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An essential ability of many cell types is to
detect stimuli in the form of shallow chemical
gradients. Such cues may indicate the direction
that new growth should occur, or the location
of a mate. Amplification of these faint signals is
due to intra cellular mechanisms while the cue
itself is generated by the noisy arrival of signaling
molecules to surface bound membrane receptors. We
employ a new hybrid numerical-asymptotic technique
coupling matched asymptotic analysis and numerical
inverse Laplace transform to rapidly and accurately
solve the parabolic exterior problem describing the
dynamic diffusive fluxes to receptors. We observe that
equilibration occurs on long timescales, potentially
limiting the usefulness of steady state quantities
for localization at practical biological timescales. We
demonstrate that directional information is encoded
primarily in early arrivals to the receptors, while
equilibrium quantities inform on source distance. We
develop a new homogenization result showing that
complex receptor configurations can be replaced by a
uniform effective condition. In the extreme scenario
where the cell adopts the angular direction of the
first impact, we show this estimate to be surprisingly
accurate.
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1. Introduction

In a variety of cell types, the ability to locate external stimuli is essential to normal function.
Some important examples include eukaryotic gradient-directed cell migration (chemotaxis) [1–
3], directional growth (chemotropism) in neurons [4], yeast [5,6] and airinemes in zebrafish [7].
A unifying feature of these systems is that they must infer the spatial location of the external
source through the noisy arrivals of diffusing particles to membrane receptors. Many authors
have sought to understand how complex downstream machinery, activated by noisy receptor
input, enables cells to accomplish this feat of triangulation so robustly [8–16]. In the present work,
we focus on the most upstream component of this mechanism, the dynamics of the signal to the
receptors.

Figure 1. Planar diffusion from a source x to receptors arranged on a disk representing a cell. The non-overlapping

receptors have centers {xk}Nk=1 and spatial extent {"`k}Nk=1. Source inference is the task of recovering x0 2R2 \⌦

from the statistics of particles incident to the receptors.

Signaling molecules undergoing planar diffusive transport will eventually arrive at a receptor
(cf. Fig. 1) and the distribution of arrivals across the set of receptors, known as the splitting

probabilities [17], encodes information on the source location. In the scenario of planar diffusion,
or three dimension diffusion to a spherical cell with surface receptors, Dobramysl and Holcman
[18,19] demonstrated that a unique source location can be inferred from the splitting probabilities,
provided the number of receptors is at least N = 3. Biological receptor numbers vary considerably
between systems with examples including N ⇡ 104 in budding yeast [5] and N ⇡ 104 � 105

in lymphocytes [20]. In [21] a maximum likelihood estimation (MLE) method was developed
which enables robust source inference from splitting probabilities for large receptor numbers
N . Interestingly, clustered receptor configurations can exhibit improved source inference over
homogeneous arrangements.
While these works indicate plausible approaches to infer the direction and possibly the distance
of signaling sources, mechanisms for their implementation at a cellular level are challenging to
account for due to several factors. First, both the splitting probabilities and the derived MLE
are a global quantities - their use in source detection implies that a cell has knowledge of its
geometry, the spatial configuration of its receptors, together with an ability to store and integrate
signals. Second, as we shall demonstrate, the two-dimensional splitting probabilities in the small
receptor limit are all equal and independent of the source location. Finally, in the scenario of
an unbounded domain, the mean arrival time for an individual signaling molecule to arrive
at a receptor is infinite [22], suggesting equilibration to the splitting probabilities may occur
on a long timescale. The timescale of this equilibration may or may not be matched by those
observed biologically. We note that in contrast to the bounded domain scenario, the time scale
for equilibration in the unbounded domain case does not reduce to evaluation of the principal
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eigenvalue [23]. Furthermore, an equilibrium state may not be applicable if the source location is
mobile or its signal dynamic in nature [6,24–26].
In this paper, we suggest that much more information can be gleaned by considering the dynamic
problem and that source directionality is most easily inferred from short time receptor arrivals.
The mathematical formulation for the splitting probabilities draws from the conceptual
framework of Berg and Purcell [27]. For a cell represented by ⌦ ⇢R2, the splitting probabilities
{�k(x)}

N
k=1 encode the likelihood that a particle originating at x2R2

\⌦ reaches the kth receptor
@⌦k before any others. This satisfies the exterior Laplace mixed boundary value problem

��k = 0, x2R2
\⌦; �k bounded as |x|!1; (1.1a)

�k = �jk, x2 @⌦j , j = 1, . . . , N ; r�k · n = 0, x2 @⌦r. (1.1b)

We define @⌦a :=[
N
j=1@⌦j as the portion of @⌦ covered in receptors and @⌦r := @⌦ \ @⌦a as the

remaining portion. Here �jk is the Kronecker delta function. As discussed above, we consider the
dynamic receptor signal described through the probability density p= p(x, t) satisfying

@p
@t

=D�p, x2R2
\⌦, t > 0; p= �(x� x0), x2R2

\⌦, t= 0; (1.2a)

p= 0, x2 @⌦a, t > 0; Drp · n = 0, x2 @⌦r, t > 0. (1.2b)

Here D> 0 is the diffusivity of the signaling molecule. For the purposes of inferring source
location, the quantities most relevant are the individual receptor fluxes {Jk}

N
k=1 and the

combined receptor flux for the cell, ⇢(t), satisfying

Jk(t) =�D

Z

@⌦k

rp · n dS, ⇢(t) :=�D

Z

@⌦a

rp · n dS =
NX

k=1

Jk(t) . (1.3)

The models (1.1) and (1.2) are well studied conceptual models of receptor activation [13,27–30].
Extensions to this canonical system have studied to account for more intricate biological features
such as receptor binding dynamics [31], receptor diffusion [32] and receptor gating [33,34].
In the present work, we develop solutions to (1.1) and (1.2) by means of matched asymptotic
expansions in the limit of vanishing receptor size. For the dynamic problem (1.2), we obtain
fluxes by first applying a Laplace transform, solving the modified Helmholtz transform equation
by matched asymptotic methods, and finally applying numerical inverse Laplace transform.
Throughout the analysis of the static and dynamic problems, we adopt the notation that the
N receptors are centered at {xk}

N
k=1 and occupy a segment of the boundary with arclength

{"`k}
N
k=1. The receptors are assumed to be well separated from each other and the source x0,

specifically |xj � xk|=O(1) as "! 0 for j 6= k and 0, j, k,N . Our analysis is valid for general
cellular geometries ⌦ in terms of certain Green’s functions (discussed below), however, our
exposition will focus on a circular cell of radius rcell = 1 with a source at distance |x0|= rsource
(cf. Fig. 1). The applicability of this work to a half plane scenario, which has previously been
studied in source localization [18], is demonstrated in appendix D. To corroborate results from
the hybrid numerical-asymptotic approach, we employ a recently developed Kinetic Monte Carlo
(KMC) which can rapidly and accurately sample all relevant arrival statistics [35].
To perform inference on the source location, we develop in Sec. 3 a maximum likelihood estimator
(MLE) that connects the receptor arrival counts {ck}

N
k=1 to the cumulative fractional fluxes

qk(x; t) through each receptor. This approach leads to the optimization problem

bxMLE(t) = argmax
x

L(x; t), L(x; t) =�

NX

k=1

ck log[qk(x; t)], qk(x; t) =

Rt
0 Jk(⌧)d⌧Rt
0 ⇢(⌧)d⌧

. (1.4)

The cumulative fractional fluxes have limiting behavior �k(x) = limt!1 qk(x; t) and therefore
provide a natural comparison to the splitting probabilities. We observe that short time fluxes yield
a more accurate directional estimate bxMLE(t) on the source compared with longer time fluxes or
splitting probabilities. Motivated by this observation, we investigate simple recovery algorithms
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that utilize the directional information content in early receptor arrivals. One such mechanism is
a simple polar averaging of receptor inputs which this provides an accurate estimate of source
direction at short times. At later times, for which the signaling molecules have diffused far from
the source, the estimate is no longer reliable.
To explain the accuracy of short time estimates, we obtain in the case of equally space receptors a
homogenization result in which the mixed boundary conditions (1.2b) are replaced by a uniform
Robin condition Drp · n = p for N � 1. The obtained homogenization parameter

D�1 =�
2
N

log
⇣"N

4

⌘
, (1.5)

results in a very accurate representation of the solution in the regime "⌧
p
Dt⌧ 1. The

homogenized solution allows for identification of the timescale at which particle density becomes
radially symmetric - the time after which no directional information is incident to the receptors.
Finally, as a theoretical limit on the directional information of short time arrivals, we apply
extreme value theory [36–38] to obtain the arrival time ta and arrival angle ✓a of the first impact
amongst M independent particles released from the source. For a circular cell of radius rcell = 1

centered at the origin and source at x0 =R(cos ✓0, sin ✓0), we obtain that for M � 1, the arrival
angle is normally distributed N (✓0,�

2
✓a
) where

�2✓a(M,R)/
R
�
1� 1

R

�2

logM
. (1.6)

The implication of (1.6) is that a single particle, traveling along a ballistic path from the source to a
cell receptor [36,37], can yield an accurate estimate on the direction of the source. Moreover, this
estimate can be formed without a cell integrating receptor fluxes as required in the use of splitting
probabilities or MLE. Finally in Sec. 5 we conclude by discussing some potential extensions.

2. Asymptotic construction of splitting probabilities and dynamic

fluxes

In this section, we obtain an asymptotic representation [17,23,35,39–41] of the solution of (1.1)
and (1.2) as "! 0. This analysis requires knowledge of the solution vc(y) to a rescaled form of
the governing equations in a stretched region y= (x� xk)/" in the vicinity of each receptor. The
details of this solution are provided in Appendix A. We consider the static and dynamic problems
separately.

2.1 Splitting Probabilities: The static problem

The splitting probabilities have previously been calculated for closed geometries [17, Section 5]
and here we modify the analysis for the exterior setting. The absorbers satisfy @⌦j ! xj as "! 0.
In terms of the local problem with stretched variable y= (x� xj)/", we establish that �k(xj +

"y)⇠ �jk +Ajk⌫jvc(y) where vc solves (A 2). This forms the local condition

�k(x)⇠ �jk +Ajk⌫j log |x� xj |+Ajk + · · · , x! xj , j = 1, . . . , N ; ⌫j =
�1

log("`j/4)
.

In order to evaluate the limiting behavior of (1.1) as "! 0, we may formally expand the solution
in an asymptotic expansion of the small parameter 1/| log "| as

�k(x) = �
(0)
k (x) +

1
| log "|

�
(1)
k (x) +O

✓
1

| log "|2

◆
, Ajk =A

(0)
jk +

1
| log "|

A
(1)
jk +O

✓
1

| log "|2

◆
.

(2.1)
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After collecting terms we have a series of problems. At leading order term, �(0)k (x) satisfies

��
(0)
k = 0, x2R2

\⌦; �
(0)
k (x) bounded as |x|!1; (2.2a)

r�
(0)
k · n = 0, x2 @⌦ \ [

N
j=1{xj}; (2.2b)

�
(0)
k (x)⇠ �jk +A

(0)
jk as x! xj , j = 1, . . . , N, (2.2c)

while the correction problem for �(1)k (x) satisfies

��
(1)
k = 0, x2R2

\⌦; �
(1)
k (x) bounded as |x|!1; (2.3a)

r�
(1)
k · n = 0, x2 @⌦ \ [

N
j=1{xj}; (2.3b)

�
(1)
k (x)⇠A

(0)
jk log |x� xj |+A

(1)
jk � log

`j
4

as x! xj , j = 1, . . . , N, (2.3c)

where the constants A
(0)
jk and A

(1)
jk are to be determined. We define the surface Green’s function

Gs(x; ⇠) for the Laplacian, which solves

�Gs = 0, x2R2
\⌦; �rGs · n= �(x� ⇠), x2 @⌦ \ {⇠}; (2.4a)

Gs ⇠
�1
⇡

log |x� ⇠|+Rs(⇠) + o(1), as x! ⇠. (2.4b)

The leading order problem (2.2) has a constant solution while �(1)k (x) is expressed as

�
(1)
k (x) =�⇡

NX

j=1

A
(0)
jk Gs(x;xj) + �̄

(1)
k , (2.5)

for constant �̄ (1)
k . So that there is no growth as |x|!1, we have that

PN
j=1 A

(0)
jk = 0. This

boundedness criteria is analogous to the Fredholm solvability condition used in the splitting
problem on a finite domain [17]. Summing (2.2c) and applying

PN
j=1 A

(0)
jk = 0 yields that

�
(0)
k =

1
N

, A
(0)
jk =

1
N

(
1�N j = k

1 j 6= k
. (2.6)

The equality of the splitting probabilities in the limit "! 0 means that the finite receptor size
is necessary to perform source inference in two dimensions. This is in contrast to the three
dimensional equivalent [21]. Matching the solution (2.5) to local behavior (2.3c) yields (N + 1)

linear equations for the values of the constants (A(1)
1k , . . . , A

(1)
Nk, �̄

(1)
k ),

NX

j=1

A
(1)
jk = 0, �̄

(1)
k � ⇡

h
A
(0)
jk Rs(xj) +

NX

i=1
i 6=j

A
(0)
ik Gs(xi,xj)

i
=A

(1)
jk � log

`j
4
, j = 1, . . . , N.

This completes the expansion to O(| log "|�1). Further terms of the expansion can be calculated
to improve the accuracy of the series, however, these additional terms cannot mitigate the
fact that 1/| log "|n+1

⌧ 1/| log "|n only when " is exceedingly small. This well known issue of
logarithmic expansions in two dimensional singularly perturbed problems [39,42] can be resolved
by obtaining the so-called “sums-of-logs” solution to (1.1). This involves positing the expansion

�k(x) = �⇤k(x;⌫) + o(1), as "! 0,

where the correction terms are smaller than any power of 1/| log "|. Here �⇤k(x;⌫) satisfies

��⇤k = 0, x2R2
\⌦; �⇤k(x) bounded as |x|!1; (2.7a)

r�⇤k · n = 0, x2 @⌦ \ [
N
j=1{xj}; (2.7b)

�⇤k(x)⇠ �jk +Ajk⌫j log |x� xj |+Ajk, as x! xj , j = 1, . . . , N. (2.7c)
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In terms of the surface Green’s function, the solution of (2.7) is expressed as the linear combination

�⇤k(x) =�⇡
NX

j=1

Ajk⌫jGs(x;xj) + �̄k, (2.8)

where �̄k = lim|x|!1 �⇤k(x) is a constant arising from the homogeneous solution which reflects
the splitting probability independent of the initial location. The solution (2.8) must not contribute
a monopole as |x|!1 and so the strength terms {⌫jAjk}

N
j=1 sum to zero which enforces that

�⇤k(x)2 (0, 1) for all x2R2
\⌦. The additional constraints for the unknowns (A1k, . . . , ANk, �̄k)

arise from matching the solution (2.8) to the local behavior (2.7c). In total, the system of (N + 1)

linear equations becomes

NX

j=1

⌫jAjk = 0, �̄k � ⇡
h
Ajk⌫jRs(xj) +

NX

i=1
i 6=j

Aik⌫iGs(xi,xj)
i
=Ajk + �jk, j = 1, . . . , N.

This system is compactly represented in matrix form as
"
I + ⇡ Gs V �eT

⌫ 0

#"
Ak

�̄k

#
=�

"
ek

0

#
,

Ak = (A1k, . . . , ANk),

⌫ = (⌫1, . . . , ⌫N ),
(2.9a)

e = (1, 1, . . . , 1),

ek = (0, . . . 1|{z}
kth

. . . , 0), [Gs]i,j =

(
Rs(xi) i= j

Gs(xi;xj) i 6= j
[V]i,j =

(
⌫i i= j

0 i 6= j
(2.9b)

and I is the N ⇥N identity matrix. This linear system is solved and the full solution obtained
from (2.8). In Appendix B, we give derivations of the Green’s functions Gs(x; ⇠) for the disk and
half plane geometries.

2.2 Receptor arrival statistics: The dynamic problem

In the previous sections we alluded to the usefulness of the dynamic fluxes to source inference. To
obtain these dynamic quantities (1.3), we proceed by applying a “hybrid numerical-asymptotic”
method [35,41] to the parabolic problem (1.2). The steps of this method are to first apply a Laplace
transform to the underlying parabolic equation, following by matched asymptotic solution of the
elliptic transform problem. Finally, the Laplace transform is inverted numerically in terms of an
efficient quadrature of the Bromwich contour. Our goal is to obtain the dynamic quantities

Jk(t) =�D

Z

@⌦k

rp · n dS, qk(t) =

Rt
0 Jk(⌧)d⌧Rt
0 ⇢(⌧)d⌧

, k= 1, . . . , N. (2.10)

Accordingly, we define the Laplace transform of p(x, t)

p̂(x; s) =

Z1

t=0
p(x, t)e�stdt, (2.11)

where p(x, t) satisfies (1.2) and the transform p̂(x; s) solves the modified Helmholtz equation

D�p̂� sp̂=��(x� x0), x2R2
\⌦; (2.12a)

p̂= 0, x2 @⌦a; Drp̂ · n = 0, x2 @⌦r. (2.12b)

Following the hybrid-asymptotic approach [35,43], we solve (2.12) by means of matched
asymptotic expansion in the limit "! 0 and as such, replace each absorbing site @⌦j with the
local behavior p̂⇠Aj(s)⌫j log |x� xj |+Aj(s) as x! xj . In this boundary layer analysis for
the dynamic problem, we assume that "2s⌧ 1. Therefore our results are not uniformly valid
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as s!1, or correspondingly t! 0. The expansion p̂(x) = p̂⇤(x;⌫, s) + o(1) results in a problem
which again “sums-the-logs” where p̂⇤ solves

D�p̂⇤ � sp̂⇤ =��(x� x0), x2R2
\⌦; Drp̂⇤ · n = 0, x2 @⌦ \ [

N
j=1{xj}; (2.13a)

p̂⇤(x)⇠Aj(s)⌫j log |x� xj |+Aj(s), as x! xj , j = 1, . . . , N. (2.13b)

The general solution of (2.13) is developed as

p̂⇤(x) =Gh(x;x0, s)� ⇡D
NX

j=1

Aj(s)⌫jGh(x;xj , s), (2.14)

where Gh(x; ⇠, s) is the Green’s function of the modified Helmholtz equation satisfying

D�Gh � sGh = 0, x2R2
\⌦; �DrGh · n= �(x� ⇠), x2 @⌦ \ {⇠}; (2.15a)

Gh ⇠
�1
⇡D

log |x� ⇠|+Rh(⇠; s) + o(1), as x! ⇠. (2.15b)

In Appendix B we derive expressions for solutions of (2.15) in the upper half plane and the disk
exterior geometries. Matching (2.14) to the local condition (2.13b) as x! xk yields the conditions

Gh(xk;x0, s) =Ak(s) + ⇡D
h
Ak(s)Rh(xk) +

NX

j=1
j 6=k

Aj(s)⌫jGh(xk;xj , s)
i
, (2.16a)

for k= 1, . . . , N . In terms of the strength vector A(s) = [A1(s), . . . , AN (s)]T , equations (2.16a) can
be represented in matrix equation form where the strengths satisfy the linear system,

(I + ⇡DGhV)A(s) = g0, [Gh]i,j =

(
Rh(xi; s) i= j

Gh(xi;xj , s) i 6= j
, g0 =

2

64
Gh(x1;x0, s)

...
Gh(xN ;x0, s)

3

75 .

(2.16b)
In the system (2.16b), the vector g0 describes the interaction between the source location and each
receptor while the matrix Gh encodes global information on the receptor configuration. We remark
that in the vector g0, the Green’s function is evaluated for a source in the bulk, while for the entries
of Gh each source is on the surface @⌦. Therefore we must obtain Gh(x; ⇠, s) for both ⇠ 2 @⌦ and
⇠ 2R2

\⌦ separately. The geometric information of each receptor (e.g. size) is encoded solely
through the diagonal matrix V , defined in (2.9b).
In this section, we show how to extend this asymptotic analysis to obtain the full time-dependent
arrival statistics. After applying the Laplace transform p̂(x; s) =

R1
t=0 e

�stp(x; t)dt to (1.2), we
obtain the modified Helmholtz problem (2.12) We now discuss the inversion from Laplace space
to physical time. One quantity of interest is the flux (1.3) through each of the receptors. In the
transform variables, these quantities are

bJk(s) = ⇡DAk(s)⌫k. (2.17)

From the solution of the linear system (2.16b), we then apply a numerical inverse Laplace
transform [44–46] to obtain the fluxes over each receptor (2.17). Numerical inverse Laplace
transform is based on quadrature of the Bromwich integral, specifically

Jk(t) =
1
2⇡i

Z

�B

est bJk(s)ds, (2.18)

where �B is the complex contour �B = {� + iy | �1< y <1}. The parameter � is chosen so
that all singularities of bJk(s) lie to the left of Re(s) = �. In the present scenario associated with
diffusion, the singularities of bJk(s) lie along the negative real axis arising from the branch cut
of

p
s. Rapid and effective numerical evaluation of (2.18) is achieved by deforming the contour

around Re(s) = 0 such that the integrand of (2.18) decays very rapidly for Re(s)< 0. The Talbot
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contour �T is a family of deformations (see Fig. 2) to �B given parametrically by

�T = {� + µ(✓ cot ✓ + �i ✓) | � ⇡< ✓< ⇡}, (2.19)

where �, µ and � are shape parameters [44,47]. To achieve rapid and accurate evaluation of the
inverse Laplace transform, we apply the midpoint rule to the integral (2.18) along the curve (2.19).

-20 -15 -10 -5 0
-4

-3

-2

-1

0

1

2

3

4

Figure 2. A schematic of the Talbot curve (2.19) for parameter values �= 0, µ= 2, � = 0.5. The red line indicates the

singularities along the negative real line arising from the
p
s singularity.

2.3 Homogenization

In this section we identify a boundary homogenization limit as N !1 that replaces the mixed
Neumann and Dirichlet boundary conditions by a single condition Drph · n =  ph for a
permeability parameter > 0 [31,48–53]. For a circular cell ⌦ of radius rcell = 1 centered at the
origin with source x0 =Rei✓0 , the homogenized problem ph(r, ✓, t;R) solves

@ph
@t

=D
h@2ph
@r2

+
1
r
@ph
@r

+
1

r2
@2ph
@✓2

i
, r > 1, ✓ 2 (0, 2⇡), t > 0; (2.20a)

ph =
1
r
�(r �R)�(✓ � ✓0), r > 1, ✓ 2 (0, 2⇡), t= 0; (2.20b)

ph(r, ✓ + 2⇡, t) = ph(r, ✓, t), r > 1, ✓ 2 (0, 2⇡), t > 0. (2.20c)

D
@ph
@r

=  ph, r= 1, ✓ 2 (0, 2⇡), t > 0. (2.20d)

We find in Appendix B that the surface flux J (✓, t) =D@rph |r=1 of (2.20) has Laplace transform

bJ (✓, s) =
1
2⇡
�0(↵) +

1
⇡

1X

m=1

�m(↵) cosm(✓ � ✓0), �m(↵) =
Km(↵R)

Km(↵)�D�1↵K0
m(↵)

(2.21)
where Km(z) is the modified Bessel function of order m and ↵=

p
s/D is the scaled Laplace

parameter. To derive a formula for , we consider N equally spaced receptors of common angular
extent "with complex coordinates xj = ei✓j for ✓j = 2⇡j

N and j = 1, . . . , N . For the strength vector
A(s) = [A1(s), . . . , AN (s)]T , we define the surface flux

bJN (✓, s)=
NX

j=1

bJk(s)�(✓ � ✓j) = ⇡D⌫
NX

j=1

Aj(s)�(✓ � ✓j).
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The flux, bJN (✓, s), in this asymptotic limit is a sum of N �-functions, one for each pore, and
we wish to study how this measure converges to the homogenized flux bJ (✓, s). What we will
demonstrate is that as N !1 the coefficients in the Fourier series of bJN (✓, s) converge to those
of the Fourier cosine series for bJ (✓, s) given by (2.21). We now solve for the fluxes explicitly using
ideas from the discrete Fourier transform [54].
The Green’s function matrix Gh defined in (2.16a) is circulant, therefore we can find an eigenbasis
{u1, . . . ,uN} such that

um ⌘ [1,!m,!2
m . . . ,!N�1

m ]T = [1,!m,!2m . . . ,!(N�1)m]T , !k = e
2⇡ik
M . (2.22)

Expanding the strength vector as

A(s) =
NX

m=1

cmum,

guarantees due to orthogonality that cq = 1
N u⇤

q · A(s) which we expand for later use as

eiq✓0cq = eiq✓0
1
N

NX

j=1

Aj(s)e
�iq✓j =

1
N

NX

j=1

Aj(s)
⇥
cos q(✓j � ✓0)� i sin q(✓j � ✓0)

⇤
. (2.23)

Taking the inner-product of (2.16b) with u⇤
q yields that

cq =
u⇤
q · g0

N + ⇡D⌫ u⇤
q Gh uq

. (2.24)

For the terms u⇤
q Gh uq we need the surface Green’s function (Appendix B)

Gh(x; ⇠, s) =�
1
⇡D

log |x� ⇠|+Rh(x; ⇠, s); (2.25a)

Rh(x; ⇠, s) =
1
⇡D

⇣
�

1
2

K0(↵)
↵K0

0(↵)
�

1X

m=1


Km(↵)
↵K0

m(↵)
+

1
m

�
cosm(✓ � ✓0)

⌘
. (2.25b)

where x= ei✓ and ⇠= ei✓0 . We decompose u⇤
q Gh uq = S +R where the regular term R is

R=
NX

m=1

NX

n=1

e�iq(✓m�✓0)Rh(xm;xn)e
iq(✓n�✓0) (2.26)

=

✓
N
2⇡

◆2 Z2⇡

✓=0

Z2⇡

✓̄=0
e�iq(✓�✓0)Rh(x(✓);x(✓̄))e

iq(✓�✓̄)d✓d✓̄ + H.O.T.

=�
N2

2⇡D

8
<

:

K0(↵)
↵K0

0(↵)
, q= 0;

Kq(↵)
↵K0

q(↵)
+ 1

q , q= 1, 2, 3, . . .
(2.27)

The singular term S is calculated as

S =�
1
⇡D

NX

m=1

NX

n=1
n 6=m

e�iq(✓m�✓n) log |xm � xn|=�
N
⇡D

NX

n=2

cos(q✓n) log |xn � 1|

=�
N
⇡D

logN �
N
⇡D

NX

n=1

�
cos(q✓n)� 1

�
log |xn � 1|

=�
N
⇡D

logN +
N2

2⇡2D

Z2⇡

✓=0

�
1� cos(q✓)

�
log
�
2 sin ✓

2

�
d✓ + H.O.T.

=�
N
⇡D

logN +
N2

2⇡D

(
0, q= 0;
1
q , q= 1, 2, 3, . . .

(2.28)



10

ro
y
a

ls
o

c
ie

ty
p

u
b
lis

h
in

g
.o

rg
/jo

u
rn

a
l/rs

o
s

R
.

S
o

c
.

o
p

e
n

s
c
i.

0
0

0
0

0
0

0
......................................................................

In the above calculations, higher order terms (H.O.T.) arise by interpreting summations as
quadratures and replacing with the equivalent integrals, a technique familiar from the discrete
Fourier transform [54]. In practice, for a fixed wavenumber (here q) as N increases the error drops
exponentially in 1/N for C1 integrands.
Combining (2.27) and (2.28) gives

u⇤
q Gh uq =R+ S =�

N logN
⇡D

�
N2

2⇡D

Kq(↵)

↵K0
q(↵)

. (2.29)

To calculate the term u⇤
q · g0 we need the bulk Green’s function (A 8)

Gh(✓;R, ✓0, s) =�
1

2⇡D
K0(↵R)
↵K0

0(↵)
�

1
⇡D

1X

m=1

Km(↵R)
↵K0

m(↵)
cosm(✓ � ✓0), (2.30)

for x= (cos ✓, sin ✓) and ⇠=R(cos ✓0, sin ✓0). We calculate that

u⇤
q · g0 =

NX

k=1

e�iq✓kGh(xk,x0, s)⇡ e�iq✓0 N
2⇡

Z2⇡

✓=0
cos q(✓ � ✓0)Gh(✓;R, ✓0) d✓

=�e�iq✓0 N
2⇡D

Kq(↵R)

↵K0
q(↵)

+ H.O.T. (2.31)

Combining equations (2.24), (2.29) and (2.31), we determine that

cq =
u⇤
q · g0

N + ⇡D⌫ u⇤
q Gh uq

⇡
e�iq✓0

⇡D⌫N

Kq(↵R)
↵K0

q(↵)
.

2
N log "N4 +

Kq(↵)
↵K0

q(↵)

(2.32)

If we now formally expand bJN (✓, s) as a Fourier series,

bJN (✓, s) =
1
2⇡
�0(↵) +

1
⇡

1X

m=1

�m(↵) cosm(✓ � ✓0) +  m(↵) sinm(✓ � ✓0), (2.33)

we find that for m= 0, 1, 2, . . .,

�m(↵) =

Z2⇡

0

bJN (✓, s) cosm(✓ � ✓0) d✓ =

Z2⇡

0

2

4
NX

j=1

bJk(s)�(✓ � ✓j)

3

5 cosm(✓ � ✓0) d✓ ,

=
NX

j=1

bJk(s) cosm(✓j � ✓0) ,

= ⇡D⌫
NX

j=1

Aj(s) cosm(✓j � ✓0) .

A similar calculation yields m= 1, 2, . . . that  m(↵) = ⇡D⌫
PN

j=1 Aj(s) sinm(✓j � ✓0). Now
combining this calculation with (2.23) yields

eiq✓0cq =
1
N

NX

j=1

Aj
⇥
cos q(✓j � ✓0)� i sin q(✓j � ✓0)

⇤
=

1
⇡D⌫N

⇥
�m(↵)� i m(↵)

⇤
(2.34)

but from (2.32) this yields in the limit of large N (and fixed q) that

�q(↵)� i q(↵)⇠

Kq(↵R)
↵K0

q(↵)
.

2
N log "N4 +

Kq(↵)
↵K0

q(↵)

and as the righthand side is real, we conclude that  q(↵) tends to zero in the limit of large N . This
can be interpreted physically as an approximately symmetric response to the source at ✓0 in the
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limit of large N . A direct comparison with the Robin surface flux (2.21) reveals that �q(↵) = �q(↵)

(again in the limit of large N ) if one chooses the homogenization parameter to be

D�1 =�
2
N

log
⇣"N

4

⌘
. (2.35)

This result is in agreement with those previously determined for steady state [55,56] quantities,
but is obtained here for all dynamic modes, demonstrating that homogenization has much
broader efficacy. This has been recently observed in the first passage time distribution of capture
to planar absorbers [35].

2.4 Short time asymptotics via the method of moments

In this section we obtain the short-time asymptotics for the solution of (2.20) which will be used
to describe the source detection for very early arrivals to the cellular surface. This is a familiar
problem from stochastic processes; the earliest arrivals are concentrated at the point closest to the
source. Heuristically, this can be viewed as a boundary layer calculation. The outer solution is just
the free space Green’s function and the inner solution is confined to a boundary layer of width
p
Dt at the edge of the disc. Specifically, we will consider the problem when "⌧

p
Dt⌧ 1, that is

where the diffusion length is much longer than the typical receptor size (so the homogenization
approximation is valid) but much smaller that the disc radius. We expect that the arrivals will be
concentrated near the point on the disc closest to the source.
The homogenized problem derived in the previous section allows a straightforward
characterization of the fluxes at short times via the method of moments. Our starting point is the
expansion of the Laplace transform of the flux density (A 10) as a Fourier cosine series (reflecting
the even symmetry of the distribution). For convenience we take ✓0 = 0 and calculate from (2.21)
and the orthogonality of the Fourier modes that

�n(↵) =

Z⇡

✓=�⇡

bJ (✓,↵) cosn✓ d✓. (2.36)

Next we exploit the exponential localization of the distribution to treat the interval ✓ 2 [�⇡,⇡] as
effectively infinite and define the centered moments of the distribution, Mn(t) and their Laplace
transform cMn(↵) =L[Mn(t)], where as usual ↵=

p
s/D,

Mn(t) =

Z⇡

✓=�⇡
J (✓, t)✓n d✓, cMn(↵) =

Z⇡

✓=�⇡

bJ (✓,↵)✓n d✓. (2.37)

The linearity of the moments implies that the Laplace transform of the moments are the moments
of the Laplace transform. The even symmetry guarantees that the odd moments will vanish, as
does the mean and the skewness of the distribution.
The first moment is exactly �0(↵) which we will expand for ↵=

p
s/D� 1 corresponding to

p
Dt⌧ 1. In addition, we will make an assumption about the homogenization parameter that

0<D�1
⌧ 1. This can be thought of as having a fixed receptor fraction on the surface, "N < 4

(to ensure positivity of the log term), and letting N increase to infinity.

cM0(↵) = �0(↵) =
K0(↵R)

K0(↵)�D�1↵K0
0(↵)

⇠
e�↵(R�1)

p
R(↵D + )


1 +O

✓
1
↵

◆�

whose inverse transform is

M0(t) =


p
R
e�

(R�1)2

4Dt


1

p
⇡Dt

�

D

erfc(�)e�
2
�
·

h
1 +O(

p

Dt)
i

� =
2t+ (R� 1)

2
p
Dt

Note that � > R�1
2
p
Dt

� 1 and expanding in the limit of large � yields

M0(t) =
(R� 1)

p
R

e�(R�1)2/4Dt

p
⇡Dt


1

2t+ (R� 1)

�
·

h
1 +O(

p

Dt)
i
,

which is a uniform approximation independent of the relative sizes of t and (R� 1).
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Expanding cosn✓= 1� (n✓)2/2 + (n✓)4/24 + · · · as a Taylor series yields

�n(↵) =

Z2⇡

✓=0

bJ (✓,↵) cosn✓ d✓= cM0(↵)�
n2

2
cM2(↵) +

n4

24
cM4(↵) + · · · (2.38)

We now expand �n(↵) for fixed n and ↵� 1, a limit for which uniform approximations are well-
known for the modified Bessel functions. First, we rewrite �n(↵) as

�n(↵) =
Kn(↵R)/K0

n(↵)

Kn(↵)/K0
n(↵)�D�1 .

Asymptotically the ratios of Bessel functions for fixed n and ↵� 1 yields

Kn(↵R)
K0

n(↵)
⇠

e�↵(R�1)

R


�1 +

(4n2 + 3)(R� 1) + 4
8R

↵�1

+
(�16n4 + 8n2

� 33)(R� 1)2 + (3n2
� 72)(R� 1) + (64n2

� 48)
128

↵�2 +O

⇣
↵�3

⌘�

where the denominator Kn(↵)/K
0
n(↵) can be expanded by setting R= 1 in this expression. The

jth term for the expression in the square bracket is a polynomial in n of degree 2(j � 1) times
↵�(j�1). Substituting into the expression for �n(↵) and expanding for ↵� 1 while allowing the
relative size of ↵ and D/ to be arbitrary allows us to identify the Laplace transforms of the
moments in (2.38),

cM0(↵)⇠
e�↵(R�1)

p
R(↵D + )


1 +O

✓
1
↵

◆�
,

cM2(↵)⇠
(R� 1)e�↵(R�1)

↵R
3
2 (↵D + )


1 +O

✓
1
↵

◆�
,

cM4(↵)⇠
3(R� 1)2e�↵(R�1)

↵2R
5
2 (↵D + )


1 +O

✓
1
↵

◆�
.

The inverse transform cM2(↵) can be approximated for ↵,�� 1 as

M2(t) =M0(t)


2Dt
R

�
·

h
1 +O(

p

Dt)
i
.

This allows us to compute the variance

Var[J (✓, t)]⌘
M2(t)
M0(t)

⇠
2Dt
R

.

A similar tedious calculation yields the result that

M4(t) =M0(t)


12(Dt)2

R2

�
·

h
1 +O(

p

Dt)
i
,

and shows that the kurtosis satisfies

Kur[J (✓, t)]⌘
M4(t) ·M0(t)

[M2(t)]2
⇠ 3 +O(

p

Dt).

This is consistent with a Gaussian distribution, specifically, we have in the limit t! 0+ that

J (✓, t)⇠
M

�
p
2⇡

e�
✓2

2�2 ; �2 =Var[J (✓, t)]⇠
2Dt
R

; (2.39a)

M=M0(t)⇠
(R� 1)
p
⇡RDt

e�
(R�1)2

4Dt


1

2t+ (R� 1)

�
. (2.39b)

We remark that the limiting behavior of (2.39b) as t! 0+ is consistent with the short time
asymptotic of the survival probability derived in (A 12).
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3. Source Recovery

In this section we investigate source inference using both dynamics fluxes (4.2) and splitting
probabilities. We consider the situation where M particles are released from a location x. The
particles arrive at one of the N receptors with centers {xk}

N
k=1 and the counts at each being

{ck}
N
k=1 so that

PN
k=1 ck =M .

One potential avenue for formulating a problem for the source location x0 uses the discrete
splitting probabilities ck/M together with the asymptotic formulation (2.8). Assuming �k ⇡ ck/M

for M sufficiently large, and source location x, this yields the system

�̄k �
ck
M

= ⇡
NX

j=1

Aj⌫jGs(x;xj), k= 1, . . . , N. (3.1)

For the circular cellular geometry (cf. Fig. 1), it was shown in [18] that the system (3.1) generates
a unique solution provided N � 3. In practice, the number of receptors may be large so that (3.1)
is highly over determined thus limiting the practicality in source inference. We therefore consider
the maximum likelihood approach of [21] which adopts a probabilistic viewpoint to obtain a
distribution for the source location given splitting probabilities and the receptor counts {ck}Nk=1.
The multinomial likelihood function is given by

(q1)
c1

⇥ (q2)
c2

⇥ · · ·⇥ (qN )cN =
NY

k=1

(qk)
ck ,

where qk := qk(x; t) are the dynamic signals or, alternatively, the splitting probabilities �k(x) =
limt!1 qk(x, t). For convenience, the negative log-likelihood is considered giving the estimator

bxMLE(t) = argmax
x

L(x; t), L(x; t) =�

NX

k=1

ck log[qk(x; t)]. (3.2)

The use of a finite number of signaling particles (M <1) reflects a low concentration of
chemoattractant and simultaneously the number M serves as a parameter for controlling noise of
the receptor signal in the source inference process. To more precisely quantify the role of noise in
the inference process, we consider the “exact” landscape L

⇤ defined as

L
⇤(x;x0, t) =�

NX

k=1

qk(x0, t) log[qk(x, t)]. (3.3)

In (3.3), the finite receptor counts ck have been replaced by the exact relative fluxes qk(x0, t).
While it may be feasible to implement MLE on the cellular level [57], here we use this
methodology only as a map from the receptor configuration and input signal to a source estimate.

4. Results

In this section, we provide validation of our results. We cross-verify where possible the different
approaches to obtaining the static splitting probabilities and the dynamic receptor fluxes. In the
static case of the splitting probabilities, we develop (see Appendix C) a highly accurate numerical
solution based on a least squared fitting approach of (1.1). In all scenarios, a particle based Kinetic
Monte Carlo (KMC) method [35] is employed to rapidly and accurately sample all static and
dynamic quantities while providing noisy receptor inputs for source reconstruction.
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4.1 Ex: Asymptotic verification in disk geometry with three receptors

In this test case we validate in Fig. 3 the asymptotic approximation on the disk geometry with
three receptors given by parameters

`= "`c = "
h⇡
3
,
⇡
3
,
2⇡
3

i
, xj = [cos ✓j , sin ✓j ], ✓j =

h⇡
4
,⇡,

3⇡
2

i
, x= [2, 0]. (4.1)

In Fig. 3(a) we show that the splitting probabilities {�1("),�2("),�3(")} obtained from
asymptotics and numerics are in very close agreement for a wide range of " values. As "! 0, we
observe that �k(")! 1/N in agreement with equation (2.6). For the splitting probability �3(0.3),
we show in Fig. 3(b) contours indicating equal likelihood of arriving first at receptor k= 3.

(a) �k(") against ".

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

0.0

0.2

0.4

0.6

0.8

1.0

(b) �3(x) with "= 0.3. (c) Arrival time density ⇢(t).

(d) qk(t) as t!1. (e) Fluxes Jk(t). (f) Relative fluxes J̄k =Jk/⇢(t).

Figure 3. Validation of the hybrid asymptotic method for example 4.1 and parameters (4.1). Panels (a-b) feature numerical

results from the series method described in Appendix C while panels (c-f) feature M = 106 arrival times obtained from

a Kinetic Monte-Carlo (KMC) method [35]. Panel (a): Numerical validation of the asymptotic splitting probabilities. Panel

(b): numerical solution of the splitting probability �3(x) for "= 0.3. Panel (c): full distribution of first passage times from

asymptotics (4.2) and KMC data. Panel (d): Convergence of the accumulated signals (4.2) to the asymptotic splitting

probabilities {�1,�2,�3} for "= 0.1. Panel (e): Fluxes Jk(t) against time to individual receptors. Panel (f): Relative

fluxes J̄k(t) =Jk(t)/⇢(t) against time to individual receptors with convergence to {�̄1, �̄2, �̄3}.

To validate the time-dependent arrival statistics, we calculate from (2.18) the full arrival density
⇢(t), the fractional cumulative signal qk(t) and the fractional fluxes J̄k(t) satisfying

⇢(t) =
NX

j=1

Jj(t), qk(t) =

Rt
0 Jk(⌧)d⌧Rt
0 ⇢(⌧)d⌧

, J̄k(t) =
Jk(t)
⇢(t)

. (4.2)

In Fig. 3(c) we demonstrate that the asymptotic approximation of the full arrival data is in
close agreement with times generated from a Kinetic Monte Carlo method (described in [35]).
In Fig. 3(d) we see that qk(t)! �k as t!1, and in particular we note that this convergence
occurs on a long timescale. In 3(e), we show the instantaneous fluxes into the receptors with the
location and height of the peaks indicating the prominence of signal to the receptors. If a cell needs
to make a quick (t⇡ 100) decision on the source location, then the k= 1 receptor is the primary
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recipient of signal and gives the best information to make an inference on the source direction.
In Fig. 3(f), we show the instantaneous relative fluxes J̄k(t) and observe that J̄k(t)! �̄k as
t!1. The quantities �̄k (see Eq. (2.8)) reflect the component of the splitting probabilities that are
independent of the source location. Therefore, Fig. 3(f) provides an estimate of the time (t⇡ 102)
beyond which particles attain thermal equilibrium and no longer contain source information.

We now demonstrate source inference in this scenario (parameters (4.1) with "= 0.1). This
configuration of receptors is not representative of a real cell, however, this is an informative
test case since N = 3 is the minimum required to uniquely locate (triangulate) the source [18].
In this test case, we generated M = 104 arrival times with the particle approach [35] and took
receptor counts at times t= 100, t= 101, t= 103 and t=1. The count measurements (see Table
1) demonstrate that short time data has much richer information on the source direction.

time c1 c2 c3
1
M

P3
k=1 ck

t= 100 580 0 153 0.07

t= 101 1741 183 973 0.29

t= 103 2765 929 2070 0.58

t=1 4192 2194 3614 1.00

Table 1. Cumulative count data for arrival for M = 104 particles at individual receptors for given times. Receptor

configuration given in (4.1) with "= 0.1.

(a) t= 101 (b) t= 103 (c) t=1

Figure 4. Inference for parameters (4.1) and "= 0.1. The landscape L⇤(x;x0, t) of (3.3) formed using the relative

fluxes (4.2) at t= 101, t= 103 and splitting probabilities (t=1). The source x0 = [2, 0] is marked as a red dot and the

contours indicate regions where L⇤(x;x0, t) is within (0.125%, 0.25%, 0.5%, 1.0%) of the estimator x0. Solid white

dots indicate 20 MLE estimates xMLE derived from (3.2) using M = 104 arrival times.

When surveying the counts in Table 1, we clearly see the importance of short time arrival
data. For example, by t= 100, 7% of the particles have been captured yet none have arrived
at receptor k= 2. This strongly suggests the source is not to the left of the cell and that the
signal through receptors k= 1, 3 convey richer information on the source location. However, the
splitting probabilities, which arise once all particles have been absorbed (t=1), do not give such
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a clear conclusion that the source is to the right. Indeed, the smaller deviation in counts across the
receptors may diminish the quality of the inference.
To examine further the role of dynamics on source inference, for each time t= 101, t= 103 and
t=1 (splitting probabilities), we form 20 MLE estimates bxMLE (Fig. 4, solid white dots) from
M = 104 arrivals, as defined in (3.2). Simultaneously we plot contours of the exact landscape
L
⇤(x;x0, t) defined in (3.3), where the shown regions are within (0.125%, 0.25%, 0.5%, 1.0%)

of the minimum of L
⇤. The contours are shown to correctly envelop the source x0 while the

estimates bxMLE form a cloud surrounding the source x0. The results in Fig. 4 demonstrate
the robustness of this method under noisy perturbations and corroborate the data in Table 1
indicating that the short time flux yields a tight and clear direction for the source, but a poor
estimate on the distance. At the later time t= 103, and for the splitting probabilities (t=1), the
estimate on the distance is markedly improved.

4.2 Ex: Circular cell with homogeneous receptor covering

In this example we consider the scenario of a circular cell of radius rcell = 1 centered at the origin
and with N = 10 homogeneously spaced receptors of common extent parameterized by

xk =
⇣
cos

2⇡k
N

, sin
2⇡k
N

⌘
, `k = "`c, k= 1, . . . , N. (4.3)

The parameters used are "= ⇡/20, `c = 1 and the simulations are initiated with M = 104 particles
at the source x0 = [R, 0] for R> 1. In particular we examine the inference landscape L

⇤(x;x0, t)

and source estimates bxMLE as the source distance R and cumulative signal C(t) =
Rt
⌧=0 ⇢(⌧)d⌧

varies.

Figure 5. The inference landscape L⇤(x;x0, t) for the example (4.3) with a disk geometry covered by N = 10 equally

spaced receptors. Horizontal axis indicates the fraction of initial signal captured and vertical axis indicates source distance.

Using random samples of size M = 104 arrivals, we plot 20 bxMLE estimates (white markers) based on (3.3).
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In Fig. 5 we plot contours of the exact landscape L
⇤(x;x0, t) and 20 MLE estimates bxMLE over

source distances R= {2, 5, 10, 20} and absorbed fractions C(t) = {2%, 10%, 20%, 100%}. We draw
three main conclusions from Fig. 5. First, the quality of inferred source direction decreases as R

increases which is to be expected when identifying a more distant source. Second, and somewhat
counterintuitively, the precision of the angular estimate on the source direction is reduced as the
acquired signal increases. Indeed, at each source distance, the strongest angular signal is acquired
from the early arrival data (C(t) = 2%). Third, the effect of noise, shown through the cloud of 20
estimates bxMLE, confirms predictions of the inference landscape L

⇤(x;x0, t). Namely that when
the acquired signal is low, the directional estimate is accurate. For large acquired signals, the
source distance is correctly inferred.

4.3 Ex: Homogenization and polar momentum

In the above example, MLE inference revealed that early receptor arrivals contained rich
information on the source direction. We now explore the efficacy of a simple inference mechanism
based on a polar average ✓pa of angular receptor positions ✓k weighted by arrival numbers ck.
Specifically, we sort arrival times and calculate an average ✓pa for each batch of Ms arrivals

✓pa =
1
Ms

NX

k=1

ck✓k,
NX

k=1

ck =Ms.

In Fig. 6 we show results for N = 100 homogeneously spaced receptors occupying half the
cellular surface for Ms = 1001. The KMC simulations are initiated by M = 105 particles at location
x0 = (5, 0) with diffusivity D= 1. Fig. 6(a) shows that a simple average of receptor input gives
an excellent estimate of source direction for short times (t/ 103). At larger times (t' 103), the
directional information in the signal vanishes and the polar average becomes uniform U [�⇡,⇡],
as shown by the p-value of a Kolmogorov–Smirnov (KS) test with 5% significance. To explain
this sharp transition, we utilize the homogenized solution and calculate from (2.35) that =
206.98. We show the arrival time distribution (Fig. 6(b)) and the ratio of the first to zeroth
modes (Fig. 6(c)) of the homogenized surface flux L

�1(�1(s))/L
�1(�0(s)) derived in (A 10). The

transition coincides with the amplitude of this ratio diminishing. This corresponds to the surface
flux becoming more radially symmetric so that the remaining free particles carry no directional
information on the source. The associated homogenized CDF for this example predicts that at
the transition time (t⇡ 103), the remaining ⇡ 60% of free particles have no angular information
corresponding to their initial position (Fig. 6(c)).

(a) Polar average ✓pa. (b) Arrival time distribution. (c) First mode of surface flux.

Figure 6. Inferring direction from early arrivals and homogenization. Panel (a): Averaged angular receptor input ✓pa

based on Ms = 1001 arrivals (blue) and the p-value of Kolmogorov-Smirnov (KS) test compared to uniform CDF with

5% significance (red). Panel (b): Homogenized, KMC and full asymptotics of arrival time distribution in close agreement.

Panel (c): Ratio of first and second modes of the surface flux (blue) and fraction captured (red). The amplitude of this ratio

quantifies the angular information that free particles carry on the source direction.
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4.4 Ex: Extreme arrivals to an all absorbing cell

In the preceding examples, we have observed that early arrivals give significant directional
information on the source. To establish a theoretical bound of the accuracy on source detection
based the first of M independent arrivals, we consider the time and impact distribution to a
homogenized circular cell of radius rcell = 1. The arrival times are TM = {t1, t2, . . . , tM} with
corresponding arrival angles ⇥M = {✓1, ✓2, . . . , ✓M}. We remark that the arrival times TM and
associated angles⇥M are not independent and in general longer times give rise to uniform angles,
while at shorter times the angular distribution is centered on the source direction. The random
variable ta =min TM is known as the extreme arrival time and ✓a is the polar coordinate of the
associated arrival location. The distribution of ta for M � 1 was recently found (see [38, Theorem
1]) to satisfy

ta � bM
aM

!X, as M !1, (4.4)

where X follows the Gumbel distribution P(X >x) = exp(�ex). The quantities aM , bM are
determined in terms of the short time asymptotics of the probability P (t) = P(t1 > t) of a single
walker. For a given q, A 6= 0, and B > 0, we have that

1� P (t)⇠Atqe�B/t, as t! 0+; (4.5a)

aM =
bM

q(1 +WM )
, bM =

B
qWM

, WM =W⇤
⇣B
q
(AM)

1
q

⌘
, (4.5b)

and where W⇤(z) is the principal branch of the LambertW function, defined as the inverse function
of f(z) = zez . The mean and variance of the Gumbel distribution are

E[ta] = bM � �eaM , Var[ta] =
⇡2

6
a2M , (4.6)

where �e ⇡ 0.5772 is the Euler–Mascheroni constant. We are able to identify in the homogenized
scenario that the relevant parameters (A 13) are

q=
3
2
, A=

p
D

p
⇡R

4

(R� 1)2
, B =

(R� 1)2

4D
. (4.7)

In terms of the expectation we have that as M !1

E[ta]⇠
(R� 1)2

6DWM


1�

2�e
3(1 +WM )

�
. (4.8)

For the arrival time ta, the associated arrival location ✓a in polar coordinates is calculated as

P[✓a = ⌘] =

Z1

⌧=0
P[✓= ⌘|t= ⌧ ]P[ta = ⌧ ]d⌧ (4.9)

=
1

aM

Z1

⌧=0
P[✓= ⌘|t= ⌧ ]e�z�ezd⌧, z =

✓
⌧ � bM
aM

◆
. (4.10)

To approximate this integral, consider that �z � ez has a critical point at z = 0 (t= bM ) and so

e�z�ez
⇡ exp

h
� 1�

(t� bM )2

2a2M

i
, (t� bM )2 ⌧ 1.

Therefore we see that applying Laplace’s method yields

P[✓a = ⌘]⇡ e�1
Z1

⌧=0
P[✓= ⌘|t= ⌧ ]

1
aM

exp
h
�

(⌧ � bM )2

2a2M

i
d⌧

⇡
p
2⇡e�1 P[✓= ⌘|t= bM ]. (4.11)

We note that t= bM is the mode of the Gumbel distribution and the factor
p
2⇡e�1

⇡ 0.922 is an
error induced by the Laplace approximation that we normalize to unity. For bM ⌧ 1, the result
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(a) Mean extremal arrival times E[ta]. (b) Extremal arrival angle ✓a.

Figure 7. The distribution of extreme arrival times ta and their angular distribution with M = 106 particles averaged over

1000 simulations. Panel (a): The first arrival time ta against R. Panel (b): Comparison of angular distributions of the first

arrival from KMC and theory (solid red) for various R.

(2.39) indicates that P[✓= ⌘|t= bM ]⇠N (✓0, 2DbM/R). After algebra, we conclude that as M !

1, the arrival angle is distributed ✓a ⇠N (✓0,�
2
✓a) with variance �2✓a given by

�2✓a(M,R) =
g(R)
WM

, g(R) =
(R� 1)2

3R
, WM =W⇤

⇣22M2

9⇡D2 g(R)
⌘ 1

3

�
.

We remark that W⇤(z)⇠ log z as z!1 giving the leading order behavior as M !1

�2✓a(M,R)/
R
�
1� 1

R

�2

logM
. (4.12)

The relationship (4.12) implies that provided the signal strength M is large enough and the source
is not too distant, the first arrival yields the source direction with reasonable accuracy.
As a demonstration of this theory, we consider the scenario of a cell of radius rcell = 1 centered
at the origin with N = 100 homogeneously spaced receptors occupying 10% of the surface. We
calculate ta from (4.8) and the associated arrival angle ✓a. We plot in Fig. 7 comparisons between
the extreme value statistics and numerical data based on 1000 KMC simulations each with M =

106 particles. We observe in Fig. 7(a) that the distribution of ta is well predicted by the extreme
value theory over six orders of magnitude. The distribution of angular arrivals ✓a is also very
well predicted by (4.12) as shown in Fig. 7(b). Remarkably, this result shows that a cell can make
an informed decision on the source direction based on just a single arriving signaling molecule,
provided the source distance R is not too large.
We now provide a rough comparison between the timescales predicted by extreme statistics
(4.8) and those observed in experiments. We consider an example of directional sensing in
neutrophils where a cellular reaction was observed after ⇡ 5 secs when exposed to a point source
of chemoattractant (10µM, fMLP) placed by pipette [58]. This response combines the time to
acquire receptor input and to complete downstream signaling dynamics. To approximate the
former of these two timescales, we assume N ⇡ 104 fMLP receptors [59] of individual radius
roughly ra = 5nm [60] which lies in the validity of the homogenization limit (2.35). If we assume
a volume 1µl is released from a micropipette, this yields an effective particle number M ⇡ 1012.
The diffusivity of the chemoattractant fMLP has been estimated at D= 1.2⇥ 10�6 cm2/sec
[61]. If we consider cell radii in the range rcell = 5µm�10µm and sources in the range rsource =

5rcell � 10rcell, the first extreme arrival time in light of these parameters is E[ta]⇡ 0.05� 1 secs.
The predictions of extreme statistics are of roughly the same order of magnitude as those observed
experimentally and provide a minimum time for a cell to respond to a diffusive signal.
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5. Discussion

In this paper we have explored source inference from the dynamics of the diffusive fluxes to
localized surface receptors. A key ingredient in our analysis is the application of a new hybrid
asymptotic-numerical method that allows for the rapid and accurate determination of the time-
dependent solution to an exterior parabolic problem. These quantities give a more detailed
understanding of cellular response to external signals than previously available through static
quantities (e.g. the splitting probabilities). The full arrival statistics describe both the equilibration
timescale and the short time dynamics of the signal to the cell. As an application of these newly
obtained dynamic quantities, we explored their use in source inference.
This work leads to several conjectures that may have biological implications. First, we observe
that the equilibration time scale is long and therefore steady state quantities may not be useful for
understanding cellular responses, particularly in dynamic environments. Second, we observe that
the earliest arrivals to the surface receptors contain the most directional information. Therefore a
cell can make a quick and accurate directional decision, at the cost of accuracy in source distance,
by heavily weighting the earliest signal it receives.
In the extreme scenario where the cell chooses a direction based on just one arrival to its
membrane, we find that the accuracy is surprisingly good provided the source distance is not
large. An important characteristic of simplistic directional inference methods is that they make
minimal biological assumptions regarding cellular computing abilities, memory of previous
receptor engagements, knowledge of cellular geometry and receptor configurations. This work
suggests that a cell can take simple averages over a small number of signaling receptors to
accurately infer the location of nearby signaling sources.
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A. Inner solution at a receptor

A key ingredient in the asymptotic analysis of both the static splitting probabilities (1.1) and the
Laplace transform problem (2.12), is knowledge of the solution to a rescaled version of (1.1) in
the O(") neighborhood of each receptor. This inner solution is a half-plane problem where the
curvature of the cell is negligible, the receptor is replaced by an absorbing segment, and the
response to the externally varying probability density is quasi-static. In the unrescaled outer
problem the receptor is replaced by a �-function and the response can be analyzed via a surface
Green’s function
In an O(") neighborhood of the jth receptor centered at xj = (xj , yj), the solution is described
in terms of a local arc-length coordinate system (⌘,�) where ⌘ represents the distance from x2

R2
\⌦ to @⌦ and � denotes arc-length along @⌦. In this system, the Laplacian becomes

� :=
@2

@⌘2
�

̄
1� ̄⌘

@
@⌘

+
1

1� ̄⌘
@
@�

✓
1

1� ̄⌘
@
@�

◆
. (A 1)

Here ̄= ̄(�) is the curvature along @⌦. In the arc-length coordinate system, the receptor center
becomes (⌘,�) = (0,�j). Rescaling in the receptor neighborhood with ⌘̂= ⌘/" and �̂= (� � �j)/",
the Laplacian becomes �! "�2(@2⌘̂⌘̂ + @2�̂�̂) +O("�1) and we have the half-plane problem

@2vc
@⌘̂2

+
@2vc
@�̂2

= 0, �̂ 2 (�1,1), ⌘̂> 0; (A 2a)

vc = 0, |�̂|< `j/2, ⌘̂= 0; @⌘̂vc = 0, |�̂|> `j/2, ⌘̂= 0. (A 2b)

vc = log[⌘̂2 + �̂2]
1
2 � log dj + · · · , as ⌘̂2 + �̂2 !1, dj =

`j
4
. (A 2c)
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The solution of (A 2) can be obtained by use of the elliptical coordinate system [55] and is used to
construct solutions of (1.1) and (2.12). We remark that when applying this boundary layer analysis
to the Helmholtz problem (2.11), we assume that s"2 ⌧ 1 and consequently cannot expect a valid
expansion near the receptors for arbitrarily short times. In Sec. 2.4, we consider separately the
short time surface fluxes in the limit t! 0+.

B. Green’s functions

In this appendix we tabulate the various Green’s functions for Laplace’s equation and the
Helmholtz equation that arises from the Laplace transform of the heat equation.

Half Plane: In the case of the half-plane (⌦ := {x= (x, y)2R2
| y < 0}) with a Neumann

boundary condition, we have the following exact Green’s functions satisfying Laplace’s equation
(2.4) and the Helmholtz equation (2.15) respectively,

Gs(x; ⇠) =
�1
2⇡

(
log |x� ⇠|+ log |x� ⇠0|, ⇠2 > 0;

2 log |x� ⇠|, ⇠2 = 0.
(A 1a)

Gh(x; ⇠, s) =
1

2⇡D

(
K0 (↵|x� ⇠|) +K0

�
↵|x� ⇠0|

�
, ⇠2 > 0;

2K0 (↵|x� ⇠|) , ⇠2 = 0.
(A 1b)

where ⇠= (⇠1, ⇠2) is the location of the source in the bulk, ⇠0 = (⇠1,�⇠2) is the source’s image in
the half plane, K0(z) is a modified Bessel function, and ↵=

p
s/D.

Unit Disk: In the case of a unit disk (⌦ := {x= (x, y)2R2
| x2 + y2 < 1}, we first solve for the

Green’s function Gs for the Laplacian (2.4). In terms of polar variables (r, ✓) and ⇠= ei✓0 , the
problem to be solved is

@2Gs

@r2
+

1
r
@Gs

@r
+

1

r2
@2Gs

@✓2
= 0, r > 1, ✓ 2 (0, 2⇡); (A 2a)

Gs(r, ✓; ✓0) =Gs(r, ✓ + 2⇡, ✓0), r > 1, ✓ 2 (0, 2⇡); (A 2b)

�
@Gs

@r
= �(✓ � ✓0), r= 1, ✓ 2 (0, 2⇡). (A 2c)

The separable solution of (A 2) can be expressed in the Cosine series

Gs(r, ✓; ✓0) =
�1
2⇡

log r +
1
⇡

1X

n=1

cosn(✓ � ✓0)
nrn

.

The series can be summed directly by defining x= rei✓ and specifying that

1X

n=1

cosn(✓ � ✓0)
nrn

= Re

" 1X

n=1

1
n

✓
x

|x|2⇠

◆n
#
=� log

����1�
x

|x|2⇠

����=�
1
2
log

����
x� ⇠
x

����
2

. (A 3)

After rearranging we obtain that

Gs(x; ⇠) =�
1
⇡
log |x� ⇠|+Rs(x; ⇠), Rs(x; ⇠) =

1
2⇡

log |x|.

For the Helmholtz Green’s function exterior to the disk with source ⇠=Rei✓0 , we examine the
form of the series for R= 1 and R> 1 separately.
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• Unit disk with a source on the surface: In this scenario, the surface Helmholtz Green’s function
satisfies

D
h@2Gh

@r2
+

1
r
@Gh

@r
+

1

r2
@2Gh

@✓2

i
� sGh = 0, r > 1, ✓ 2 (0, 2⇡); (A 4a)

Gh(r, ✓; ✓0) =Gh(r, ✓ + 2⇡, ✓0), r > 1, ✓ 2 (0, 2⇡); (A 4b)

�D
@Gh

@r
= �(✓ � ✓0), r= 1, ✓ 2 (0, 2⇡). (A 4c)

The appropriate separable solution is then the Bessel Cosine series

Gh(r, ✓; ✓0) =
�1
2⇡D

K0(↵r)
↵K0

0(↵)
�

1
⇡D

1X

n=1

Kn(↵r)
↵K0

n(↵)
cosn(✓ � ✓0).

To isolate the singular and regular parts, we add and subtract a term 1
⇡D log |x� ⇠| and replace

one with the identity (A 3). The reveals that for x= rei✓ and ⇠= ei✓0

Gh(x; ⇠) =�
1
⇡D

log |x� ⇠|+Rh(x; ⇠); (A 5a)

Rh(x; ⇠) =
1
⇡D

 
log r �

1
2
K0(↵r)
↵K0

0(↵)
�

1X

n=1


Kn(↵r)
↵K0

n(↵)
+

1
nrn

�
cosn(✓ � ✓0)

!
. (A 5b)

Using the well known large order asymptotics (https://dlmf.nist.gov/10.41) of Kn(z)⇠p ⇡
2n [

ez
2n ]

�n as n!1, we observe that

Kn(↵r)
↵K0

n(↵)
⇠

�1
nrn

, n!1,

and therefore the series in (A 5b) is convergent, including as r! 1.

• Unit disk with a source in the bulk: Here the Helmholtz Green’s function satisfies

D
h@2Gh

@r2
+

1
r
@Gh

@r
+

1

r2
@2Gh

@✓2

i
� sGh =�

1
r
�(r �R)�(✓ � ✓0), r > 1, ✓ 2 (0, 2⇡); (A 6a)

Gh(r, ✓; ✓0) =Gh(r, ✓ + 2⇡, ✓0), r > 1, ✓ 2 (0, 2⇡); (A 6b)

@Gh

@r
= 0, r= 1, ✓ 2 (0, 2⇡). (A 6c)

The separable solution which is continuous and satisfies @rGh = 0 on r= 1 is given by

Gh =

8
<

:

P1
n=0 An

h
In(↵r)K

0
n(↵)� I 0n(↵)Kn(↵r)

i
Kn(↵R)
K0

n(↵)
cosn(✓ � ✓0), 1< r <R;

P1
n=0 An

h
In(↵R)K0

n(↵)� I 0n(↵)Kn(↵R)
i
Kn(↵r)
K0

n(↵)
cosn(✓ � ✓0), r >R.

(A 7)

Applying the jump condition and the orthogonality of the functions {cosm(✓ � ✓0)}
1
m=0 yields

D lim
�!0

Zr=R+�

r=R��

Z2⇡

✓=0
cosm(✓ � ✓0)

1
r
@
@r

⇣
r
@Gh

@r

⌘
rdrd✓=�1,

which fixes the constants

A0 =
1

2⇡D
, An =

1
⇡D

, n� 1.

Finally, our interest is in Gh |r=1 which is written as the series

Gh |r=1 (✓;R, ✓0) =�
1

2⇡D
K0(↵R)
↵K0

0(↵)
�

1
⇡D

1X

n=1

Kn(↵R)
↵K0

n(↵)
cosn(✓ � ✓0). (A 8)
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In the above calculations, we have used the Wronskian Identity I 0n(z)Kn(z)� In(z)K
0
n(z) = z�1.

We apply (A 8) only in the situation |⇠|=R> 1 such that the series converges rapidly.

• Unit disk with a homogenized surface (Robin condition): We are interested in the solution
ph(r, ✓, t;R) of the heat equation with Robin condition, defined by (2.20). We consider the
problem exterior to the disc of radius rcell = 1 with a source at R(cos ✓0, sin ✓0). We apply
the Laplace transform Gh(r, ✓; s) =

R1
t=0 ph(r, ✓, t)e

stdt, and find that Gh solves the Helmholtz
Green’s function

D
h@2Gh

@r2
+

1
r
@Gh

@r
+

1

r2
@2Gh

@✓2

i
� sGh =�

1
r
�(r �R)�(✓ � ✓0), r > 1, ✓ 2 (0, 2⇡); (A 9a)

Gh(r, ✓; ✓0) =Gh(r, ✓ + 2⇡, ✓0), r > 1, ✓ 2 (0, 2⇡); (A 9b)

D
@Gh

@r
= Gh, r= 1, ✓ 2 (0, 2⇡). (A 9c)

Similar to the Neumann case above, we obtain a continuous separable solution satisfying a jump
condition at r=R and the Robin condition at r= 1. Our interest is in the surface flux given by

D@rGh |r=1=
1
2⇡
�0(↵) +

1
⇡

1X

n=1

�n(↵) cosn(✓ � ✓0), �n(↵) =
Kn(↵R)

Kn(↵)�D�1↵K0
n(↵)

(A 10)
where zK0

n(z) = nKn(z)� zKn+1(z) and ↵=
p s

D . The total flux through the disk is

bJ (s) =

Z2⇡

0
D@rGh |r=1 d✓= �0(↵) =

K0(↵R)

K0(↵)�D�1↵K0
0(↵)

. (A 11)

One of our goals is to find the limiting behavior of the survival probability P (t) =R1
r=1

R2⇡
✓=0 ph(r, ✓, t)rd✓dr as t! 0. Here again ph(r, ✓, t) solves (2.20). The relationship P 0(t) =

�J (t) connects the survival probability with surface flux and therefore in transform space
bJ (s) = 1� s bP (s). The limit as t! 0+ corresponds to s!1 in transform space yielding

bP (s) =
1
s
�



s
3
2

p
RD

e
�
p
s
⇥

R�1p
D

⇤
, s!1; (A 12a)

P (t) = 1�
4

p
⇡R

p
D

(R� 1)2
t
3
2 e

�(R�1)2

4tD , t! 0+. (A 12b)

The limiting form identified in (A 12b) is consistent with the short-time asymptotics (2.39b), after
evaluating

Rt
0 M0(⌧)d⌧ as t! 0+. From (A 12b), we identify the coefficients P (t) = 1�Atqe�

B
t

as

q=
3
2
, A=

p
D

p
⇡R

4

(R� 1)2
, B =

(R� 1)2

4D
. (A 13)

C. Least squared solution of splitting problem

Here we describe a numerical technique for the solution of (1.1) exterior to the unit disc. In polar
coordinates (r, ✓), the solution (subscript of distinguished receptor omitted) has separable form

�(r, ✓) =
a0
2

+
1X

n=1

r�n(an cosn✓ + bn sinn✓). (A 1a)
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The coefficients are found by applying the Neumann and Dirichlet conditions to arrive at the
following dual trigonometric series

a0
2

+
1X

n=1

(an cosn✓ + bn sinn✓) =

(
1 distinguished receptor,
0 other receptors;

(A 1b)

1X

n=1

n(an cosn✓ + bn sinn✓) = 0, reflecting portion (A 1c)

Progress can be made on analytical solutions of this dual series [56], however, in the present
scenario, it is more convenient to access the solution numerically. The series (A 1a) is truncated
at a finite number of modes M and a linear system for the (2M + 1) coefficients formed by
introducing a grid of ✓ values. At each value of ✓, the entries of the system are filled according to
the conditions (A 1b-A 1c) resulting in an overdetermined system that is solved by least squared
solutions. We find (see Fig. 3) that this solution approach is robust and accurate for moderately
small receptor extents, however, the number of modes M is prohibitive for very small receptors.
See [56,62,63] for more details on this solution procedure.

D. Half-Plane with three receptors

As a supplemental example, we consider a three receptor scenario in the upper half plane. In this
geometry, the cell⌦ does not have a finite area so it is necessarily a simplification of the biological
setting. However, it can be useful [18] to examine both the asymptotic formulations and the source
inference approach. In this context, the specific parameters used in this example are

`= "
h1
2
, 1, 2

i
, x1 = [�3, 0], x2 = [0, 0], x3 = [3, 0], D= 4, "= 0.1, x0 = [2, 3].

(A 1)
In Fig. 8 we show that the asymptotic formulations of both the splitting probabilities and the
arrival time distribution agree very well with Monte Carlo data. As with the disk case, the
convergence qk(t)! �k as t!1 is observed on a long timescale.
In the upper half plane geometry, we do not have a ’shielding effect’ in which the geometry itself
delays the arrival of particles to the distant receptors. We observe in Fig. 8(a) that the short time
data provides only rough directional information and reflecting that the source is to the right of
the origin. At moderate time t= 103, we observe Fig. 8(e) a stronger angular signal (with respect
to the origin) while the splitting probabilities show recover of source distance and angle Fig. 8(f).
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