parameters

ABAQUS simulation
with the Reduced Order Model (ROM)

&: Error
Reduced Order Model (ROM) -
Crystal Plasticity (CP)

Update parameter set
for yielding and hardening
(@5, @Y, RI(p%, p"), R'(p*,p"))

Z-set Optimizer
(Nelder-Mead algorithm)

If € reaches a minimum value,
and further reduction is not possible

Final parameter set
(P8, @, RY(p?, p*), R (p®,p"))

Fig. 2. Iterative procedure used for model calibration.
define the cost function as follows:
N
E=> E (17)
I=1

where N denotes the number of test simulations, i.e. elements
in the calibration set (here 4) and

I el
I Wo g I \2
E' = 61 /(; (O’CP — GROM) dE
max
Wi I I 2
+(€coe — €rome) (18)

For a given test I, E' quantifies the difference between the
ROM and CP simulations in terms of the stress-strain curve
and the strain to failure in the cell model. More specifically,

wl, wl are weights, €/ is the total strain reached in a

o’ €
given simulation 1, olp, ooy denote appropriate equivalent
stresses, and €(p,, €hoy, are the strains to failure (available

only for cell simulations). The strain to failure is given a
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F]l;;lzieis from Selvarajou et al. [12]’s crystal plasticity (CP) benchmark sim- (a) 20 ‘ ! I
ulations.Data marked with (c) was used for calibration.
Dataset T Loading Simulation type 200
1 (¢) 1/3 Prismatic Material Point 150
2 (c) 1/3 c-axis Material Point -
3 1/3 Prismatic Cell Model o
4 (c) 1 Prismatic Cell Model 100
5 2 Prismatic Cell Model
6 3 Prismatic Cell Model
7 1/3 c-axis Cell Model 50
8 (¢) 1 c-axis Cell Model
9 2 c-axis Cell Model 0
10 3 c-axis Cell Model
bigger weight where relevant. Hence, we take w! =1 but
w! = 0(100), for all 1. (b) 300

To reduce computational cost, the axisymmetric 2D unit
cell model calculations were used for optimization of the pa- 250
rameters. After convergence, 3D cell calculations were carried 200
out using the optimized parameters for purposes of model as-
sessment. 150

Finally, a word on initialization. The Nelder-Mead algo- "
rithm was chosen compared to other optimization algorithms 100 .
available in Z-set, such as the Levernberg-Marquardt or se-
quential quadratic programming (SQP) algorithms, as it is rea- 50 f CP ----- :
sonably more robust to variations in initial conditions. Here, s’ ROM

0 | | 1 1 1

the initial set of parameters was determined in two steps.
First, the parameters introduced by Kondori et al. [9] were
employed. Since these were fit on experiments on a Mg alloy
they were not particularly well suited for comparison with the
crystal plasticity simulations in Selvarajou et al. [12]. There-
fore, in a second step a recent set of large-scale polycrystal
simulations by Indurkar et al. [20] were used. Their polycrys-
tal stress-strain curves were used as input to an optimization
scheme as above. Details of this step are provided in Ap-
pendix. This initialization step has no major consequence on
the message of the paper. However, it provides a reasonable
initialization step when such data is available.

5. Results

The optimized ROM material parameters are listed in
Table 2. As expected, the initial strength of the twinning
mode, R{) = 17.4 MPa is lower than that for the glide mode
RS =72 MPa. Depending on the loading direction and the
stress differential parameter (here k = 0.57), the activation of
twinning deformation is determined by the dominant poten-
tial, Eqs. (3) and (4). The large value of the latent hardening
term H& illustrates that as soon as a small glide deforma-
tion occurs, twin strength increases drastically, and the de-
formation transitions into a glide mode. The glide anisotropy
coefficients vary between 1.72 and 2.13; compare with the
range 1.09 to 1.69 for AZ31B in Kondori et al. [9]. The
twinning anisotropy coefficients vary between 0.43 and 2.47;
compare with the range 0.22 to 0.97 in Kondori et al. [9].
As expected, the anisotropy of a single crystal is stronger

Fig. 3. Best fit of the ROM (this paper) on crystal plasticity (CP) simulations
in Selvarajou et al. [12] for two loading orientations; see data labeled (c) in
Table 1. (a) Effective stress, oeq, versus effective strain, p, for uniaxial tension
of pristine material. (b) Cell equivalent stress, Xeq, versus equivalent strain,
Eeq, for voided cell with initial porosity fo = 1% and T = 1.

than that of a polycrystal with a basal texture. The fact that
1%, ~ I is a consequence of using axisymmetric elements in
the calibration process. The consequences this may have in
predicting the anisotropic evolution of microstructure will be
discussed.

5.1. ROM-CP comparison

Figure. 3 evaluates the quality of the fit using the opti-
mized ROM parameters against the calibration dataset from
crystal plasticity, Table 1. Uniaxial tension responses of the
pristine Mg material are shown in Fig. 3(a). The voided cell
model responses are shown in Fig. 3(b) for T = 1 under pris-
matic and c-axis loading. The dashed lines correspond to the
CP reference simulations and the solid lines correspond to
ROM calculations. At least one triaxial tension data on the
cell model and uniaxial tension data on pristine material are
required for the ROM to capture the void-induced hardening
as well as strain to coalescence observed in CP simulations.
The following observations are in order.

and Alloys, https://doi.org/10.1016/j.jma.2023.04.013
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Table 2
Optimized material parameters. Stress-like parameters are expressed in MPa. The number of parameters for each group is indicated in parentheses. Parameters
marked with an asterisk were fixed in the optimization process.

Elasticity Isotropy (2) E v
15000.0* 0.29*
Viscoplasticity Norton’s law (2) € n
0.001* 50.0*
Glide Hardening (4) RS 08 b
72.0 332.0 268.0
Anisotropy (7) IEL l%T lgs
1.0* 2.13 2.08
Twinning Hardening (5) R}, o bt
17.4 0.0* 1.0*
Anisotropy (11) I Ifr I§g
1.0* 2.47 0.52

H'E
0.0
?
1.95
Ht
571.0
Iy
0.43

l%s I§L at

1.82 1.72 4.0*

He

1.1 x 107

Its Iy Lz Lirs Ly at k
1.0 1.07 1.79 1.56 1.68 4.0* 0.57

* For the pristine material, unlike with standard J, plastic-

ity, the crystal plasticity material exhibits an orientation-
dependent macroscopic stress-strain response. The re-
sults presented in Fig. 3(a) show the extent of the
differences.

* Under c-axis loading, deformation occurs by twinning,
resulting in a softer response initially, see Fig. 3(a).
The material linearly hardens in the twinning-affected
regime. Then, as in CP, the deformation by glide be-
comes dominant at a strain of about 5%, and the effect
of latent hardening gradually deactivates the twinning
deformation, while the flow stress increases. Eventually,
the flow stress saturates at a value higher than for the
prismatic loading case after 10% of strain.

Under prismatic loading, deformation by dislocation
glide occurs first, as in the crystal plasticity simulation,
resulting in a hard initial response, see Fig. 3(a). The
Voce-type hardening law captures stress saturation after
5% of strain.

The ROM captures the essential features of the CP simu-
lations. That the ROM is capable of capturing such effects
has already been established in Kondori et al. [9]. The
errors are larger in Fig. 3(a) than in Kondori et al. [9] be-
cause of the additional constraint of satisfying void growth
and coalescence simulations in Fig. 3(b).

For the voided material, the macroscopic stress-strain re-
sponses show a trend similar to the pristine material. How-
ever, the presence of a void introduces a competition be-
tween softening due to void growth, and void-induced
hardening.

» Under c-axis loading, the deformation due to twinning
occurs first, resulting in a soft initial response that even-
tually transitions into the glide mode, see Fig. 3(b).
Regions of tension and compression around the void
undergo different deformation mechanisms due to the
stress differential effect. This effect is more pronounced
under c-axis loading; hence a harder response is ob-
tained with higher flow stress levels, at least for low to
moderate triaxialities (7 = 1/3, 1), in comparison with
the pristine case. The stress drop obtained at E,, ~ 0.6
is due to the onset of void coalescence (see Benzerga
[21] for background).

» Under prismatic loading, the deformation by glide oc-
curs first, resulting in a hard initial response, see
Fig. 3(b). Then, the porosity grows leading to soften-
ing, and the load drops because of coalescence. The
load drop occurs at Eeq ~ 0.85 and E.q ~ 1.0 for the
CP and ROM simulations, respectively.

The ROM captures the macroscopic stress-strain response,
the void-induced hardening and the softening due to poros-
ity growth under c-axis loading. However, under prismatic
loading, the secondary hardening at E.q ~ 0.6 and the
strain to coalescence are not captured well.

5.2. Model assessment

By model assessment we mean (i) conducting a series of

comparisons for loading cases not used for calibration and
(ii) porosity growth predictions for the loading cases used for
calibration (recall that porosity versus strain curves were not
used as input to the optimizer.)

Figure 4 shows the porosity, f, versus strain, Eeq, curves

corresponding to the cell model responses shown in Fig. 3(b).
There is a tendency for the 2D ROM simulations to some-

0.1 .

0.08 +

0.06 - !

Prismatic

0.04 e
0.02 D .
ROM:3D
0 1 ! | | 1
0 0.2 0.4 0.6 0.8 1 1.2

Fig. 4. Porosity, f, versus cell equivalent strain, Eeq, for voided cell with ini-
tial porosity fy = 1% and T = 1, corresponding to the responses in Fig. 3(b).
The 3D cell response for prismatic loading is also shown for comparison.
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Fig. 5. (a) Cell equivalent stress, Xeq, (b) Porosity, f, versus cell equivalent (C)
strain, Eeq, for voided cell with initial porosity fo = 1% under c-axis load-
ing for T =1/3, 1,2, 3. The dashed lines correspond to CP simulations in
Selvarajou et al. [12], and the solid lines correspond to ROM simulation.
. . &
what underestimate the rate of porosity growth. However, >

keeping in mind that void growth results from microscopic
plastic flow in the matrix and that microscopic fields are be-
yond what is expected of a ROM by definition, overall the
porosity evolution predictions are quite good. Note in passing
the significant improvement in the prismatic case when using
full 3D simulations. The c-axis simulations are not very de-
pendent on dimensional order because the response is quasi-
transversely isotropic in that case. In what follows, there-
fore, 3D simulation results are only shown for the prismatic
orientation.

5.2.1. c-axis loading

Figure 5 shows cell model curves of equivalent stress,
Yeq» Versus equivalent strain, Eey, and corresponding curves
of porosity, f, versus E.q for four values of the stress tri-
axiality ratio 7. The benchmark crystal plasticity results are
plotted dashed whereas the ROM predictions are shown with
solid lines. Figure 6 shows the corresponding evolution of
the void’s semi-axes, normalized by their initial values, a,

E

eq

Fig. 6. The major, a, intermediate, b, and minor, ¢, semi axes of the void,
versus cell equivalent strain, Eeq, for voided cell with initial porosity fo = 1%
under c-axis loading for 7 = 1/3, 1, 2, 3. The dashed lines correspond to CP
simulations in Selvarajou et al. [12], and the solid lines correspond to ROM
simulation.

bo, co. Recall that the T = 1 case (shown red; color online)

was used for calibration. Key features are as follows.

» The sigmoidal character of the stress—strain response of
the pristine material (Fig. 3(a)) affects all macroscopic

and Alloys, https://doi.org/10.1016/j.jma.2023.04.013
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stress-strain responses in Fig. 5(a), irrespective of triaxial-
ity. However, except for T = 1/3, the effective responses
now have a softening component, which is porosity in-
duced. The higher the triaxiality the more severe the soft-
ening. Given that the hardening capacity is low after twin-
ning is complete, the material behaves as nearly perfectly
plastic. It is known, under such circumstances, that the
porosity induced softening may take effect immediately as
the cell transitions to a uniaxial deformation mode cor-
responding to accelerated void growth after the onset of
void coalescence [17]. This is the case for T =2 and
T =3.

It is remarkable that the ROM predictions in Fig. 5(a) re-
produce extremely well the crystal plasticity results for the
T =1/3,T =2and T = 3 cases, which were not used for
calibration. The accurate predictions include the strain to
failure, defined as above (i.e. onset of void coalescence).
The evolution of porosity is also very well reproduced
(Fig. 5(b)), especially in cases for which the stress-strain
curves were not used in calibration. The higher the tri-
axiality the faster the void growth, as is well known
[22].

The evolution of the semi-axes of the void is also well re-
produced at all triaxialities, Fig. 6. For T = 1/3 the ROM
predictions exaggerate the lateral void shrinkage. Overall,
the predictions are remarkable given that the evolution of
the semi-axes represents a deeper layer of detail in probing
the ROM’s performance.

The case of overall uniaxial tension 7 = 1/3 merits special
attention.

[m5+;May 30, 2023;11:24]
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— There is a void-induced hardening in this case, which
was thoroughly discussed in Selvarajou et al. [12]. The
effect is appreciated by noting that the flow stress in ten-
sion for the pristine material is below 250 MPa (from
Fig. 3(a)). By way of contrast, in the voided material it
is well above 250 MPa (see Fig. 5(a)) even if the void
actually tends to close while elongating. In the crystal
plasticity simulations, this effect results from activation
of multiple deformation systems beyond the favorable
extension twinning. Not only does the ROM predict the
void-induced hardening (Fig. 5(a)) but also the corre-
sponding porosity decrease (Fig. 5(b)).

— In standard J, plasticity, the typical prediction for T =
1/3 is that the porosity saturates after a slight increase.
Under c-axis loading there is actually a significant de-
crease, which is well captured by the ROM, Fig. 5(b).

5.2.2. Prismatic loading

Figure 7 shows cell model curves of X4 versus E.q and

corresponding curves of porosity versus E., for four values
of the triaxiality 7. The crystal plasticity and ROM predic-
tions are plotted using dashed and solid lines, respectively. In
addition, Fig. 8 depicts the evolution of the void’s semi-axes.
Salient features are as follows.

The overall stress-strain responses in Fig. 5(a) are domi-
nated by glide from the outset of plastic flow. Unlike the

Fig. 7. (a) Cell equivalent stress, Xeq, (b) Porosity, f, versus cell equiv-
alent strain, Eeq, for voided cell with initial porosity fop = 1% under pris-
matic loading for 7 = 1/3, 1, 2, 3. The dashed lines correspond to CP sim-
ulations in Selvarajou et al. [12], and the solid lines correspond to ROM
simulation.

pristine material (Fig. 3) the voided cells exhibit softening
after sufficient straining, except for T = 1/3. The soften-
ing is induced by porosity growth, Fig. 5(b).

The correspondence between ROM and CP results is not as
good as in Fig. 5 for c-axis loading. A main part of this is
that the CP simulations exhibit some secondary hardening
for T=1/3 and T =1 after E,q ~ 0.6, which the ROM
does not capture. As a result, the ROM overestimates the
softening at low triaxiality but underestimates it at high
triaxiality.

Correspondingly, the ROM underestimates the growth of
porosity in all but the 7 = 1/3 case. The relative error
becomes important at high triaxiality. This point merits
further discussion below.

The evolution of the semi-axes of the void is predicted
reasonably well, Fig. 8, with some discrepancies that are
worth analyzing. Consider the T = 1 case for which the
stress-strain curve was used for ROM calibration. The main
axis of the void, a, is predicted quite well, Fig. 8(a). How-
ever, the transverse axes, b and ¢, are not. In fact, the
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4.5 Table 3
(@) The computational cost for each simulation using the reduced order model
4 + , 8 (ROM). The average time consumed for every simulation case and the num-
ber of CPUs considered are listed.
- 4 -
33 [’ T Loading Simulation type CPUs Time (s)
S 3 / 4 ’ 7 1/3 Prismatic Material Point 1 30
} 25 L . o | 1/3 c—z?xis ‘ Material Point 1 30
: , . L i 1/3 Prismatic 2D Cell Model 15 200
s L > 7 - | 1/3 C—é.lXiS . 2D Cell Model 15 1100
.' /. . 1 Prismatic 2D Cell Model 15 800
15 Lo i 1 c-axis 2D Cell Model 15 700
s 2 Prismatic 2D Cell Model 15 400
1 | | ! | | 2 c-axis 2D Cell Model 15 700
3 Prismatic 2D Cell Model 15 400
0 0.2 04 0.6 0.8 ! 1.2 3 c-axis 2D Cell Model 15 800
Eeq 1/3 Prismatic 3D Cell Model 48 15,000
1 Prismatic 3D Cell Model 48 16,000
2 Prismatic 3D Cell Model 48 9000
(b) 3 Prismatic 3D Cell Model 48 8500
| the use of 2D axisymmetric calculations during calibration.
< i This led to I5 ~ I5.
L |
7 6. Discussion
. 6.1. Computational efficiency
Table 3 lists the computational time and number of CPUs
12 used per calculation for all simulations with the reduced order
model. The data is for the 2D, 3D cell simulations and 3D ma-
terial point simulations; see Section 3. In the cell calculations,
the CPU time is evaluated up to the onset of void coalescence,
(c) i.e. when the cell’s deformation becomes suddenly uniaxial.
) When the latter does not occur (7' = 1/3) calculations are
) stopped at E.q = 1.1. Where relevant, the listed times are av-
7 erages over the many iterations taken during optimization of
- 8 the parameters. Calculations that involve multiple deformation
% : modes, typically the c-axis loading cases, require more iter-
. ations. The 3D calculations employed for prismatic loading
] require about 4.5 h with 48 CPUs for the T = 1 case. The
i total cost of the 3D calculations (CPUs x Time) is about 65
| times their 2D counterparts.
Selvarajou et al. [12] did not report CPU times for their
12 calculations. However, there is a good order of magnitude dif-

Fig. 8. The major, a, intermediate, b, and minor, ¢, semi axes of the void,
versus cell equivalent strain, Eeq, for voided cell with initial porosity fo = 1%
under c-axis loading for T = 1/3, 1, 2, 3. The dashed lines correspond to CP
simulations in Selvarajou et al. [12], and the solid lines correspond to ROM
simulation.

ROM predicts similar evolution for b and ¢ whereas the
CP predictions show strong transverse anisotropy, Fig. 8(b)
and (c). In other words, the initially spherical void devel-
ops into a fully 3D void. The reason for this is obviously

ference between the CPU times of CP and ROM simulations
[23].

There are two aspects to the significant advantage of the
reduced order model over crystal plasticity. First, consider
model parameter reduction. As stated at the end of Sec-
tion 4.2, the ROM essentially involves 29 independent pa-
rameters, twenty (20) of which were treated as free in model
identification. While this number may appear as large, it is a
significant reduction in comparison with the actual indepen-
dent parameters of crystal plasticity.

In a high-fidelity crystal plasticity formulation, the number
of parameters scales with the number n of deformation sys-
tems (n = 30 for Mg, counting all variants). To each system
are associated at least two strain-rate parameters, an initial
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strength and n — 1 hardening parameters in the interaction
matrix. This leads to ~ n(n+ 2) ~ 960 parameters. Obvi-
ously, no crystal plasticity simulation would utilize the full
extent of its inherent parameterization. But this already illus-
trates that conventional crystal plasticity is overly parameter-
ized. In other words, the common usage of CP tacitly employs
an ad hoc, and rather drastic, reduction in parameters. Typi-
cally, the number of parameters is reduced by taking many of
them to be independent of slip/twin system (e.g. the strain-
rate parameters) or adopting functional forms for hardening
that simplify the interaction matrix. In doing so, the formu-
lation in Selvarajou et al. [12] for instance ends up with 26
parameters out of a possible 960.

Clearly, the huge reduction in putative model parameters
is not the reason for computational gain when comparing the
present ROM with CP for the numbers of free parameters are
comparable (20 for the ROM versus 26 for CP). Besides, the
number of parameters is only relevant for model identifica-
tion.

The computational efficiency of the ROM over crystal plas-
ticity simply resides in the reduction of the number of internal
variables: two (2) for the ROM (p&, p') versus thirty (30) for
CP (all the slip/twin rates). In addition, the memory require-
ments to store the internal state variables are less with the
ROM.

6.2. Representation of physical mechanisms

Kondori et al. [9] discussed some limitations of the re-
duced order model in capturing certain aspects of crystal
plasticity. First, the ROM does not account for the twinning-
induced material reorientation. Second, the ROM cannot de-
scribe mesoscale deformation features, such as texture evolu-
tion. Furthermore, the hardening laws used do not account for
detwinning, which is believed to have a lower (effective) criti-
cal resolved shear stress. This effect could be incorporated us-
ing a back-stress formulation (kinematic hardening). This may
have an additional contribution to the tension-compression
asymmetry as well as in any unloading process. However,
in Kondori et al. [9] the model was shown to capture the
orientation dependence of the stress—strain response in three
principal and three off-axes directions, including through the
thickness of the plate, for which experimental data is scarce.
The model also captured the evolution of tension-compression
asymmetry and of plastic anisotropy in the form of 3D Lank-
ford coefficients.

The present investigation goes one step further in prob-
ing the capabilities of the two-surface ROM to capture the
essential features of crystal plasticity simulations. The com-
petition between void-induced hardening and void-growth-
induced softening is captured well. In addition, the ROM
captures the formation of regions of tension and compres-
sive states around the void through the stress differential
parameter. Overall, the matching of both stress—strain and

porosity-strain responses is remarkable, especially for c-axis
loading.

The strain levels reached in the voided cells are larger than
one would expect for a specimen-level strain to failure in a
Mg alloy, even when dimpled fracture is the main mechanism,
e.g. Kondori and Benzerga [24,25]. However, that large strains
may be reached locally is not excluded. To make further con-
tact with experiments, one would need multi-void simulations
or employ homogenized failure models. Another important as-
pect is that shear failure may occur in actual specimens. The
role of plastic anisotropy in this regard is not well under-
stood; see e.g. [26]. Here too, single-void simulations cannot
reproduce that failure mechanism.

6.3. Parameter optimization strategy

Even for a simple anisotropic model such as Hill’s [27], it
is impossible to identify all parameters without, say uniaxial
loading data along principal (L, T, S) and off-axes (LT, LS,
TS) directions. Now, the reduced order plasticity model re-
quires even more data to calibrate the anisotropic coefficients
of glide, twin, and the stress asymmetry factor. Evidently, the
datasets for a single crystal were incomplete, and only uniax-
ial tension data under prismatic and c-axis loading directions
on the pristine single crystal were available. Therefore, we
chose parameters reported by Kondori et al. [9] as the ini-
tial condition. We further improved the initial conditions of
the 20 parameters by using CP simulations of a Mg poly-
crystal in various loading directions; see Appendix A. This
pre-optimization step provided some estimates for the shear
anisotropy coefficients that were left unperturbed by the c-axis
or prismatic pristine material data.

One aim was to identify the parameters of the ROM using
minimal data sets from Selvarajou et al. [12]. Several strate-
gies have been attempted to achieve this:

* Strategy 1:

The ROM parameters are identified using uniaxial tension
data on pure Mg along the prismatic and c-axis directions
(Nos. 1 and 2 in Table 1). In this case, the uniaxial re-
sponses were calibrated better than shown in Fig. 3. How-
ever, predictions of unit cell results (Nos. 3—10 in Table 1)
were far from satisfactory. For example, the strain to failure
in the T = 1 prismatic loading case was underestimated by
25% relative error. Also, under c-axis loading, the maxi-
mum flow stress was underestimated by over 20%.
Strategy 2:

The ROM parameters are identified using only unit cell
data for T = 1 and the prismatic direction (No. 4 in Ta-
ble 1). This strategy improves the anisotropic coefficients,
particularly the shear coefficients, as the cell model has
regions of shear stress states around the void. Hence, it
delivers a better estimate for pristine and cell model cases
compared to strategy 1. But, the quantitative comparisons
under c-axis loading for the cell model still underestimated
by at least 20%.
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* Strategy 3:

The ROM parameters are identified using pristine mate-
rial and cell data for T = 1 along the prismatic direction
(Nos. 1, 2, 4 in Table 1). This strategy minimizes the cost
function even further. However, the ROM still fails to cap-
ture void-induced hardening, the flow stress level, and the
strain to failure under c-axis loading. Hence, at least one
unit cell data under c-axis loading is necessary.

Strategy 4:

The ROM parameters are identified using uniaxial tension
data sets on pristine and cell model along the prismatic and
c-axis directions (Nos. 1, 2, 3, 7 in Table 1). This strategy
captures the void induced hardening, and hence the flow
stress levels at all triaxialities under prismatic and c-axis
loadings. However, the ROM overestimates the strain to
failure in comparison with CP simulations. Thus, at least
one triaxial tension data on cell model under prismatic
and c-axis directions are judged to be necessary for the
optimization process.

Strategy 5:

The ROM parameters are identified using pristine material
and cell model data for T = 1 along both prismatic and
c-axis directions (Nos. 1, 2, 4, 8 in Table 1). This is the
strategy retained in Section 5.

Of course, using all available data would improve the pre-
dictions, but that does not help in understanding the predictive
capabilities of the ROM and computational cost as it would
take more iterations to converge.

There are two quantitative aspects that could be improved
(i) the secondary hardening observed under prismatic loading
at sufficiently low triaxiality (dashed curves in Fig. 7); and
(ii) the transverse anisotropy of void growth, again for pris-
matic loading (see Fig. 8(b) and (c)). The former could be
remedied by introducing a second Voce law in glide hard-
ening, Eq. (12). The latter can be captured with the model
as is. It would only require that the optimization process be
carried out using full 3D unit cells.

On the computational side, some responses exhibited os-
cillations. The solver embedded in the UMAT is a simple
Newton solver. Hence, the solution oscillates or overshoots
for multiple systems and sometimes requires too fine a time
step for convergence. Using trust region solvers or coupling
Newton’s iterative solver with line search techniques would
reduce the computational time even further.

7. Conclusions

A reduced-order two-surface plasticity model was investi-
gated by comparison against crystal plasticity simulations of
voided and pristine unit cells.

1. Although the calibration procedure uses only stress-train
data, the constitutive model was found to capture the
orientation-dependence of porosity evolution and the
macroscopic response at all levels of stress triaxiality
that were investigated.

2. The well-known effect of triaxiality was observed. The
higher the triaxiality the lower the strain to coalescence.
Void closure under uniaxial loading was also captured
for c-axis loading.

3. The ROM captures the competition between void-
induced hardening and porosity-induced softening. It
captures the void-induced hardening through the ac-
tivation of twinning or glide locally around the
void due to regions of tension and compressive
states.

4. Two drawbacks of the ROM were identified under pris-
matic loadings: the transverse anisotropy of void growth
and the secondary hardening at low triaxiality. Both can
be remedied in principle.

5. The reduced order plasticity model is highly efficient for
computation. The memory needed to store internal state
variables is cheaper. The model constitutes therefore a
good basis to build upon for developing predictive mod-
els of damage accumulation to failure, especially in the
context of high-throughput analyses for usage in ma-
chine learning methodologies.
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Appendix A. Initial parameter set

To better calibrate the anisotropic shear coefficients and
strength asymmetry factor, uniaxial tension and compression
data in various directions are needed. Since the available data
for single crystal Mg was incomplete, the initial conditions
of the 20 parameters entered into the optimizer were obtained
from a ROM calibration process using polycrystal Mg simu-
lation data.

The data is taken from Indurkar et al. [20]. These authors
generated tension stress-strain responses of pure Mg poly-
crystal data under L, T, S, LT, LS, and TS directions and
uniaxial compression under L direction. Thus, the first op-
timization procedure involves minimizing the difference be-
tween the ROM and CP responses of pure Mg polycrystal
data to identify initial parameters for further calibration. The
calibration results are presented in Figs. 9 and 10. The results
also show the capability of the ROM to capture responses in
multiple loading directions. The trends captured by the ROM
agree well with the CP results with high computational effi-
ciency as ROM calibration is performed using a single finite
element.
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Fig. 10. Best fit of the ROM on crystal plasticity (CP) simulations in Indurkar
et al. [20] for multiple loading orientations. Effective stress, oeq, versus ef-
fective strain, p, for uniaxial tension along LT,LS,TS directions, and uniaxial
compression along L direction of the polycrystal.
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