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Abstract

T cells form transient cell-to-cell contacts with antigen presenting cells (APCs) to facilitate
surface interrogation by membrane bound T cell receptors (TCRs). Upon recognition of
molecular signatures (antigen) of pathogen, T cells may initiate an adaptive immune
response. The duration of the T cell/APC contact is observed to vary widely, yet it is unclear
what constructive role, if any, such variations might play in immune signaling. Modeling
efforts describing antigen discrimination often focus on steady-state approximations and do
not account for the transient nature of cellular contacts. Within the framework of a kinetic
proofreading (KP) mechanism, we develop a stochastic First Receptor Activation Model
(FRAM) describing the likelihood that a productive immune signal is produced before the
expiry of the contact. Through the use of extreme statistics, we characterize the probability
that the first TCR triggering is induced by a rare agonist antigen and not by that of an abun-
dant self-antigen. We show that defining positive immune outcomes as resilience to extreme
statistics and sensitivity to rare events mitigates classic tradeoffs associated with KP. By
choosing a sufficient number of KP steps, our model is able to yield single agonist sensitivity
whilst remaining non-reactive to large populations of self antigen, even when self and ago-
nist antigen are similar in dissociation rate to the TCR but differ largely in expression. Addi-
tionally, our model achieves high levels of accuracy even when agonist positive APCs
encounters are rare. Finally, we discuss potential biological costs associated with high clas-
sification accuracy, particularly in challenging T cell environments.

Author summary

Physical contact between the T cell and antigen presenting cell (APC) is essential for pro-
ductive immune signaling. Wide variations in this contact time have been observed yet lit-
tle is known of mechanisms controlling this crucial timescale, nor how its duration may
impact antigen discrimination. We develop and analyze a probabilistic mathematical
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model of T cell activation which combines kinetic proofreading (KP) with a finite contact
duration. Our model is capable of suppressing large populations of self ligands while
remaining sensitive to only a single agonist in T cell/ APC cellular contacts. Additionally,
we explored two challenging cases, one in which self and agonist antigen are similar and
one in which agonist positive APCs are rare. We found that our model could overcome
these environmental challenges by increasing the number of kinetic proofreading steps.
Finally, we discuss the potential biological costs of achieving such accuracy. Our work
demonstrates the extreme effectiveness of kinetic proofreading in a temporal context
while also demonstrating the possible challenges in biological implementation of such a
model.

Introduction
Background

T cells are immune cells that continuously search for molecular signatures (antigens) of patho-
gens and upon recognition, can initiate an adaptive immune response. When a T cell encoun-
ters an antigen presenting cell (APC), T cells recognize antigen through binding of their T cell
receptors (TCR) to the peptide-MHC complex (pMHC) on the APC. For an efficient immune
response, T cells must be able to recognize when an APC is agonist positive, where an APC dis-
plays foreign antigen indicating an immune response is appropriate, or agonist negative,
where an APC displays only self antigen indicating no response is the appropriate action. This
recognition is accomplished at the level of receptor/ligand interactions, where TCR/pMHC
binding can result in the generation of an intracellular signal, such as Ca** influx, that may
lead to T cell activation [1]. This process of antigen recognition is marked by rapid recognition
speeds with single-molecule sensitivity to agonist ligands [2]. For example, CD4" T cells can
exhibit Ca** signaling when stimulated with a single molecule of foreign antigen [3, 4]. Simi-
larly, CD8" T cells have been shown to recognize as few as 3 molecules of a foreign antigen [5].
This single-digit molecule sensitivity is particularly remarkable given how short-lived TCR/
pMHC interactions can be [6-8]. In addition, T cells can amplify small differences in antigen
affinity into large differences in their responses [9-15]. The combination of these features of T
cells have led many to characterize T cell antigen discrimination as being near-perfect [16-22],
where the T cell is capable of recognizing agonist positive APCs (APCs with at least one agonist
antigen on the surface) and simultaneously remain non-reactive to agonist negative APCs
(APCs with no agonist presence) even when agonist populations are small, self antigen popula-
tions are large, and the distinguishing characteristic between agonist and self antigen is a slight
difference in TCR affinity. Moreover, some studies have shown that TCRs may be more specif-
ically tuned to the antigen dissociation rate, rather than the affinity [6, 11, 23-27]. This may
indicate that T cells are specifically tuned to recognize agonist and self antigen primarily based
on the antigen dissociation rate with the TCR.

Kinetic proofreading

The observed features of T cell antigen discrimination led McKeithan to introduce a kinetic
proofreading (KP) model (Fig 1) for TCR activation. KP proposes that a productive immuno-
logical signal can arise after the completion of several intermediate conformational changes, all
while being subject to TCR/pMHC disassociation that may eliminate progress towards activa-
tion [28]. KP has since become a prominent and highly studied conceptual framework for
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Fig 1. The First Receptor Activation Model (FRAM) as a classifier of APC status & € {0, 1}. The T cell and APC form a cellular contact at t = t,. An
APC is agonist positive (§ = 1) with probability P(¢ = 1) = p,, and agonist negative (§ = 0) with probability P(¢ = 0) = 1 — p,,.. If { = 1 then there is
Nag = 1 agonist antigen and n, = 10* self antigen. Activation is the event (min(Tanf , lenag) < 1) which results in a true positive (TP) classification. If
& =0 then correct classification occurs when none of the self antigen activate Ty, >0 which results in a true negative (TN). We measure the
accuracy (P(TP) + P(TN)) of the FRAM as an APC classifier with respect to the cellular contact duration (7). Cellular contacts of too short duration
result in a high false negative rate while overly long contacts return a high false positive probability, with both scenarios reducing accuracy. Decision
accuracy is maximized at fixed contact duration (7*). Published with permission under the CC BY 4.0 licence.

https://doi.org/10.1371/journal.pcbi.1011216.9g001

understanding antigen discrimination [29-34]. Steady state analysis of KP models shows that
the mechanism is certainly capable of ligand discrimination, however, large increases in the
number of intermediate states would increase the specificity of the model, but only at the
expense of model sensitivity to agonists [4, 35], i.e., the KP mechanism could reproduce
observed ligand discrimination only when the agonist population was sufficiently large. This is
because the increase in intermediate bound states would yield an unacceptably low steady state
fraction of activated TCRs when there were only few agonist antigen. This result calls into ques-
tion the feasibility of KP models being the sole descriptor of the observed antigen discrimina-
tion in T cells [16-22, 36], since both, high specificity and sensitivity to small populations of
agonists, have been observed in experiments. Nevertheless, despite the shortcomings of theoret-
ical models, KP is supported by observations that show the antigen dissociation rate is a signifi-
cant indicator of self or agonist antigen, and experimental work has continued to show results
that indicate kinetic proofreading is involved in the antigen recognition process [34, 37, 38].
One physical realization of the KP mechanism in TCR activation would be the phosphory-
lation of the immunoreceptor tyrosine-based activation motifs (ITAMs) of the TCR-CD3
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complex. The authors in [39] showed that all six ITAMs on the CD3{ chain are phosphorylated
in a specific, sequential manner and is a potential requirement for TCR activation. This could
be akin to a 6-step kinetic proofreading mechanism for TCR activation (ngp = 6). However,
more recent evidence indicates that the number of KP steps may be significantly smaller. In
the work by Voisinne et al. [40], it was observed that phosphorylations of the CD3 chains of
the TCR-CD3 complex, and the recruitment of ZAP-70, were similar regardless of the differ-
ences in antigen affinities. Furthermore, the authors found that the most significant regulatory
step, associated with antigen affinity, was the phosphorylation of two sites on ZAP-70 itself.
This may reveal that the majority of the phosphorylation events in the TCR activation process
occur in a similar manner regardless of the type of antigen presented to the TCR and thata
smaller ngp may be more appropriate. Indeed, Pettmann et al. [41] used the concept of a dis-
crimination power (y) to approximate the effective number of KP steps in T cell activation.
The authors measured y ~ 2.7, and argued that just 2 or 3 KP steps could effectively explain
the discrimination power seen in their experiments.

Cellular contact times

It has been estimated that APCs encounter 500-5000 T cells every hour (dendritic cells) [42—
44], suggesting many T cell/APC contacts are formed over short periods in time. Experimental
work has shown evidence that the duration of these contacts may be significant in antigen rec-
ognition [45-51] and some studies have classified the engagement period into distinct phases
based on cellular contact times [52-57]. The first (phase I) of these periods may involve multi-
ple, short-duration, transient encounters between T cells and APCs which persist until a cer-
tain threshold of accumulated signal followed by a second period (phase II) in which a long,
stable contact forms. In the context of a KP mechanism of activation, it is clear that a suffi-
ciently long-lasting cellular contact is required in order for a productive immune signal to be
generated and so early termination of the cellular contact may hypothetically prevent T cell
activation [58]. In addition, early termination of a T cell/APC contact could prevent the transi-
tion from a short transient contact to a more stable contact. Together, this suggests that the
duration of the T cell/APC contact may have an important role in antigen discrimination.

When the duration of the T cell/APC contact is explicitly modeled, the previously employed
steady-state analysis may not be appropriate [28, 30, 36, 59, 60]. For example, if the cellular
contact duration is shorter than the timescale of relaxation to the steady state, the equilibrium
configuration may not be attained. Similarly, in scenarios where activation is defined by an
accumulation of productive signal, integration over periods of non-equilibrium behavior
results in a non-trivial dependence of contact duration [61]. Finally, in rebinding models
where multiple short TCR/antigen engagements [7, 17, 19, 35] can lead to rare TCR triggering
events, the role of a finite cellular contact duration may be a significant factor in modeling
immunological outcomes.

Summary of results

In this paper, we develop a First Receptor Activation Model (FRAM) which describes T cell
activation as the event when any one receptor is triggered by an antigen ligand before the cellu-
lar contact expires. For a population of APCs where a fraction (p,,) are agonist positive, we
determine the accuracy of a T cell as an APC classifier, which is the probability I" that a T cell
will correctly classify a randomly chosen member of this population. Mathematically, this
involves calculating certain extreme statistics [62-65] due to the fact that while a single T cell/
APC interaction generates numerous independent TCR/pMHC reaction pairs, it is the fastest
of these that will set the activation time. A positive outcome requires our model to be reactive
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to a small number of agonist antigen while non-reactive during numerous interactions with
abundant self-antigen.

We observe that the accuracy of our model varies considerably with contact duration 7 and
demonstrate that there often exists a window of time such that I" & 1, i.e. the accuracy is near-
perfect. We find that regions of high accuracy expand/contract as the number ngp of KP states
increases/decreases. A similar relationship is observed with respect to variations in the ratio o
between dissociation rates of self and agonist antigen (Fig 1). Specifically, classification accu-
racy is higher at larger o values and decreases as ¢ — 1. We show that our model can achieve
near-perfect classification accuracy for just a single agonist antigen 1,4 = 1, .= 10" self anti-
gen, and a relative dissociation factor ¢ = 2. This demonstrates that by increasing the number
of kinetic proofreading steps the FRAM is able to overcome the challenge of remaining sensi-
tive to a single angonist antigen, and suppressing receptor triggering for a large self population
of antigen, even when self and agonist antigen appear similar in the lens of a KP mechanism.

The proportion p,, of agonist positive APCs influences the difficulty of the classification
task. This is especially so when p,, is small since this means most cellular contacts are made of
agonist negative cells, and the suppression of large self antigen populations becomes more sig-
nificant. When agonist positive cells are rare, we found that shorter-duration contacts decrease
the likelihood that a T cell activation is a result of a false positive. This demonstrates that the
agonist positive prevalence may influence optimal cellular contact durations. However, our
results also demonstrate that a sufficient number of KP steps could overcome this challenge by
maximizing the accuracy of the T cell for all p,, and effectively making the optimal cellular
contact durations independent of the agonist positive prevalence.

Lastly, we quantify a potential biological constraint in the FRAM. We assume that forward
KP reactions involve events with an energy cost [1, 28, 66-68], which we call futile reactions if
the TCR/antigen dissociate before TCR activation. As mentioned, our results show that
increasing ngp could overcome the challenges of similar self/agonist ligands, large differences
in self/agonist expression, and rare agonist positive APCs. However, we show that the
increased number of KP steps results in either longer-lasting cellular contacts or faster KP
rates, both of which cause an increased number of futile reactions. We conclude that accurate
antigen discrimination may come with associated energetic costs.

Model

We consider a population of APCs, each of which is agonist positive (§ = 1) with probability
P(¢ =1) = p,, or agonist negative (§ = 0) with probability P(¢ = 0) = 1 — p,,. In the case

& =1 there are n,,= 10" self antigen and n,, = 1 agonist antigen in any T cell/APC contact
while for € = 0 there are n,,;-= 10" self antigen and n,, = 0 agonist antigen in any contact. We
assume that during T cell interrogation of an APC surface, the TCR density is sufficient to
engage all antigen in the contact. Each TCR/antigen pair undergoes dynamics according to the
KP mechanism Fig 1 and the first receptor activation model (FRAM) defines T cell activation
as the event when any TCR reaches the signaling state C,_ .

We define T,,, to be the signaling time of an agonist antigen and agonist activation to be
the event (TL% < 7). Self activation of the T cell occurs when one of the ng-= 10" self antigen

[14] activate a TCR before the cellular contact expires (T < 7). We emphasize that the self

Lngeyp

activation timeis T, , = min{¢,... } where t; is the activation time of the i" signaling

t
> Py
pair and is hence an example of an extreme statistic [62-65, 69]. We remark that in contrast to
Mgelf
i1
ligand binding kinetics. However, we show that under some conditions the results on the

standard problems in extreme statistics, the times {#,},*| are not i.i.d. due to receptor and
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extreme statistics involving a large number of i.i.d. samples still apply (Sec. 2 of S1 Text). It is
also worth noting that extreme events are typically very fast relative to individual first passage

events, but productive T cell activation requires that T < T

We derive an analytical expression for the first passage time Tl_”ag of TCR activation in the

case of a single TCR/pMHC pair (Sec. 1.1 of S1 Text). For a large population of ligands and
receptors, we approximate the distribution for the extreme statistic T L by introducing a sys-

tem of ordinary differential equations (Sec. 1.2 of S1 Text). In addition, we connect the limit-
ing case n,r— 0o with recent results of extreme statistic for continuous time Markov chains
with discrete states [69]. Specifically, as n,,;r— 00, we confirm (Sec. 2 of S1 Text) the limiting
behavior

. kxp
~, Weibull((An ;) ™, ny,), A=-1L T (1)

Ngp:

Tl Mself

where a random variable X > 0 has a Weibull distribution with scale parameter A > 0 and

shape parameter k > 0 if P(X > x) = e-®". In such a case, we define X =; Weibull(%, k).
In the event that & = 1, both activation cases result in a true positive since the T cell activated
and was in contact with an agonist positive APC. The T cell does not activate when none of the

neir= 10" self antigen activate a TCR before the cellular contact expires (T]Mf > 7). When

& =0, this results in a true negative.

We utilize the FRAM as an APC classifier, where the task is to correctly identify agonist
positive and agonist negative APCs. In our model, a T cell makes contact with an APC at time
t = 0 and remains in contact till the expiry time ¢ = 7. A true positive classification occurs when
an agonist positive APC is activated before contact expiry (£ = 1 and min{Tl_nag, T L”se[f} < 1)).

A true negative classification occurs when a T cell is in contact with an agonist negative APC
and the T cell does not activate before the expiration of the cellular contact (§ = 0 and

Tlv”self > 7). Mathematically, the four outcomes of the FRAM have probabilities
P(TP) = B(min(T,, ,T,, ) <7 | &= DB =1), (2a)
P(FN) =1 — P(TP), (2b)
P(FP) = P({T,,,, <7} | £=0)P(C = 0), (2¢)
P(TN) = 1 — P(FP). (2d)

The main parameters of interest are {7, p,g, 1xp, 0}, where 7 > 0 is the expiry time, p,, € (0, 1)
is the agonist positive prevalence, ngp is the number of KP steps, and ¢ > 1 is the ratio of TCR/
antigen dissociation rates between self and agonist antigen which is referenced in previous
experimental and theoretical works [28, 30, 61, 67, 70]. Finally, we make the assumption that
the first receptor activation by self antigen is independent of the first receptor activation by
agonist antigen, i.e.,

P(min(T )<7)=B(T,, <7 +B(T,, <1) BT, <BT,, <7

Litgg? Tl#”self

Since we are modeling the self and agonist situations separately in the agonist positive T cell/
APC contacts, then independence is guaranteed. However, this is clearly an approximation
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Table 1. A list of model parameters and variables with their default values or ranges (unless otherwise specified).

Variable ranges and descriptions.

Symbol (Unit) Range Description
Y g p
ks N 1.0 TCR/pMHC binding rate
ky s 1.0 TCR complex forward (phosphorylation) rate
k., s™ 1.0 TCR/pMHC dissociation rate
P

Nkp None {3, 10} Number of KP steps
Pag None 0, 1) Agonist positive prevalence
o None (1, 00) Self antigen dissociation rate multiplier
T (s) (0, 00) Time of T cell/APC disengagement
Ngelf Antigen 10* Population of self antigen
Mag Antigen {0, 1} Population of agonist antigen

Lt (s) (0, 00) Agonist induced TCR activation time

Lty (s) (0, ) Self induced TCR activation time

None {0, 1} Random variable denoting APC condition

TP None None Event where {=1and min(TM“g, Tl_nw) <7
N None None Event where & = 0 and T, >1
r None (0, 1) T cell accuracy
, None (0, 00) Count of forward KP reactions

https://doi.org/10.1371/journal.pcbi.1011216.t001

since we do not account for possible interactions, or interference, between self and agonist

ligands.

We explore the properties of the FRAM by quantifying the T cell accuracy

I = P(TP) + P(TN). (3)

The accuracy shares similarities with some earlier measures of sensitivity and specificity in

kinetic proofreading models [30], however, there are two main differences. First, the measure
I combines both sensitivity and specificity (each can be individually described through P(TP)
and P(TN) into a single measurement. The second is that we are applying the measure at the
population level of T cells, or more accurately, a population of T cell/APC contacts, and not at
the level of individual receptors/ligand interactions Fig 1.

A list of parameters and variables together with meanings and ranges are given in Table 1.
The derivation of the probability density describing T, =Tis shown in Sec 1.1 of S1 Text.

In addition, we also describe in detail how the extreme statistic T}, is sampled in Sec 1.2 of

S1 Text. The focus of the remainder of the article is analyzing variations in the accuracy I" with
respect to the parameters {7, pae, 11xp, 0}.

Results
Influence of contact duration on T cell accuracy

We explored the influence of the T cell/APC contact duration on T cell accuracy by computing
I'(7) over a range of 7 for several values of o and ngp (Fig 2A-2C). When p,, = 0.5, we have the
lower bound I' £ 0.5 indicating poor APC classification accuracy (i.e. P(TP) ~ P(FP)). If ngp
and o are insufficiently large, the FRAM cannot accurately classify APC contacts for any 7 (0 =
10% in Fig 2A). However, in the cases where o is sufficiently large (o > 10* in Fig 2A) and/or
the number of proofreading steps is sufficiently large (nxp = 10 in Fig 2B), a range of contact
times exists where ['(7) ~ 1 (7 € [10% 10°] and 0 = 15 in Fig 2B).
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Fig 2. T cell accuracy as contact duration 7 varies. Kinetic proofreading parameters given in Table 1. A-B The T cell classification accuracy I'(7) for
nkp =3 (A) and ngp = 10 (B). For each value of g, the time 7 of maximum accuracy is highlighted (gray vertical lines). C The maximum accuracy I'(7*)
as ngp varies for values o = {2, 3, 4, 5}. D-F Receiver operating characteristic (ROC) for ngp = 3 (D) and ngp = 10 (E) at various o values. F The ROC for

o =5 and varied ngp.

https://doi.org/10.1371/journal.pcbi.1011216.g002

To identify scenarios where effective APC classification is achieved, we determine the maxi-
mum accuracy over a range of contact durations,

I'(z") = max I'(7). (4)

>0

By increasing nyp, we find that one can attain a near-perfect classification accuracy at the opti-
mal T cell/APC contact duration (I'(z*) ~ 1), even in cases where agonist and self antigen only
differ slightly in dissociation rate but differ largely in expression. Since I'(z*) = 1 if and only if
P(TP|¢ = 1;7") = 1 and P(TN|¢ = 0;7*) = 1, this indicates that the T cell always activates
when in contact with an agonist positive APC and never activates when in contact with an ago-
nist negative APC (Fig 2C).

The receiver operating characteristic (ROC) is plotted in Fig 2D-2F and allows for a
more nuanced consideration of classification outcomes over the parameter 7. An indicator
of a classifier’s performance is the area under the curve (AUC). We see that the maximum
AUC (AUC = 1) can be achieved by increasing o (Fig 2D and 2E) and/or increasing ngp
(Fig 2F), which indicates the model is capable of identifying agonist positive and agonist
negative contacts with near-perfect accuracy. The worst-case AUC for the FRAM is when
P(TP|¢ = 1) ~ P(FP|¢ = 0) for all 7. This equality also yields P(¢ = O[T, , < t) = p,, and
P(¢=1[T,, <) =1~ p,, forall 7. This means that in these cases, the FRAM as a classifier
can do no better than classifying whichever population is in the majority. We call this obser-
vation the baseline and discuss this more in-depth in the next section. Similar to our result
in Fig 2C, we show that increasing the number of kinetic proofreading steps allows for arbi-
trary increases in the AUC, even when o is small (Fig 2F).
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The effects of an agonist positive prevalence

Previously we assumed an equal proportion of agonist positive and negative APCs (p,q = 0.5).
Variations in this prevalence can lead to significant changes in the accuracy and optimal cellu-
lar contact duration, as we now demonstrate by varying p,, between 0 and 1. In Fig 3A-3C we
plot the optimal accuracy I'(7*) against p,, for several values of nxp and 0. In Fig 3A, we
observe at the value of o = 10* that " ~ 1 for all Pag indicating accurate classification. As o
decreases and/or ngp is too small, we find that the FRAM is incapable of accurately identifying
the agonist positive or agonist negative cells for small or large p,, respectively. In these cases,
the baseline limiting case for the accuracy becomes

1
(BL) __
r _'2—%

L1
5

(5)

Eq (5) reflects the probability of an accurate T cell response with the strategy of always activat-
ing when p,, > ; and never activating when p,, < J. In Fig 3B we show results for ngp = 10
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Fig 3. Effect of agonist positive prevalence (p,g) on T cell accuracy (I'(7*)) and false positive rate at the optimal contact duration (6). A-C

Accuracy I'(7%) versus pgg for ngp = 3 (A), ngp = 10 B, and varied ngp with ¢ = 5 (C). The baseline (black dashed line) shows the worst accuracy a model
can accomplish given that the optimal cellular contact duration is chosen. D-F False positive rate (6) at the maximizing cellular contact time (7*). G-I
Effect of agonist positive prevalence on the optimal cellular contact duration. Curve endpoints indicate where the FRAM reduces to baseline, i.e., 7* —

0if pae < 0.5 or 7" — 00 if pag > 0.5.
https://doi.org/10.1371/journal.pcbi.1011216.g003
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and observe higher accuracy at smaller values of ¢ and over larger ranges of p,, when com-
pared to ngp = 3. In Fig 3C we observe that even for small o, perfect accuracy can be obtained
for all p,, by increasing nyp.

When agonist positive contacts are rare (0 < p,e < 1), accurate classification becomes
more challenging and the risk of false positives is greater. We use the outcome probabilities
and determine the false positive rate P(¢ = 0|T, , < t*) which is defined as

P(FP|¢ = 0;7°)(1 — p,,)
(FP|E = 0;7)(1 — p,) + P(TPIE = 1;7°)p,,,

PE =0T, <t) =5 (6)

In Eq (6), evaluation is at the optimal cellular contact duration 7* and T/, is the activation
time of the FRAM with an unknown APC condition. As p,, decreases, the probability that any
T cell activation is a false positive increases (Fig 3D-3F). Again, as accurate APC identification
becomes too difficult, we identify convergence to the baseline case

P(E=0[T,, <7)=1-p,. (7)

In Fig 3D and 3E, we demonstrate that increasing o can greatly reduce the likelihood of false
positives. However, even the cases that were sufficient to yield nearly 100% accuracy (o = 15 in
Fig 2B), still yield a high false positive rate when pg, is small (o = 15 in Fig 3E). However, in Fig
3F) we choose 0 = 5 and show that increasing ngp can completely inhibit the false positive rate
(P(¢ =0|T,, < 1) = 0) for nearly all p,g.

In the FRAM, a decrease in cellular contact duration serves to decrease the probability of
activation in any T cell/ APC encounter. The curves in Fig 3G-3I represent ranges of p,, where
the FRAM has some ability to classify both APC conditions, not just the majority. The end-
points of these curves represent the transition to the baseline accuracy (4) where 7 — oo if
Po > pand TF — 0if p,, < . As p,, decreases, the false positive rate increases. In light of this,
we observe that 7* decreases with p,, (Fig 3G-3I). Increasing o (Fig 3G and 3H) reduces the
influence of p,g on the cellular contact duration and decreases the range of p,, where accuracy
reduces to the baseline (4). In Fig 31, we note that the contact duration becomes nearly inde-
pendent of p,, as ngp is increased.

Taken together, these results suggest that the accuracy is independent of the agonist positive
prevalence when o and/or ngp is sufficiently high. Otherwise, small/large p,, can decrease/
increase the optimal cellular contact durations and decrease the ability of the FRAM to recog-
nize rare APC conditions without a significant risk of false positives/negatives. We also note
an asymmetry in each panel of Fig 3A-3C and 3G-31 where the accuracy I'(z*) more quickly
reduces to the baseline (4) at smaller values of p,,. This demonstrates that the false positive rate
may be more problematic than the false negative rate for T cell classification accuracy.

High decision accuracy comes at the cost of increased number of energy
utilizing reactions

Theoretical works have hypothesized that kinetic proofreading involves energy-consuming
reactions [29-33], for example phosphorylations of the TCR complex following TCR/pMHC
binding [1, 38, 40]. To estimate such a cost, we approximate the mean number of futile reac-
tions n,, i.e., the forward reactions in the KP mechanism that do not result in TCR activation
over a contact duration 7. We estimate this quantity by deriving and solving a similar ODE sys-
tem to that of which was utilized in the approximation of the extreme statistic (Sec. 5 of S1
Text). We do not count the initial binding event so that the cost to reach the state C; from state
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Cy is i futile reactions. A single TCR/pMHC complex that reaches the i" bound state in the KP
mechanism (Fig 1) before dissociating results in i futile reactions (i < ngp).
In Fig 4 we observe the relationship between T cell accuracy and energetic reactions by plot-

ting a scaled accuracy I' defined as

(8)

High T cell accuracy (I & 1) is associated with a large number of futile reactions, particularly
when g and p,, are small. As oand/or p,, decreases (Fig 4 columns), a larger ngp is needed to
achieve moderate or large temporal regions of high accuracy. The increased energy require-
ment at smaller o and p,, values is a result of the increase in the number of KP steps. As ngp
increases, a longer contact duration is necessary to capture the first passage activation of an
agonist antigen, i.e., observing a true positive activation. This time constraint can be reduced
by increasing the KP rates of the FRAM (Sec. 6 of S1 Text). However, if the KP rates are scaled
equally, then the number of futile reactions does not change (Sec. 6 of S1 Text).
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https://doi.org/10.1371/journal.pcbi.1011216.g004
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In Fig 4, it is clear that there are regions of the parameter space where increasing the num-
ber of KP steps or increasing the number of futile reactions can result in decreased accuracy.
This is also true for the T cell/APC contact duration (Sec. 4 of S1 Text), where increasing the
cellular contact duration results in a lowered accuracy. These results demonstrate that increas-
ing only one of these model parameters is not necessarily sufficient to increase the accuracy. In
these cases, if there is an increase in ngp, then there must be an accompanied increase in #,
and/or 7. This follows from the previous results showing that when parameters are held con-
stant, an increase in the number of KP steps requires reevaluation of the optimal cellular con-
tact duration 7, which shifts to larger values. A similar situation occurs if the number of futile
reactions, or cellular contact duration, is increased and ngp is held fixed. A logical assumption
may be that increasing the number of futile reactions (or energy) in the system would lead to a
better APC classifier. However, when ngp is held fixed, the increased number of futile reactions
increases the probability of T cell activation for both, agonist and self antigen populations.
This means that too much energy in the form of futile reactions (and/or too much contact
time) would lead to a high false positive probability.

Discussion

Summary of results

We developed a first receptor activation model (FRAM) to evaluate the T cell as an APC classi-
fier with a finite decision time. We used mathematical analysis of extreme statistics to deter-
mine the probabilities of T cell activation by either a single agonist antigen or numerous self-
antigen. We evaluated the model in a challenging environment such as when self and agonist
antigen are similar in KP properties but differ largely in expression or when agonist positive
APCs are rare in a population. We used the accuracy (3) to measure T cell activation outcomes
over a range of cellular contact durations and environmental conditions in order to investigate
the FRAM as a classifier of APC agonist status.

We found that a high classification accuracy can be achieved over a large window of cellular
contact times (Fig 2) given a sufficiently large ngp (kinetic proofreading steps) and/or o (ratio
of antigen disassociation rates). Outside this window, poor accuracy can arise from contacts
that are either too short or too long due to false negatives and positives, respectively. In addi-
tion, our results showed that the FRAM could overcome the challenge of similar agonist/self
antigen ligands (small 6) and large disparities in self/agonist expression (11, = 1 and n,,r= 10%)
by sufficiently increasing the number of KP steps (Fig 2C and 2F).

Accurate classification is more challenging when p,, is small/large due to a higher false posi-
tive/negative rate. Additionally, we found that the agonist positive prevalence can influence
the optimal contact duration. When the agonist positive prevalence is small, the false positive
rate increases (Fig 3D-3F) which yields shorter optimal contact durations(Fig 3G-3I), since
decreasing the contact duration reduces the probability of T cell activation. When the agonist
positive prevalence is large, the false negative rate increases which yields longer optimal con-
tact durations, since increasing the cellular contact time increases the probability of activation.
Additionally, we found that the accuracy of the FRAM is effectively independent of the agonist
positive prevalence when ngp is sufficiently large (Fig 3C, 3F and 3I), even when ¢ is small.
This demonstrates that the FRAM can simultaneously overcome the challenge of similar self/
agonist ligand as well small agonist positive prevalence by sufficiently increasing the number
of KP steps.

Lastly, we quantified the cost in achieving high classification accuracy by considering the
number of futile reactions in the FRAM. We found that for smaller p,, and/or o values, more
futile reactions are necessary to effectively recognize both agonist positive and agonist negative
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cells (Fig 4). The primary contributor to the number of futile reactions is the suppression of a
large self antigen population in the kinetic proofreading mechanism. When o is large (Fig 4C,
4F and 41), this suppression is achieved with a smaller number of kinetic proofreading steps,
thus reducing the number of futile reactions. When p,, is large (Fig 4G-4I), the FRAM is capa-
ble of achieving good classification accuracy with smaller numbers of ngp since the false posi-
tive risk is low. We found that the most difficult case is when both, p,, and o are small Fig 4A.
In this case, a large ngp is necessary to successfully identify the rare agonist positive cells while
remaining insensitive to the large proportion of agonist negative cells. This has the added effect
of requiring a large number of futile reactions, since most encounters are with an agonist nega-
tive APC and the FRAM must be able to suppress receptor triggering from the numerous self
antigen in each of these encounters.

Conclusions

We found that the FRAM is capable of high classification accuracy when agonist and self anti-
gen are similar and differ largely in expression within a T cell/APC contact (Fig 2C and 2F). In
addition, we found that our model could achieve this high accuracy even when agonist positive
APCs are rare (Fig 3C, 3F and 3I). This suggests that in terms of first passage times of agonist
and self antigen, kinetic proofreading is more capable of antigen discrimination than what has
been observed in T cell experiments [9]. Furthermore, unlike previous works [28, 30, 61], the
FRAM yields no trade-off between remaining sensitive to agonists and being able to distin-
guish between agonist and self antigen populations.

Our results indicate that while the FRAM is capable of high levels of accuracy, it may be
associated with certain costs, or biological constraints. We showed that when agonist and self
antigen are more alike (smaller 0), a larger ngp is needed (Fig 2C), which increases the cellular
contact duration necessary to capture the first passage activation of an agonist antigen (Sec. 4
of S1 Text). Additionally, we found that when agonist positive cells are rare, more ngp are nec-
essary to successfully suppress the false positive rate (Fig 3D-3F), which again has the effect of
increasing the optimal cellular contact duration (Fig 3I). This may suggest that the cellular
contact duration could act as a cost for accurate T cell responses.

From a mathematical perspective, we can scale the cellular contact durations to any value
by increasing the rates of the model (Sec. 6 of S1 Text). However, this can yield large reaction
rates (k, > 10°s™" in Fig 3I) which may also have a biological constraint. We found that this
method of scaling has no influence on the number of futile reactions (Sec. 6 of S1 Text), which
are reactions that may require energy consumption. Just as with the cellular contact duration,
we found that more futile reactions are necessary for accurate APC recognition as ngp
increases (Fig 4). Hence, our results also demonstrate how energetic costs may act as a con-
straint in T cell antigen discrimination. These potential costs may provide insight for observa-
tions in biological experiments in which large discrepancies are observed in dissociation rates
between agonist and self antigen [41]. Additionally, this may further support the idea that
kinetic proofreading alone is not sufficient to explain some of the observations in previous T
cell antigen discrimination experiments [9-15, 36].

In conclusion, we have shown how viewing the classic kinetic proofreading mechanism
through resilience to extreme statistics (self activation) offers a different perspective on the
problem of antigen discrimination. By modeling T cell activation as a first passage time
describing receptor triggering by agonist or self antigen in the kinetic proofreading mecha-
nism, we were able to show that the FRAM was capable of near perfect accuracy in challenging
environmental conditions. We also showed several potential costs that may act as biological
constraints to high accuracy in the T cell environment. Our hope is that the simplicity of this
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model yields a foundation from which more complexity can be built with respect to observed
T cell characteristics, such as Ca** signaling and microvilli structures.

Supporting information

S1 Text. Mathematical details and convergence analysis.
(PDF)
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