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The micromechanics of ductile failure is revisited using the voided cell model. Emphasis is laid on comparing
shearing stress states with axisymmetric states. The unit cell is subjected to proportional loading and fully
periodic boundary conditions. The progression of elastic unloading in the unit cell is analyzed, leading to a
definition of unhomogeneous yielding. Overall strain localization is determined by evaluating “on the fly” the
tangent operator using a perturbation method. The connection between unhomogeneous yielding and strain

localization is thus thoroughly investigated. Other potentially critical strain measures are introduced and their
relevance to failure by void coalescence or strain localization is discussed. The effects of initial porosity and
strain hardening in modulating the relative ductility under tension versus shear are further examined.

1. Introduction

The effect of stress state on the ductility of materials is a subject
of long-standing interest. The trend for axisymmetric loadings has
long been established based on experiments (Hancock and Mackenzie,
1976), continuum damage models (Gurson, 1977; Needleman and Tver-
gaard, 1984) and direct numerical simulations (Koplik and Needleman,
1988): the ductility decreases drastically with increasing hydrostatic
tension. For non-axisymmetric states, the torsion experiments of John-
son et al. (1983) have long suggested that the ductility in shear is much
larger than that in (axisymmetric) tension. Recent experiments confirm
this trend for a broader range of shearing states (Haltom et al., 2013).
Other experiments, however, have suggested otherwise, e.g. Bao and
Wierzbicki (2004), Barsoum and Faleskog (2007a). Phenomenological
failure models have subsequently been developed, which predict a
lower ductility for shearing states in comparison with axisymmetric
states (Nahshon and Hutchinson, 2008; Xue, 2008; Bai and Wierzbicki,
2010). Later, direct numerical simulations that employ the voided cell
model pioneered by Tvergaard (1981, 1982b,a) provided what seems
like a solid basis to this trend, by exploring the effect of the third
stress invariant, e.g. Barsoum and Faleskog (2007b, 2011), Dunand and
Mohr (2014), Vishwakarma and Keralavarma (2019). Thus, the body
of available cell model analyses is consistent with the prevailing inter-
pretation of the experiments of Bao and Wierzbicki (2004), Barsoum
and Faleskog (2007a) but keeps the interpretation of the experiments
of Johnson et al. (1983), Haltom et al. (2013) wide open.

The aim of this paper is to investigate the relative ductility under
shearing versus axisymmetric states and contribute toward reconciling
apparently conflicting experiments. To this end, the unit cell model is
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employed under fully periodic boundary conditions. Departure from
the cell model literature is two-fold. First, we explore the effect of
initial porosity content in mediating possible transitions from shearing
states being “less ductile” than axisymmetric states to their being “more
ductile” than axisymmetric states. Second, since any such comparison
requires a definition of ductility, we characterize for the first time the
spatial distribution of elastic unloading in the cell model. In so doing,
we introduce the concept of unhomogeneous yielding as a mode of
macroscopically nonuniform deformation that corresponds to a well-
defined critical percolation state in the progression of elastic unloading.
This concept is consistent with recent developments in porous material
plasticity (Benzerga, 2023). The notion of unhomogeneous yielding
is conceptually useful because (i) its initiation corresponds exactly
to what has been referred to in the literature as the “onset of void
coalescence” for axisymmetric stress states (Pardoen and Hutchinson,
2000; Benzerga, 2002); and (ii) it applies to more general states of
loading, even though it is not meant to define a measure of ductility.
Another issue that has received wide attention is whether the onset
of void coalescence occurs before or after macroscopic strain local-
ization. If well posed, not only does the question have theoretical
significance, e.g. in developing failure models (Morin et al., 2016;
Keralavarma, 2017; Torki et al.,, 2021; Khan et al., 2023), but also
practical value since its resolution may provide the most suitable
ductility measure needed in settling the main question of the paper.
Under axisymmetric tension, the onset of void coalescence in the
cell model manifests as a shift to a uniaxial straining mode associ-
ated with necking of the intervoid ligament (Koplik and Needleman,
1988). Under shear loading, the situation is more complex, as studied
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by Tvergaard (2008, 2009), Leblond and Mottet (2008), Scheyvaerts
et al. (2011), Nielsen et al. (2012) and others. To quantify ductil-
ity, Barsoum and Faleskog (2007b) first introduced an ad hoc strain
concentration measure in the cell. The measure has been adopted in
many subsequent cell analyses as surrogate to strain localization in
the sense of Rice (1976). There is confusion about what the measure
truly means. For under axisymmetric tension, the strain concentration
criterion of Barsoum and Faleskog (2007b) does correspond to the
onset of void coalescence. Thus, its use as a surrogate localization
criterion assumes that, at least for tension, the onset of void coalescence
and strain localization coincide. However, when Tekoglu et al. (2015)
investigated the said competition between coalescence and localization,
they introduced a new ad hoc strain concentration measure for the onset
of void coalescence. Both the measure and the meaning of the “onset
of void coalescence” for non-axisymmetric stress states are problematic;
the conclusions drawn by Tekoglu et al. (2015) are thus questionable.

Several works have since revisited the competition between void
coalescence and strain localization. None of these employed the strain
concentration measure of Tekoglu et al. (2015) to define the onset of
void coalescence. Instead, most cell model analyses have settled on
using an energy criterion, first introduced by Wong and Guo (2015),
for defining the onset of void coalescence. Cadet et al. (2021) used a
kinematic criterion as an alternative. Both criteria have indubitable va-
lidity under axisymmetric loadings. For more general states, however,
their physical meaning has not been demonstrated.

Computational methods for probing directly strain localization in
cell model analyses have been around for quite some time (Miehe
et al., 2002; Miehe, 2003; Temizer and Wriggers, 2008). Yet, only
recently have these methods been applied to porous cells (Zhu et al.,
2020; Cadet et al., 2022). Each method aims at evaluating the acoustic
tensor entering the localization condition of Rice (1976). Miehe et al.
(2002) introduced a method whereby the overall tangent modulus is
additively decomposed into an average term and a fluctuation term.
Then, Miehe (2003) developed a sophisticated technique whereby the
overall tangent modulus is obtained by condensing the finite element
global stiffness matrix. Later, Temizer and Wriggers (2008) introduced
a simpler, albeit computationally expensive, method based on per-
turbing the overall deformation gradient to obtain the overall tangent
modulus via the forward difference of the overall nominal stress. Here,
following along the lines of Zhu et al. (2020), Cadet et al. (2022) we
employ one of these methods to directly probe strain localization in
the porous cell. However, we go beyond these works in that we also
critically analyze the energy criterion of Wong and Guo (2015), which
has been used for the onset of void coalescence in recent years.

The article is organized as follows. Section 2 provides the methods
used to perform unit cell calculations and post-process the results. In
particular, Section 2.3 gathers all criteria used to date in discussing
void coalescence or strain localization in the cell model literature.
Results in Section 3 are organized so as to address the main question
in Section 3.1 and a critical analysis of all criteria in Section 3.2. The
main finding is reported in Fig. 9. General implications and open issues
are discussed in Section 4.

2. Methods
2.1. Problem formulation

Three-dimensional finite deformation calculations are carried out
using the voided cell model pioneered by Tvergaard (1982b). The
computational procedure follows the general formulation of Barsoum
and Faleskog (2007b), as revisited by others, e.g. Dunand and Mohr
(2014), Tekoglu (2014), Zhu et al. (2018), Tekoglu and Kochan (2022),
Dehli et al. (2022) with some amendments. The tetragonal unit cell is
reported to a set of Cartesian coordinates with basis (e, e,, e3), Fig. 1a.
It has initial dimensions 2A4,,2B,,2A,. The cell contains a central,
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initially spherical void with radius . The initial void volume fraction
(or porosity) is thus f, = (xr;)/(6A¢ B).

The elastoplastic matrix is modeled using a standard finite strain J,
flow theory, assuming additive decomposition of the rate of deforma-
tion d = d° + dP and isotropic hypoelasticity (Young’s modulus E and
Poisson’s ratio v). The yield criterion and flow rule read:

$(0) = 0oq —0y <0 @
d
=2, @
204
where o, is the von Mises effective stress, o, the current yield stress

and d,, the effective strain rate, identified with the plastic multiplier.
The prime stands for the deviator. Voce-type laws are more physical,
e.g. Vigneshwaran and Benzerga (2023), but a power law isotropic
hardening is used here for convenience:

a\N

oy =0y <1+—> 3)
€o

where ¢ = [d,dr is the equivalent plastic strain and o, €, N

are parameters, o, being the initial yield stress and N the hardening
exponent.

Fully periodic boundary conditions are imposed on the unit cell.
Relative displacements of points in periodic correspondence are written
as:

u(Ag, x5, x3) —u(=Ay, X, x3) = 2A5(F — I)e;
u(xy, By, x3) —u(x;, —By, x3) = 2By(F — De, (€))
u(xy, xy, Ag) —u(x, x5, —Ag) = 245(F — De;

where F is the overall deformation gradient, taken as the volume
average of its microscopic counterpart, and x; denote coordinates in
the initial, undeformed configuration.

The overall stress is defined as the volume average over the unit cell
of the microscopic (Cauchy) stress:

-1
Z—Q/Qod.Q (5)

where Q = 8ABC is the current cell volume, determined in terms
of the dimensions A, B, C of an equivalent parallelepiped having the
same volume as the deformed unit cell (Zhu et al., 2018). The Eulerian
(logarithmic) strain tensor, E, is defined as

E=IhV with V?=FF' (6)

where V stands for the (overall) left stretch tensor. The overall equiv-
alent stress, Zegs and equivalent strain, E,, are then defined as:

3 2
g = ‘152’ DI Ey = EE’ T E @

Here, the unit cell is subjected to one shear stress, X|,, and three
normal stresses, X, %,,, 33 = ;. Hence, the non-zero components
of E can be written in terms of the deformation gradient components
as follows (Wong and Guo, 2015)

2 2 2
1 1 Fp+ - F a+p
E”:Eln(F”Fzz)+§ T In po (8
2 2 2
1 1 o+ Fj = F, a+p
E22=51n(F11F22)—§ 7 In oy ©)
E3; =1n F33 (10)
F,F
Ej, =221 ath an
ap a—f
where
2 2
a= \/Ffz + (F +Fp)” 8= \/Ffz + (Fy; — Fy) 12)

Throughout, proportional stressing is considered using two stress
ratios:
2u_ 25 21

p=— = —, K= — (13)
Zn 2 Zx
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Fig. 1. (a) Geometry of the unit cell with a void in the middle, master nodes (M, M,, M3) and dummy nodes (N, N,, N;, N,) for the procedure of imposing proportional loading

conditions. (b) Finite element mesh of the full 3D unit cell.

The overall stress triaxiality ratio, T = X,/ X, and the Lode parame-
ter, L = (2%, - X, - %3) / (Z; — X,) are related to the stress ratios by:

po 0420y (= p)sen(Ey) s
3v/(1 = p)? +3x2 V(1= p)? + 4x2

Above, X, is given by Eq. (7), X, = %tr %, and the X’s denote

principal stresses (X; < X, < X3).

2.2. Implementation

All calculations are carried out using the finite element software
ABAQUS/Standard 2021. Imposing the periodic boundary conditions,
Eq. (4), requires corresponding discretization of opposite faces. More-
over, to impose the periodic boundary conditions, master nodes M, M,,

M3 are defined for each pair of opposite faces (Fig. 1) such that:
uMi = Ay(F —De;, uM2 = By(F —De,, uM3 = Ay(F —De; (15)

On account of this, the periodic boundary conditions, Eq. (4), are
rewritten as

(A, Xy, X3) — U(=Ag, X5, x3) = 2uM
u(x, By, x3) — u(x;, —By, x3) = 2uM2 16)
u(x;, Xy, Ag) — u(x;, x5, —Ag) = 2uMs

where, given the non-zero components of F, the relevant terms are the

three normal displacements ui”‘ = up, Uy = i, u§l3 = uy and the
tangential displacement u]lu2 = v. The overall deformation gradient is
related to master node displacements through
A vy
Ay By
F=lo 2 o an
By
0 0 <
Ay

where the current average dimensions of the deformed unit cell are
calculated as A = Ag+uy, B = By+u,,C = Ay+usz. Eq. (17) follows from

the definition of F as the volume average of its microscopic counterpart,
the divergence theorem and the boundary conditions, Eq. (16).
The rate of deformation is then obtained as

i Lo _va)
A 2\B 4B
D=sym@FH=|1(2_ ) 0 a1s)
2\B 4B B
)
0 0 c
C

Nominally, the logarithmic rate of E is identified with D.

Proportional stressing (constant p and « in Eq. (13) or, equivalently,
constant 7" and L in Eq. (14)) is accomplished by introducing gener-
alized nodal forces, which are work-conjugate with the master node
displacements. Thus, if P;; denotes the generalized force corresponding
to degree of freedom i of master node j, the external power is:

Wexe = Prity + Pyiiy + Pa3iiy + Pp0 19

On the other hand, the Hill-Mandel lemma is adopted to write the
internal power of the cell as:

Wine = (211 Dy + 2Dy + 211 D33 + 22, Dyy) (20)

Substituting expressions for the rate of deformation, Eq. (18), results in

; 2 Zpv) . PITRW 2 .
VVim=9[(7‘AB “wr{B )2\ )+ (F)’

(2D

Then, combining Egs. (19) and (21) and using the principle of virtual
work gives:

2 Zpu)| . PIAW PITRW
|:P11—.Q<7— AB M1+ Pzz—ﬂ? u2+ P33—.Q? M3+
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for arbitrary displacements u;, u,, u3 and v. The generalized forces are
thus obtained as:

2, Zpv p)
p=0 2L 22 p,=0(2
A AB B

p:gi ngi
33 ol 12 B

The dependence of P;; upon the shear stress X}, is a finite strain effect
in that the shear deformation gradient contributes to the normal stress
along x.

Now, imposing constant ratios of generalized forces leads to con-
stant stress ratios but imposition of the forces directly to the master
nodes M, is not possible since their displacements are constrained
by Eq. (16). Hence, a penalty-like method is used whereby four springs
are introduced to couple the four displacements of master nodes
M, M,, M5 with four displacements of dummy nodes N, N,, N3, N,.
With reference to Fig. 1a, the normal displacements are denoted: uf]l =
U, uévz =U,, ug\@ = U; and the tangential displacement ufu =V. The
P,;’s, identified with the forces in the springs, are then written in terms
of dummy node displacements relative to master node displacements,
namely:

(23)

P,; = k(U; —u;) (no sum on i), P, =k(V -v) 24

where k is the spring stiffness chosen to be large enough to get a good
force control.

Dividing the forces in Eq. (23) by any of them delivers three con-
straints on the master node displacements in terms of the stress ratios p
and « of Eq. (13). Then identification with the spring forces in Eq. (24)
leads to constraints on both master and dummy node displacements.
For instance, if the forces are normalized by a normal force, say P,
the following constraints are obtained:

B
U —u = (”7 - %) U, — uy)
B
Us—u; = %(U2 —up) (25)

V —v=xU, —uy)

By way of contrast, if the forces are normalized with respect to the
shear force Pj,, the constraints then read:

pB v
(H‘Z>(V‘”)

%(V -v) (26)

Up—u

Us —us

1
Uz‘“zzz(V—U)

Recall that the current cell dimensions, A, B, C involve the normal
master displacements (the u;’s). Each of the above nonlinear systems
of equations involves eight unknown displacements (the u;’s and U,’s
in addition to tangential displacements v and V). One dummy dis-
placement is used as a pilot. Eq. (25) or Eq. (26) each supplies three
relations, which when added to the four boundary condition con-
straints, Eq. (16), provides sufficient relations for transmitting the
desired loading scheme to the entire cell, given a pair (p,x). The
procedure is iterative. Convergence is sensitive to both the spring
constant k as well as the normalization scheme. It is found that for
a low value of the shear stress ratio (nominally for ¥ < 0.75) Eq. (25)
should be used with U, as the pilot displacement. On the other hand,
Eq. (26) is used for « > 0.75 with V as the pilot displacement.

Also note that the spring stiffness k does not enter Egs. (25) and
(26) as it drops out during normalization. However, k does affect
convergence through the pilot dummy displacement. It is generally
found that a value about one tenth of the material’s elastic modulus
is adequate.

The constraints in Eq. (16) are implemented using the *Equa-
tion option in ABAQUS. The task is simplified by using the set of
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python scripts Homtools developed by Lejeunes and Bourgeois (2011).
A custom-coded multi-point constraint ABAQUS subroutine was devel-
oped to account for either Eq. (25) or Eq. (26) depending on the value
of «. Finally, the inner surfaces of the void are paired to consider self-
contact with normal behavior in case of void closure. Since this does
not occur in the particular cases treated here, related details will be
described elsewhere. In all calculations, linear C3D8 elements were
used. In Fig. 1b, the number of elements is about 15,000, but the
number increases to ~25,000 for a cell with a higher aspect ratio and
to ~30,000 when mesh sensitivity is analyzed.

Each calculation was post-processed so that the void dimensions and
volume were output at every time step. The void volume fraction (or
porosity f) was calculated from the total volume of sound material and
the current dimensions of the cell as in Koplik and Needleman (1988).

2.3. Post-processing

Unit cell analyses have extensively been used to infer measures
of strain to failure and to analyze the competition between strain
localization and void coalescence. However, the terms “failure”, “onset
of coalescence” and “localization” require precise definitions. Here,
failure is defined as the ultimate loss of stress carrying capacity, marked
with (x) in Fig. 2. Failure in that sense unequivocally corresponds to
(complete) void coalescence, regardless of details in the final linkup
process.

An important concept is that of unhomogeneous yielding. It is
intimately connected to the progression of elastic unloading in the
cell, Fig. 2. This terminology was first introduced by Torki and Ben-
zerga (2018) and recently revisited by Benzerga (2023). The “onset
of void coalescence” is, on the other hand, ambiguous and shall not
be used, unless reference is made to the literature’s terminology. Un-
homogeneous yielding may be mistaken for a bifurcation type strain
localization (Rice, 1976). In this section, special care is given to precise
definitions of various concepts and their relations will be analyzed for
key stress states in Section 3.

2.3.1. Elastic unloading

Elastic unloading occurs during void coalescence as well as outside
of shear bands. Yet, it has only been analyzed in unit cell calculations
through some overall signature, e.g. the transition to a uniaxial strain-
ing mode (Koplik and Needleman, 1988). Here, the aim is to follow the
progression of elastic unloading in the unit cell by spatially mapping
corresponding regions. With reference to the yield condition, Eq. (1),
elastic unloading occurs when:
#0)=0 and o:%% o 27)

do

where & stands for the Jaumann rate of the Cauchy stress. A local
material point is said to be elastically unloaded when the inner product
of the stress increment and the outward normal to the yield surface
is negative. The outward normal defines the direction of plastic flow,
which is driven by the stress deviator for the J, criterion used here,
Eq. (2). In the numerical method, therefore, the inner product between
the stress increment, Ao, and the stress deviator ¢’ is used instead
of Eq. (27):

¢(6)=0 and Ao :6' <0 (28)

In ABAQUS, the user-defined subroutine UVARM is used to extract
current values of ¢ and the USDFLD subroutine is used to extract
previous values of o. Integration points where the condition (28) is
satisfied are stored for visualization purposes, as sketched in Fig. 2.
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0 Onset of UY
O Energy criterion
e Overall localization
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Actual criterion:
det(n-C"-n)=0

Surrogate criterion:
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Fig. 2. Sketch of overall stress—strain response showing key instants, as marked. Regions painted black at bottom are elastically unloaded.
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2.3.2. Unhomogeneous yielding

Unhomogenous yielding (UY) is nominally any stage in the defor-
mation history where the elastically unloaded zones connect the lateral
sides of the cell, Fig. 2. The presence of such zones precludes any lateral
strain rate. Thus, for axisymmetric stress states, unhomogeneous yield-
ing corresponds to the uniaxial straining mode of the cell. For these
states, the onset of UY is therefore what has been referred to as “onset
of void coalescence” in the literature (Benzerga and Leblond, 2010).
By way of contrast, homogeneous yielding of the cell corresponds to
that part of the response where the boundary strain-rate is nominally
uniform; see Benzerga (2023) for discussion.

It is important to note that the so-defined regime of deformation
corresponds to strong unhomogeneity. One can envision in theory,
and realize in practice, macroscopically unhomogeneous deformation
without elastic unloading. This is typical of the early stages of shear
loading with hardening. Usually, such a regime manifests in transition.
The reader is referred to Benzerga (2023) for details.

In the cell analyses, the onset of UY is detected by monitoring the
elastically unloaded zones. On all subsequent curves, it will be marked
with (o), Fig. 2.

2.3.3. Strain localization
A necessary condition for strain localization is Rice (1976)

det (n-C'-n) =0 (29)

where n is the normal to the plane of localization, and C' is the tangent
modulus entering the rate constitutive relation in terms of the first
Piola—Kirchhoff stress, P, and deformation gradient F

P=C' :F P=(detF) ZTFT (30)
where X is given by Eq. (5) and rates are for rotated quantities.

As further discussed by Perrin and Leblond (1993), Rudnicki and
Rice (1975) showed that, for isotropic behavior, the normal to the
localization plane is always perpendicular to the direction of the inter-
mediate principal stress. For the states of stress considered here (one
shear stress and three normal stresses) the intermediate principal stress
is along the direction e;. Hence, n is always in the e,—e, plane. For
convenience, in unit cell simulations, the normal to the localization
plane is set along the direction n = e,, and the major principal
stress direction is changed so that a minimum strain to localization
is obtained. Several unit cell studies (Barsoum and Faleskog, 2011;
Tekoglu et al., 2015; Vishwakarma and Keralavarma, 2019) explored
such a critical plane for localization for several loading conditions. The
normal to the critical plane of localization was found to be about 45°
to the direction of the major principal stress for plane strain (L = 0).
On the other hand, for axisymmetric loading (L = —1) all planes are
equally critical, but a steep drop in effective stress was only observed
at 0° to the major principal stress.

Of the three methods reviewed in the introduction for evaluating
C', we have implemented the perturbation technique (Temizer and
Wriggers, 2008; Tchalla et al., 2013). The method is computationally
expensive but is straightforward. Each component of C' is numerically
obtained by perturbing the components of the macroscopic deformation
gradient F, one by one, from some current state:

F' =F+6Fe, ®e¢ (€20)]

e, and e, being the kth and /th unit vectors. The magnitude of the

perturbation, §F, is the same for all components. It is chosen so that

the elasto-plastic branch of C' is probed; see Appendix A. The response

to the perturbation is then characterized by the average Piola stress

components, P;;, and the tangent moduli are determined using:
!

Vi,j k=123  C. oh _ R - A®

=Y _ 2
Uk 5 Fy 6F 32)
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For illustration purposes, Eq. (32) may be structured in matrix form as
follows:

ith column
1
t
5P| o Sl
Cl
5Py . 212
o ~t
6P33 312 o
5Py R . . C‘I212 6F « ith component (33)
N = t
5Py 12 0
L
oPr3 Cla1 0
5P t 0
‘PZI C%nz 0
5 ;
32 A hn
5P3) o ct 0

Thus, perturbing the ith component of the deformation gradient allows
to evaluate nine tangent moduli. Since, with the present setup, the
normal to the localization band is n = e,, only the second component
of n is non-zero. Hence, Eq. (29) reduces to:

det (€3y4,) =0 €D

Thus, one need only perturb Fj,, F,,, F;, to obtain the acoustic tensor.

In practice, the current deformation gradient F in Eq. (31) is ex-
tracted from the ABAQUS evolution problem with periodicity and
proportional loading, Eq. (17). The problem is solved using the ‘restart’
option. After completion of the simulation, jobs are restarted three
times at every increment in the deformation history. Each restart
involves one perturbation calculation corresponding to the above three
components of F. The perturbation simulation retains periodicity but
proportional loading is relaxed. Therefore, a perturbation simulation is
driven by the master nodes M;. Consistent with Eq. (31), the perturbed
displacements are:

!’

(") =" +rLy, (35)
where the initial lengths of the unit cell are written as Ly, = Ly; =
Ay, Ly, = By for convenience. For each increment of the reference evo-
lution problem and its corresponding perturbed states, the volume aver-
aged Cauchy stress X and the master node displacements u,, u,, u3, v are
extracted using the user subroutine URDFIL. The current and perturbed
deformation gradients F and F’ are obtained from Eq. (17) and Eq. (31),
respectively. The nominal stresses P(F) and P(F’) are calculated using
Eq. (30), and the tangent moduli using Eq. (32). With this data,
the localization condition, Eq. (34), is evaluated at every step in the
reference evolution problem. The instant when the determinant of the
acoustic tensor is evaluated to first become negative is marked on the
overall stress—strain curve using the symbol (e), Fig. 2.

2.3.4. Surrogate localization criterion

To date, most cell model studies that investigated strain localization
did not directly probe Eq. (29). Instead, consistent with the spirit of
localization theory (Rice, 1976), homogeneous strain conditions were
assumed at some distance from the void, with corresponding deforma-
tion gradient FO. The farthest that F® may be estimated is at the top
and bottom boundaries of the cell, Fig. 2. That is the choice made for
instance by Barsoum and Faleskog (2007b) and Tekoglu et al. (2015).
On the other hand, Dunand and Mohr (2014) identified F* with the
average deformation gradient in the top (or bottom) quarter of the cell,
also see Dahli et al. (2022). Such identification is again predicated on
the basis of deformation being approximately homogeneous in the so
defined upper (and lower) blocks. Since these are two different choices,
the latter is denoted F" in Fig. 2.

Then, the localization condition is expressed in terms of some scalar
measure of strain in the entire cell relative to it in the putatively
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homogeneously deformed region':

F
—”~ I - 0 (36)
L]
where || - || stands for any appropriate norm, e.g. the Euclidean norm

of corresponding 9-vectors. It is reasonably believed in the above works
that the surrogate criterion, Eq. (36), corresponds to strain localization
in the sense of Eq. (29).

In practice, the surrogate criterion is said to be met when the ratio
in Eq. (36) reaches a critical value. Values in the range of 2-10 were
typically used in the literature. It is easy to show, without calculation,
that the results cannot be sensitive to the exact value of the critical
ratio (beyond a value of 2 or so). In fact, the main issue with Eq. (36)
is that it is surrogate to both strain localization and unhomogeneous
yielding (see Section 2.3.2). The issue will be revisited in Section 4.

2.3.5. Energy criterion

With reference to the additive decomposition of the total rate of
deformation d (see Section 2.1), the rates of elastic and plastic work
for the cell are respectively given by:

WeE/O'Zded.Q, WPE/O':dpd_Q, (37)

Q Q

Wong and Guo (2015) introduced two energy measures, one of which
is definitely relevant to the so-called onset of void coalescence.? Under
axisymmetric loadings, the above authors noted that the onset of void
coalescence, in the sense of a shift to a uniaxial straining mode of the
cell, occurred when the ratio of elastic work rate to plastic work rate
reached a negative minimum:

We/WP <0 and minimum (38)
Based on this interesting observation, Wong and Guo (2015) adopted
Eq. (38) as a criterion for detecting the “onset of void coalescence”
under general loadings.

In practice, the total, elastic and plastic energies are determined
using the *ENERGY FILE option in ABAQUS. Then, user-defined sub-
routines such as URDFIL, UVARM, and USDFLD are combined to obtain
the required work rates W¢ and WP entering Eq. (38). The instant when
the criterion is met is marked using the symbol (o) on all subsequent
curves, Fig. 2.

2.3.6. Maximum load criterion

The maximum equivalent stress is straightforward to extract from
unit cell simulations. It is of interest because past the maximum the
periodic pattern of voids is prone to shear band formation. As noted
by Tvergaard (2012), the type of unit cell calculations employed here
do not account for a shear band with a wavelength larger than the
void spacing (i.e. the cell size). It is worth emphasizing that the present
analyses do eventually account for shear band formation with a wave-
length close to the void spacing. That is precisely what the localization
condition, Eq. (29), is meant to probe.

The strain at which the maximum load is attained is marked in Fig. 2
and in subsequent results using the symbol (k).

! Needleman and Tvergaard (1992) introduced a criterion of this type for
rate-dependent materials for which a bifurcation type localization, such as
Eq. (29), is not possible and localization can only be studied in terms of the
growth of perturbations.

2 The second measure, WP /W¢, exhibits a maximum which Wong and Guo
(2015) identify with “final void coalescence”. Void coalescence, that is void
linkup, is impossible to simulate in unit cell calculations without remeshing.
The behavior they notice appears to be an artifact due to numerical stiffening
as the elements in the ligament get squeezed and distorted.
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2.3.7. Strain concentration around the void

Tekoglu et al. (2015) considered a strain-based criterion to indicate
the onset of coalescence, see Fig. 2 (sketch at bottom right). The onset
of coalescence is defined as that point in history when the ratio of
the maximum to the minimum effective plastic strain rate at the void
surface reaches a critical value, Z:
Smax 7 39

€min

In their analyses, a critical value of Z = 15 was used.

2.3.8. Loss of full rankedness of F

Recently, Cadet et al. (2021) observed that void coalescence must
be accompanied with a loss of full rankedness of the rate of the
deformation gradient. When this occurs, F becomes singular (rank one
for extension and rank two for shear). With this rationale as basis,
they proposed the following criterion to detect “coalescence” in their
terminology:

5= det F
"~ det Fref

The determinant of F for the actual cell problem is normalized by
some reference value in order to avoid numerical errors associated with
small values of the determinant itself. The reference value is that taken
under homogeneous deformation, which (Cadet et al., 2021) estimate
for an isotropic rigid-plastic material as given by Eq. (40),. Here, ¢ is
time and ¢ represents a strain rate in the principal stress axes. For
diagonal loadings (as in our tension case) ¢ = i,/B; see Eq. (18). For
general loadings (as in our shear case) there is no explicit expression
in Cadet et al. (2021, 2022). We have used the maximum extension
in the principal basis of D. The two definitions would meet for an
isotropic material, but not necessarily in the cell shear simulations.
This is unimportant for probing the criterion as it only affects how
normalization is carried out.

=0, detFef = &3 /(1 + ér)® (40)

3. Results

The focus being on comparing shear against tension states, we only
present results for L = 0 (shearing states) and L = —1 (axisymmetric
states) keeping the stress triaxiality ratio the same. In all subsequent
calculations, T = 1. To a given (L,T) pair correspond many (possibly
infinite) combinations of the (p, k) pair of stress ratios. Anisotropy is un-
avoidable in unit cell calculations so that different (p, ¥) combinations
eventually deliver different results at fixed T and L. Here, the (p, k) pair
is chosen so as to obtain the worst condition (most favorable orientation
n as per strain localization, Eq. (29)). In previous studies (Barsoum and
Faleskog, 2011; Tekoglu et al., 2015; Vishwakarma and Keralavarma,
2019) the critical normal was found to be near 45° to the major
principal stress direction for L = 0. On the other hand, for L = -1,
all planes were found to be equally critical, but a steep drop in stress
was observed at 0°.

Furthermore, for practical reasons, just like in previous analyses,
the normal to the plane of localization is always set along the major
loading direction n = e, and the pair (p, k) is adjusted so as to make that
orientation critical. Here, therefore, the axisymmetric case (L = -1,
T = 1) is obtained using p = 04 and ¥ = 0 for which the major
principal stress direction corresponds to the main loading direction
e,. The shearing case (L = 0, T = 1) is obtained using p = 1.0
and x = 0.5774, which correspond to the maximum shear condition,
such that the major principal stress direction is at 45° to e,. In the
localization analyses, the magnitude of the perturbation §F entering
Eq. (31) was taken equal to 107°. A rationale is given in Appendix A.

Other parameters that remain fixed are: E =210 GPa, v = 0.3, oy =
420 MPa, ¢, = 0.002. In order to make contact with other similar studies,
we have used a cell aspect ratio 4, = By/A, different from unity, but
some calculations were carried out using A, = 1. Two values of the
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strain hardening exponent were used: N = 0 (ideally plastic matrix)
and N = 0.1. A range of values of the initial porosity was explored
with a minimum of f, = 0.0005 and a maximum of f;, = 0.00353. For
reference, previous unit cell studies that explored shearing states did
not consider values of f,, lower than 0.001.

3.1. Axisymmetric versus shear loading

3.1.1. Axisymmetric states

Cell responses in terms of the overall equivalent stress, X, versus
equivalent strain, E,, as per Eq. (7), and corresponding porosity evo-
lution curves are shown in Fig. 3 for f, = 0.001 and 4, = 1, for both
the non-hardening and hardening matrices. Note that the capacity of
the cell to deform past the load maximum is much greater in the non-
hardening material. As is well known, this shows that geometry changes
are more important than matrix hardening. There is an extensive
literature on the case of axisymmetric loading going back to Koplik and
Needleman (1988) including the effect of strain hardening in slowing
down void growth, Fig. 3b.

Fig. 4 depicts the progress of elastic unloading, as per Eq. (27),
inside the cell with a non-hardening matrix. The elastically unloaded
regions are painted black in the figure whereas regions of plastic
loading are painted gray. The various stages shown are marked on
the corresponding N = 0 curves in Fig. 3. Stages a—f correspond to
an overall homogeneous deformation and the overall axial strain is
compensated by uniform lateral contractions of the cell. Pockets of
elastic unloading are observed as early as about stage c (well after
the maximum of Zeq for N = 0) above and below the void, but that
elastic unloading has no overall signature. As deformation proceeds,
elastic unloading suddenly fills the top and bottom layers of the cell.
The bottom row of stages g—j in Fig. 3 typifies unhomogeneous yielding
of the cell, as defined in Section 2.3.2. The elastically unloaded zones
preclude any plastic contraction of the cell and deformation shifts
to the well-known uniaxial straining mode. Uniaxial straining is the
manifestation of unhomogeneous yielding in tension. To accommodate
the overall uniaxial mode, porosity grows much faster after the onset
of unhomogeneous yielding at about stage g. The growth is essen-
tially lateral and is bound to lead to void coalescence. Void growth
acceleration leads to a faster drop in the load bearing capacity of the
cell. This illustrates the process of failure by internal necking of the
intervoid ligament, which prevails in tension. The entire process is well
reproduced by micromechanical models (Benzerga, 2002).

If the matrix material has some strain hardening capacity, then
the overall response exhibits overall hardening up to stage c, Fig. 3a,
and porosity growth is slower, Fig. 3b. The progression of elastic
unloading in this case is shown in Fig. 5. The main difference between
the N = 0 case in Fig. 4 and the N = 0.1 case in Fig. 5 is the
extent of deformation, consistent with the effect of hardening on overall

Fig. 3. (a) Overall equivalent stress, P

as per Eq. (7), normalized by the initial yield stress o, versus equivalent strain, E,
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ductility. However, the phenomenology of failure is the same as with
no hardening, compare Fig. 5 with Fig. 4. In both cases, the cell deforms
homogeneously through stage f, then when elastic unloading connects
the lateral sides of the cell, unhomogeneous yielding prevails with the
same features of uniaxial straining, fast porosity growth and abrupt
load drop.

3.1.2. Shearing states

The overall responses under shear loading are plotted in Fig. 6a for
a slender cell with 4, = 4 and f,, = 0.00353 using the same equivalent
stress and strain in Eq. (7). The corresponding porosity versus E.
curves are shown in Fig. 6b. Results are shown for the non-hardening
material (N = 0) and the hardening material (N = 0.1). The capacity
of the N = 0.1 cell to deform past the load maximum is much greater
in shear than in tension (compare with Fig. 3a). Another difference
is in the rate of porosity growth. Interestingly, hardening induces a
slowdown in porosity growth in the early stages. However, after a
strain of E, ~ 0.02 the rate of growth becomes lower in the non-
hardening matrix material, Fig. 6b. This is in clear contrast with the
axisymmetric tension case in Fig. 3b. Note in passing that the rate of
softening (past the maximum load) in Fig. 6a is higher for the hardening
material. This is consistent with a faster void growth in the N = 0.1
cell, Fig. 6b. Also, the porosity increase in the non-hardening material
is too modest to explain the softening seen in Fig. 6a. As is well known,
the geometry change that affects shear softening is not volumetric
growth, but rather void shape change and rotation. Both calculations in
Fig. 6 were pursued until extreme element distortion no longer made
calculations possible without remeshing.

Fig. 7 shows the progression of elastic unloading in the cell with
a non-hardening matrix. As above, elastically unloaded elements are
painted black. Other regions (essentially with plastic loading) are
painted gray. The stages shown in the figure correspond to the various
markings on the stress-strain and porosity strain curves in Fig. 6 for
N = 0. Unlike the nonhardening case in tension (Fig. 4) all stages
correspond to unhomogeneous yielding, as defined in Section 2.3.2. In
shear with no hardening, unhomogeneous yielding clearly prevails from
the outset of plastic flow (stage a). Here too, the elastically unloaded
zones preclude any plastic contraction of the cell but the latter has
an extra degree of freedom that allows sliding of the top and bottom
blocks relative to each other. This sliding mode of unhomogeneous
yielding is void mediated, but the process can be (approximately)
volume-preserving. The sliding mode is another manifestation of un-
homogeneous yielding that operates in shear. Plastic deformation is
confined to the band ligament whose thickness is comparable with the
void size. Inside the band, void boundaries shear while porosity growth
is limited. The void elongates and rotates such that the faces of the
neighboring voids become closer together. Unlike in Tvergaard’s early
work (2008, 2009) difficulties associated with void closure induced

(b)

0.1
0.08
0.06
0.04
0.02

> and (b) Porosity, f, versus E,, for axisymmetric

loading (T =1,L = -1), f, =0.001, 4, =1 and two values of the hardening exponent N. Snapshots corresponding to a-j markings are shown in Figs. 4 and 5.
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Fig. 4. Mid-section (x; = 0) of deformed cell at stages a—j marked on Fig. 3 for non-hardenable material (N = 0). Regions painted black undergo elastic unloading. Case of
axisymmetric tension (7' =1, L = —1) with f;, =0.001 and 4, = 1.

a b ¢ d e f

&
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Fig. 5. Mid-section (x; = 0) of deformed cell at stages a—j marked on Fig. 3 for hardenable material (N = 0.1). Regions painted black undergo elastic unloading. Case of axisymmetric
tension (T =1, L = -1) with f; =0.001 and 4, = 1.

contact are avoided thanks to the moderate value of T = 1. Yet, even that dictates softening. Instead, a parameter that quantifies ligament
at such triaxiality, the essence of the deformation process is shear size plays a key role. A precise definition of that is beyond the scope
dominated. In such case, the porosity f is not the primary variable here but if y, = ry/A, is the ratio of initial void size to lateral
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Fig. 6. (a) Overall equivalent stress, Zegs

normalized by the initial yield stress o,, versus equivalent strain, E
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and (b) Porosity, f, versus E, for shear-dominated loading

eq?

(T'=1,L=0), f,=0.00353, A, =4 and two values of the hardening exponent N. Snapshots corresponding to a-j markings are shown in Figs. 7 and 8.

Fig. 7. Mid-section (x; = 0) of deformed cell at stages a—j marked on Fig. 6 for the non-hardening material (N = 0). Regions painted black undergo elastic unloading. Case of

shear-dominated loading (7 =1, L = 0) with f, =0.00353 and 4, = 4.

void spacing then 1 — y, represents the amount of material in the
initial ligament. That value is initially 0.7 and reduces due to void
shearing. That is the main source of softening. The process of softening
in shear is qualitatively well reproduced using recent micromechanical
models (Torki and Benzerga, 2018).

The situation is quite different in the hardenable material, Fig. 8.
Here, unhomogeneous yielding does not set in until stage g. Recall that
unhomogeneous yielding is active when the elastically unloaded zone
connects the lateral sides of the cell (percolation). Similar to tension,
the early stages are characterized by diffuse plastic flow (gray zones
extend below and above the void in the top row of Fig. 8) but now with
nominally unhomogeneous deformation. The upper and lower blocks
deform at a lower rate than the ligament. Contrary to tension, however,
there is a more gradual progression of elastic unloading in the cell.
Elastic unloading begins as early as stage d (interestingly near the
maximum load) and proceeds in an asymmetric mode (stages d through
). When for the first time the two regions of elastic unloading in the
upper (or lower) block connect at stage g, unhomogeneous yielding sets
in with now the strain rate parallel to the band vanishing. Upon further
straining, the elastic unloading regions spread toward the void (h-j).

10

The ensuing softening process is still a challenge for micromechanical
modeling.

3.1.3. Failure locus

In the previous section, the process of elastic unloading and the
related notion of unhomogeneous yielding were analyzed in some detail
for both axisymmetric and shearing states. In doing so, the employed
geometries were similar to those used in previous studies, cubic cell
(4 = 1) for axisymmetric loading and tetragonal cell (4, > 1) for shear
loadings. To address the main question of the paper, however, compar-
ison between axisymmetric and shearing states must be performed for
the same initial geometries. This task is undertaken in this section for
two initial geometries: (f, = 0.00353, 4, = 4) and (f, = 0.0005, 4, =
1). The first typifies “high porosity” behavior and the second ‘“low
porosity” behavior. In both cases, the strain hardening exponent is
N =0.1.

Next, a measure of strain to failure is required for the comparison.
As seen from Fig. 3, the onset of unhomogeneous yielding is an appro-
priate measure of failure under axisymmetric loading because of the
subsequently abrupt load drop. However, the onset of unhomogeneous
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Fig. 8. Mid-section (x; = 0) of deformed cell at stages a—j marked on Fig. 6 for the hardening material (N = 0.1). Regions painted black undergo elastic unloading. Case of

shear-dominated loading (T = 1, L = 0) with f;, =0.00353 and A, = 4.

yielding is not in any way a measure of failure under shear loadings,
irrespective of the hardening capacity of the material, see Fig. 6.

An alternative critical measure of ductility that has extensively been
(meant to be) used in the literature is the strain to localization, EeLq,
which is determined from Eq. (29) by the perturbation method of
Section 2.3.3. The values of E- are reported in Fig. 9a for both loading
conditions (L = —1 and L = 0) and both sets of initial geometries.
Values of the strain to the onset of unhomogeneous yielding, EUY, are
also reported for comparison. Fig. 9a reports a key finding. In the “high
porosity” case (f, = 0.00353), strain localization occurs at a lower strain
in shear (L = 0) than in tension (L = —1), consistent with available
cell model results. However, in the “low porosity” case (f, = 0.0005),
the opposite trend is obtained with the strain to localization increasing
from axisymmetric tension to shear. This finding is robust upon further
mesh refinement.

The overall stress—strain responses and corresponding porosity evo-
lution for the “high porosity” cell are shown in Fig. 10. The shear
(L = 0) case is the same as in Fig. 6. The onset of unhomogeneous
yielding is indicated by (o) and corresponds to stage (g) in Fig. 8. Strain
localization, which is marked using the symbol (s) in Fig. 10, occurs
beyond the onset of unhomogeneous yielding. On the other hand, in
tension (L = —1) unhomogeneous yielding and strain localization are
essentially concurrent. In fact, we verify that the former occurs first and
in the subsequent increment the determinant in Eq. (34) vanishes.

Prior to the onset of unhomogeneous yielding, porosity growth is
faster in shear than in tension (Fig. 10b) for the stress triaxiality con-
sidered (T = 1). A qualitative explanation for this is that void shearing
(Fig. 8) reduces the ligament size faster in comparison with tension.
It also exposes more void surface to the axial tensile stress. However,
after the onset of unhomogeneous yielding the rate of porosity growth
in tension far exceeds that in shear. This is an important distinction
between the two stress states. Neither unhomogeneous yielding nor
strain localization lead to an abrupt acceleration of void growth or to
a load drop in shear, unlike tension.

For the “low porosity” case (Fig. 11), the shear and tension stress—
strain curves are indistinguishable until E,, ~ 0.7. Unhomogeneous
yielding still occurs earlier in shear (EglY = 0.75) than in tension

(EglY = 0.87). Strain localization, on the other hand, is concurrent with
unhomogeneous yielding in tension but occurs later in shear (Ech =
0.95). By way of consequence, we now have a situation where strain
localization occurs earlier in tension than in shear. The difference may
not appear to be large. Note, however, the strain levels reached in this
case (Eq ~ 1.0) in comparison with those in the high porosity case
of Fig. 10 (Eeq ~ 0.2). The absolute difference between the strains to
localization in shear and tension is about the same for the high and low
porosity cases; it is just that the order reverses. This is reflected in the
slope inversion in Fig. 9a. Such a trend is apparently shown for the first
time.

In terms of porosity growth, Fig. 11b, the f versus E,, curves fall
nearly on top of each other prior to E, ~ 0.5. In fact, the rate of growth
of porosity is somewhat lower in shear than in tension, unlike the high
porosity case; see Fig. 10b. Eventually, the rate of growth becomes
larger in shear. Qualitatively, these trends are explained as follows. The
ligament size does not reduce as fast in shear for the low porosity case
because shearing a small void may bring void closure earlier. Actual
closure is here avoided given that T = 1. As in the high porosity case,
the onset of unhomogeneous yielding does not lead to void growth
acceleration, unlike tension.

In all cases considered (including with a non-hardening matrix), the
softening after the onset of unhomogeneous yielding in shear is weaker
than in tension. The same observation holds post-localization. It is
possible that in an actual material, the onset of strain localization would
lead to more immediate failure. But that is only a ‘belief’. Multi-void,
large scale simulations may shed light on this. However, it should not
be taken for granted that the post-localization behavior in shear would
lead to as much softening as in tension. Therefore, it is only legitimate
to also report strains to failure, understood as defined in Fig. 2, namely
at void coalescence where all stress carrying capacity of the cell would
vanish. That state cannot be reached in the present cell calculations.
One would need either remeshing or arbitrary lagrangian—eulerian
formulations (Becker, 2017). It is tempting, however, to extrapolate
the present results assuming constant softening to failure. The point at
which the extrapolated stress—strain curve reaches the zero stress axis is
represented by X in Fig. 2 and the corresponding strain is denoted qu
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Fig. 9. Trend lines (dashed) for failure loci using two critical strain measures: (a) Strain to localization, Ech, given by Eq. (29) and the perturbation method. (b) Strain to failure,
qu, by extrapolation to complete loss of stress carrying capacity of the cell; see Fig. 2. The strain to the onset of unhomogeneous yielding, E:{]Y, is included for reference.
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Fig. 10. (a) Overall normalized equivalent stress, X, /o, versus equivalent strain, E,;, and (b) Porosity, f, versus E, for a “high porosity” case (f, = 0.00353, 4, =4) comparing
the onset of unhomogeneous yielding (o) and strain localization () for axisymmetric loading (L = —1) and shear loading (L = 0).
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Fig. 11. (a) Overall normalized equivalent stress, X, /c,, versus equivalent strain, E, and (b) Porosity, f, versus E, for a “low porosity” case (f, = 0.0005, 4, = 1) comparing
the onset of unhomogeneous yielding (o) and strain localization () for axisymmetric loading (L = —1) and shear loading (L = 0).

(see Section 3.2.3 for an illustration of the construction). The results
are superposed on previous ones in Fig. 9b.

Interestingly, considering the strain to failure measure qu, shearing
states are found to be more ductile than axisymmetric states at both
porosity levels. This trend reflects the much emphasized difference
between rates of softening in shear versus tension. The trend reversal
is particularly important for the low porosity case, Fig. 9b.

3.2. Void coalescence versus strain localization

It is clear thus far that the onset of unhomogeneous yielding under
axisymmetric loadings signifies what has been referred to in the litera-
ture as the “onset of void coalescence” in the sense of a shift to uniaxial
straining accompanied with internal necking. Unhomogeneous yielding
is, however, a more general concept encompassing axisymmetric as
well as shearing states. The results in the previous section demonstrate
that, in general, unhomogeneous yielding precedes strain localization.
This finding contrasts with claims made elsewhere insofar as “void
coalescence” and unhomogeneous yielding are used interchangeably.
To bring clarity into this, the various measures of critical strains that
were introduced in the literature (see Section 2.3) are compared in this
section.

3.2.1. Unhomogeneous yielding coincides with strain localization

Under axisymmetric loading, as soon as unhomogeneous yielding
sets in strain localization occurs; see Figs. 10 and 11. In such cases, it
is verified that the energy criterion of Eq. (38) is concurrent with the
onset of unhomogeneous yielding. This is illustrated in Fig. 12 for a case
with f, = 0.001, 4y = 1. The stress—strain curve is shown in Fig. 12a, the
evolution of overall logarithmic strains in Fig. 12b and the evolution of
the rate of elastic work in Fig. 12c. When the cell’s deformation mode
shifts to uniaxial straining (£,, = 0) the rate of elastic work does reach
a negative minimum, as per Eq. (38). This finding is consistent with the
work of Wong and Guo (2015). Fig. 12d shows that the incipient state is
one of unhomogeneous yielding with elastic unloading connecting the
lateral sides above and below the void. Under axisymmetric loading,
therefore, unhomogeneous yielding (which is equivalent to uniaxial
straining for that loading), strain localization and a negative minimum
in the rate of elastic work all coincide.

Next, consider the surrogate localization criterion of Eq. (36). The
ratio ||F||/||F°|| is plotted against the cell’s equivalent strain in Fig. 13a.
As above, the symbol (o) represents the onset of unhomogeneous
yielding, which coincides with strain localization as per Eq. (29). As
expected, the criterion in Eq. (36) may be viewed as surrogate to
both unhomogeneous yielding and strain localization. As anticipated,
whether a critical value of 2 or above is used would negligibly affect
the critical strain.

The criterion introduced by Tekoglu et al. (2015), which is based
on the ratio of maximum to minimum plastic strain around the void,
Eq. (39), is evaluated in Appendix B. It is shown there that arbitrary
values are obtained for the “coalescence strain” depending on the
chosen critical value of Z.

The loss of full rankedness parameter §, introduced by Cadet et al.
(2021) and given by Eq. (40), is plotted in Fig. 13b. After a transient
about the elastic-plastic transition, the parameter slightly increases
then decreases, steadily at first then abruptly at E., ~ 0.9. After this
critical strain value, it vanishes, as expected during uniaxial extension.
The open circle in Fig. 13b corresponds, as above, to the onset of
unhomogeneous yielding. Thus, in tension the loss of full rankedness
of F corresponds exactly to the onset of unhomogeneous yielding.

In conclusion, with the exception of the criterion of Tekoglu et al.
(2015), all of the above criteria deliver the same value of the critical
strain in tension.

3.2.2. Unhomogeneous yielding precedes strain localization

Under shear-dominated loading, unhomogeneous yielding was
found to precede strain localization; see Figs. 10 and 11. For such stress
states, we first investigate what the energy criterion of Eq. (38) predicts.
Results are reported in Fig. 14 for the two cases that were previously
analyzed in Fig. 6.

For the hardening matrix (N = 0.1), unhomogeneous yielding (see o
in Fig. 14a) occurs shortly after the load maximum. The corresponding
incipient state is shown in Fig. 14d. The overall strain components, as
defined in Egs. (8)—(11), are plotted against Ey in Fig. 14b. Unlike the
axisymmetric loading case, the lateral strain components (E;;, E33) do
not saturate because of the presence of the shear term in the Eulerian
strain expressions, Egs. (8) and (10). However, the lateral rate of
deformation, D, in Eq. (18), essentially vanishes (not shown in order
not to clutter the plot).

The corresponding rate of change of the elastic energy in the cell
is plotted in Fig. 14c. The profile is quite different from the tension
case; see Fig. 12c. Eventually, a global negative minimum is attained,
indicated by a (o), but the decrease of dW*¢/dW?" is more gradual in
shear than in tension. Also, the spread of values about the minimum
is wider than in tension. Most importantly, the negative minimum is
attained well after the onset of unhomogeneous yielding, but before
strain localization.

Similar conclusions are reached for the non-hardening case with
the minimum of dW¢/dW?P being attained in a subtle way, Fig. 14c.
Thus, for shear loading conditions, regardless of the matrix hardening
capacity:

» The onset of unhomogeneous yielding corresponds to the vanish-
ing of the components of D parallel to the band.
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Fig. 12. (a) Overall stress-strain response and corresponding evolution of (b) the overall logarithmic strains, and (c) the rate of change of elastic energy of the unit cell for
axisymmetric loading (T = 1,L = —1), f, =0.001, 4, =1 and N = 0.1. (d) Deformed configuration at the onset of unhomogeneous yielding, marked with (o) in (a)—(c), showing
contours of effective plastic strain ¢ (left) and regions of elastic unloading (painted black; right).
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Fig. 13. (a) Localization indicator, ||F||/||¥°||, entering Eq. (36) versus cell equivalent strain, E,

eq® and (b) loss of full rankedness parameter, 5, entering Eq. (40), versus E, for
the same calculation as in Fig. 12. The onset of unhomogeneous yielding is marked with (o).

« Strain localization (s) occurs after the onset of unhomogeneous used a condensation technique (Miehe, 2003) to probe the localization
yielding (o). condition, Eq. (29), other investigators have employed Eq. (36) as a
» The energy criterion (o) is met but it neither corresponds to surrogate to Eq. (29); see Dzhli et al. (2022) for a more recent example.

strain localization nor unhomogeneous yielding. What it physi-

The ratio ||F||/||F°|| is plotted against the cell’ ivalent strai
cally means is therefore questionable. e ratio |[F|I/IIF7l is plotted against the cell’s equivalent strain

in Fig. 15a for the cells with and without hardening. As clearly in-
ferred from Fig. 8, deformation is not uniform on the top and bottom

It remains to assess how the surrogate localization criterion, boundaries of the cell for the N = 0.1 case. To account for this, the
Eq. (36), the critical strain ratio criterion, Eq. (39), and the loss of norm ||F|| is actually a surface average over the top boundary. In
full rankedness criterion, Eq. (40), fare in comparison with the above the literature, critical values that were used for ||F||/||F°|| were much
measures. Indeed, except for Zhu et al. (2020), Cadet et al. (2022) who lower than those attained in the calculations. Typical values ranged

14
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Fig. 14. (a) Overall stress—strain responses and corresponding evolution of (b) the overall logarithmic strains (N = 0.1 only), and (c) the rate of change of elastic energy of the unit
cell for shear loading (T =1, L =0), f, = 0.00353, 4, =4 and two values of the hardening exponent N. (d) Deformed configuration at the onset of unhomogeneous yielding showing
contours of effective plastic strain € (left) and regions of elastic unloading (painted black; right). Key: (o): onset of unhomogeneous yielding; (+): strain localization, Eq. (29); (0):

energy criterion, Eq. (38).

between 2 and 10. The inset in Fig. 15a shows a reduced range for
the ordinate. Over that range, none of the above three criteria has yet
been met. In particular, Eq. (36) which is supposed to be surrogate to
the localization condition, Eq. (29), does not match the prediction of
the latter. It grossly underestimates it. In fact, the surrogate criterion is
closer to the onset of unhomogeneous yielding.

The criterion introduced by Tekoglu et al. (2015), which is based
on the ratio of maximum to minimum plastic strain around the void,
Eq. (39), is evaluated in Appendix B. It is shown there that if the critical
value Z = 15 proposed by Tekoglu et al. (2015) is used then the
criterion would be met at an arbitrarily small strain.

The loss of full rankedness parameter §, Eq. (40), is plotted in
Fig. 15b. In the non-hardening case (dashed curve), the § parameter
decreases rapidly to zero and corresponds de facto to the onset of
unhomogeneous yielding. However, it increases back again, reaches a
maximum and decreases back to zero. It is checked that the determinant
of F itself remains vanishingly small. So the non-monotonic behavior
has to do with normalization by det F*f. In the hardening case (N =
0.1), the initial decrease of § is not as steep but occurs earlier than
any other criterion. In particular, F loses full rankedness well before
the onset of unhomogeneous yielding. These trends will be discussed
further below.

3.2.3. Failure by void coalescence

From the practical point of view, the gradual decrease in the load-
bearing capacity under shear loading leaves one without a simple
measure of strain to failure. The situation in the absence of hardening
typifies the behavior even better. To address this issue, one needs some
objective definition of failure. A natural definition is when the material
loses all stress carrying capacity. Since one cannot pursue the unit
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cell calculations to that ultimate state we proceed by extrapolation, as
indicated for making Fig. 9b. The procedure is illustrated in Fig. 16
where the overall stress—strain responses are extrapolated (linearly) to
zero stress (Zeq =0).

As mentioned earlier, for axisymmetric tension the failure point can
be identified with the onset of unhomogeneous yielding, up to a small
error, Fig. 16a. However, for shear-dominant loadings, the strain to
failure is much greater than either EJY or E[, Fig. 16b. The lower
the hardening capacity of the matrix the greater that difference.

4. Discussion

The voided cell model has played a key role in the development
of porous material plasticity (Tvergaard, 1982b,a, 2008, 2009). Here,
three-dimensional calculations were employed under fully periodic
boundary conditions to critically investigate the relative ductilities in
shear and tension at fixed overall stress triaxiality. The commonly
accepted trend that axisymmetric stress states are “more ductile” than
shearing states was found to break down. The inverse trend of shear-
ing states being more ductile was found for sufficiently small initial
porosity, Fig. 9. In the literature, the difference between axisymmetric
and shearing states, and the related effect of the Lode parameter on
ductility, were only investigated for initial porosities in excess of f, =
0.001. Here, the trend reversal is found for half that value, f, = 0.0005.
The reversal is strictly valid in terms of an overall strain localization as
a measure of ductility, Fig. 9a. If failure by (physical) void coalescence
is chosen as the measure of ductility, then the trend of shearing states
being more ductile is actually the norm for all cases analyzed here; see
Fig. 9b.
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Because of the potential implications of this finding, its dependence
upon the definition of failure is paramount. To address this, we have
also critically examined several criteria used by various investigators.
In particular, the question of whether void coalescence occurs before or
after strain localization has been discussed at length in the literature,
but often based on ad hoc definitions.

In both English and physics, coalescence implies linkup. In the cell
model, therefore, void coalescence corresponds to complete loss of load
bearing capacity (the (x) in Fig. 2). If strain localization were to occur
in the cell, it must set in before coalescence in the above sense. The
triviality of this fact is obviously not subject to debate. What has been
debated e.g. Tekoglu et al. (2015) is the competition between strain
localization and the “onset of void coalescence”, defined in some way.
Except for Tekoglu et al. (2015), the onset of void coalescence in
tension has been understood in the literature as the shift to a uniaxial
straining mode of the cell (Pardoen and Hutchinson, 2000; Benzerga,
2002). This definition is semantically problematic because when uni-
axial straining sets in, neighboring voids are still well separated and
one could hardly speak of the “onset of coalescence” per se. Most
importantly, the above definition is physically problematic for shearing
stress states. This difficulty has led various authors to introduce new
definitions of the “onset of coalescence”.

Our approach has been to give up entirely on the terminology “‘onset
of void coalescence” for any quantitative definition and adopt instead
the new concept of unhomogeneous yielding, first introduced by Torki
and Benzerga (2018) and further elaborated upon by Benzerga (2023).
In the context of a cell (periodic or not) containing a single void,
unhomogeneous yielding corresponds to a percolated state whereby the
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elastically unloaded zones connect the lateral sides of the cell. This
amounts to making such zones extend over a length scale comparable
with the void spacing. For axisymmetric states, the onset of unhomoge-
neous yielding corresponds exactly to the “onset of void coalescence”
in the sense of Pardoen and Hutchinson (2000), Benzerga (2002). But
the concept is general enough to apply to any stress state.

An essential phenomenon that is common to both void coalescence
and strain localization is elastic unloading. Yet, to date very little has
been done by means of quantifying the progression of elastic unloading
in the cell model. Wong and Guo (2015) attempted to introduce a
measure that addresses this need. They demonstrated that a negative
minimum in the cell’s rate of elastic work corresponds to the onset
of uniaxial straining under axisymmetric tension. Based on that, they
assumed the measure to carry universal physical meaning. They and
other authors used that measure in discussing void coalescence versus
strain localization. There are three issues with the energy criterion
of Wong and Guo (2015). First, it is only a global measure. Its simplicity
is attractive but it only measures a global signature of elastic unloading.
What matters for coalescence are localized elastic unloading events.
Second, the existence of a negative minimum is not always guaranteed;
for example if the elastically unloaded zone is not large enough (Cadet
et al., 2022). Third, most practically, its physical meaning for general
states is unclear. When probed against other well-defined phenomena
(unhomogeneous yielding and strain localization) the energy criterion
is found to correspond to neither.

When investigated in the literature, the question of void coales-
cence versus strain localization led to answers that seem to be greatly
affected by the adopted definitions. Most studies, e.g. Barsoum and
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Faleskog (2007b), Dunand and Mohr (2014), Vishwakarma and Ker-
alavarma (2019), Daehli et al. (2022) have used Eq. (36) as a surrogate
localization criterion. However, our analysis shows that the criteria
in Egs. (29) and (36) lead to very different results with the latter
being always met earlier for any reasonable value of the critical ratio
in Eq. (36). This is enough to question both the validity and utility
of Eq. (36) as an indicator of strain localization. Furthermore, elastic
unloading is inseparable from both phenomena (void coalescence and
strain localization). When it occurs, a measure such as [[F||/||F°] is
bound to abruptly increase. Therefore, a criterion that sets an upper
limit (e.g. 2-10) for that ratio cannot, by definition, discriminate strain
localization from any other phenomenon that involves elastic unloading
or even possibly strain concentration without unloading. It is therefore
not surprising that Eq. (36) was found to be a better estimate of the
onset of unhomogeneous yielding than of strain localization per se. As
discussed by Benzerga (2023), however, unhomogeneous yielding must
not be mistaken for strain localization in the sense of Rice (1976).

Another definition-dependent conclusion is that drawn by Tekoglu
et al. (2015). In addition to using a variant of Eq. (36) as a questionable
criterion for strain localization, they have adopted Eq. (39) for the
“onset of coalescence”,® which is also problematic. To see this, it
suffices to consider a spherical void under hydrostatic loading. To the
neglect of edge effects, there is no strain-rate concentration around
the void because of spherical symmetry. Therefore, the ratio €,,,/émnin
remains equal to unity and the criterion is never met. This example
is extreme but explains the high-triaxiality trends in Tekoglu et al.
(2015): at high values of T strain concentration around the void is
weak and, depending on the value of Z, “coalescence” may nominally
never be reached.” Along the same lines, Tekoglu et al. (2015) find
that for the triaxiality investigated here (T = 1), the onset of void
coalescence and strain localization are concurrent, regardless of the
stress state. Again, such finding is predicated on ad hoc definitions that
bear no connection to any physical phenomenon. Here, we demonstrate
that the simultaneous occurrence of the two phenomena is true for
axisymmetric stress states. For shearing states, however, what is meant
by the “onset of void coalescence” is elusive. What we find is that strain
localization occurs much beyond the onset of unhomogeneous yielding.
The non-hardening case (Fig. 14) serves to demonstrate how large the
“distance” between the two can be, but the finding generally holds for
a hardenable matrix, Figs. 10 and 11.

Quite recently, Cadet et al. (2021, 2022) have proposed the loss of
full-rankedness of the rate of the deformation gradient as a general coa-
lescence criterion in single- or multi-void simulations. Their conclusions
are, for the most part, affected by that definition. The periodicity of
a single-void cell implies a single system of unhomogeneous yielding,
as conceptualized in Benzerga (2023) and further illustrated through
the progression of elastic unloading in the present work. It follows
in that case that F is of rank 1 (opening mode) or rank 2 (sliding
mode) following the terms of Benzerga (2023). Thus, unhomogeneous
yielding on one system implies loss of full rankedness of F. However,
the converse is not true. For example, any plane strain deformation
state would lead to detF = 0. This explains why the criterion was
found to be satisfied early in the deformation process for the hardening
case under shear; see Fig. 15b. Furthermore, if there are two or more
systems of unhomogeneous yielding then F may not be singular. Thus,

3 This choice is inconsistent with Pardoen and Hutchinson (2000). Before
the advent of the (also questionable) energy criterion of Wong and Guo
(2015), the authors found no better way of quantitatively defining coalescence,
after they defined strain localization the way they did, i.e. using a variant
of Eq. (36). The reader may realize by now that the criterion they have used
for strain localization is closer to the onset of unhomogeneous yielding (de
facto the criterion for the onset of void coalescence in tension).

4 A first-principles analysis of void coalescence shows, in fact, that high
triaxiality favors early void coalescence, not the opposite.
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the criterion proposed by Cadet et al. (2021) is neither necessary nor
sufficient for unhomogeneous yielding, let alone void coalescence.

When strain localization is compared against the onset of void
coalescence, it is therefore critical to probe the former using Eq. (29)
directly and to define what exactly is meant by the latter. The new con-
cept of unhomogeneous yielding helps to bring clarity into the matter
and avoid the confusion that still prevails in the literature with respect
to this competition. Resolving this issue has far reaching implications.
Until now, the prevailing view in the literature has been that the
modeling of void coalescence may be dispensed of in making estimates
of what truly limits the ductility of materials. It is often argued that
void coalescence modeling is still needed to simulate crack growth etc.
In actuality, no estimate of ductility is reliable unless predicted using a
void coalescence model, or rather a theory of unhomogeneous yielding
(to employ the new terminology). As an illustration, the trend reversal
uncovered by the present simulations cannot be predicted by widely
used damage models that are either of the critical strain type, e.g. Bai
and Wierzbicki (2010), or the shear-modified Gurson model of Nahshon
and Hutchinson (2008) because both formulations have encoded the
taken-for-granted fact that shearing states are always more deleterious
to ductility. By way of contrast, the theory of unhomogeneous yielding
makes no such assumptions a priori. It is therefore capable of predicting
the “usual” trend discussed in the cell model literature (and sheet metal
experimental literature) as well as the potential reversal; see e.g. Torki
and Benzerga (2018), Torki (2019), Torki and Benzerga (2022).

Cell model analyses are often carried out to infer failure loci defined
in terms of some measure of strain to failure versus the two loading
parameters T and L. One complicating factor is the role of induced,
and possibly initial, anisotropy. Thus, for fixed values of T and L,
different combinations of the six overall stresses would lead to differ-
ent evolutions of void and cell shapes thereby affecting the strain to
failure, whatever the specific measure. A recent study by Dzhli et al.
(2022) illustrates the extent of the effect, in particular when the cell
is subjected to normal stresses versus when it is subjected to combined
normal and shear stresses.

The method employed here to probe the localization condition,
Eq. (29), is inspired from Temizer and Wriggers (2008), but is not
computationally efficient. Zhu et al. (2020) have used a more efficient
condensation technique (Miehe, 2003) and Cadet et al. (2022) used a
variant thereof. Zhu et al. (2020) too found that the surrogate criterion,
Eq. (36), is met much earlier than Eq. (29), consistent with our findings.
However, they did not discuss what the discrepancy might be related
to. Instead, they concluded like many others that strain localization
precedes the onset of void coalescence. Again, their conclusion is based
on interpreting the onset of void coalescence using the energy criterion
of Wong and Guo (2015), which has been shown to lack universal
validity. Likewise, the conclusions of Cadet et al. (2022) are predicated
on their kinematic criterion, which has been shown to be inappropriate,
in general, for coalescence or failure.

Some issues remain unresolved. First, Zhu et al. (2020) claimed that
the energy criterion is always met after strain localization, probed using
Eq. (29) directly. They only showed detailed results for generalized
compression (L = 1). Very recently, Chouksey and Keralavarma (2023)
found that for plane stress states the energy criterion is met before
strain localization. Our investigation shows that for L = —1 the energy
criterion is concurrent with Eq. (29) but for L = 0 the energy criterion
is met before Eq. (29).

Second, Guo and Wong (2018) claimed that the localization con-
dition, Eq. (29), is equivalent to an effective force in the axial spring
attaining a maximum. They have not probed directly Eq. (29), but Zhu
et al. (2020) did and showed that the two deliver different predictions.
Interestingly, Zhu et al. (2020) did not comment on the discrepancy.
The equivalence between the maximum spring force and Eq. (29) must
be conditional. The difference between the maximum force criterion
of Guo and Wong (2018) and Eq. (29) is reminiscent of the difference
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between necking-type bifurcations and shear banding. For this reason,
strain localization studies that aim at distinguishing the two probe
specimens with all-around imposed displacements. That is definitely
the case in the cell model. However, while overall geometric insta-
bilities are ruled out, internal geometric instabilities cannot be. Thus,
internal necking of the intervoid ligament, enabled by the presence of
internal free surfaces, may explain the difference between the special
localization discussed by Guo and Wong (2018) and the occurrence of
a global shear band, which Eq. (29) is meant to probe.

Third, when they assessed the energy criterion, Cadet et al. (2021)
made the claim that no elastic unloading occurred in their multi-void
analyses. This is highly unlikely. It is possible that elastic unloading
did occur locally but with no signature on the global energy measure
of Wong and Guo (2015). Finally, the analyses of Cadet et al. (2022)
suggest the possibility of strain localization in a void-free matrix under
shear. This may be expected, at least for shearing a rigid ideal-plastic
material for which the incremental equations are hyperbolic. The gen-
eral implications of their observation merit study. These issues, while
important, are secondary to the main subject of the paper.

The trend reversal in ductility between shearing and axisymmetric
states, here mediated by the initial porosity, is independent of the
critical strain measure. Ultimately, this finding has to be put to the test
of experiments. In general, structural metals have no initial porosity.
At nucleation, porosity levels can definitely be below the value at
which the trend reversal was evidenced here. How void nucleation itself
would affect the uncovered transition remains to be seen; see Noell
et al. (2023) for a recent review of stress state effects on nucleation.
More work is needed in this direction to make closer contact with
experiments. Available experiments on sheet metal suggest a trend
similar to the high-porosity regime; see e.g. Bai and Wierzbicki (2010)
and references therein. However, in sheet metal whether ductility is
limited by void coalescence or structural instabilities has not been
carefully ascertained in the literature. Other experiments, e.g. Johnson
et al. (1983), Haltom et al. (2013) show a trend consistent with the
low-porosity cell predictions.

5. Conclusions

Unit cell calculations have been carried out for cases correspond-
ing to axisymmetric and shearing states of loading. The two main
conclusions are:

1. The common belief that axisymmetric stress states are “more
ductile” than shearing states was found to break down. The
initial porosity content is key to modulating the relative ductility
in shear versus tension.

« Strain localization occurs earlier under shear-dominant
loading than axisymmetric loading for a material with suf-
ficiently high initial porosity. By way of contrast, strain lo-
calization occurs earlier under axisymmetric loading for a
material with low initial porosity, as probably encountered
in practice.

During unhomogeneous yielding, the rate of softening in
shear is lower than in tension and the post-localization
response does not exhibit a load drop. Thus, if failure is
understood as the complete loss of load bearing capacity,
then shearing states are more ductile than axisymmetric
states irrespective of the porosity levels considered here.

2. For non-axisymmetric stress states, strain localization occurs
after the onset of unhomogeneous yielding regardless of strain
hardening and porosity level.
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Appendix A. Localization detection by perturbation

In elastoplasticity, the tangent operator is multi-branched. In the
cell problem, this is the case at the material point level but also for
the overall behavior. If the applied perturbation magnitude § F entering
Eq. (31) is too small, one only probes the elastic branch, in which case
the elastic tangent operator is too stiff and no localization is obtained.
If the value of 6F is too large, one is assured of probing the elastic—
plastic branch under plastic loading, but the tangent operator may be
too compliant and the strain to localization may be underestimated.
Furthermore, the computed operator may be a mixture of all these
parts.

To bring clarity into this, a series of preliminary analyses have
been carried out by systematically varying the value of 6F over four
decades, between 10~ and 10~8, and examining the effect on the strain
to localization EeLq. An example is shown in Fig. A.1. As expected,

0.25 |
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Fig. A.1. Strain to localization, EeLq, versus perturbation magnitude, 6F, for shear-
dominated loading (I = 1,L = 0), f, = 000353, 4, = 4 and N =
0.1.

if the perturbation is too small (e.g. §F = 107%) the determinant of
the acoustic tensor is positive and localization is not detected. This
regime is not shown in Fig. A.1. On the other hand, too large a
perturbation (e.g. 6F = 10~*) leads to an early detection of localization.
Interestingly, a range of values of §F is found where the value of Eé‘q
is weakly sensitive to the value of §F. In Fig. A.1 this range is from
5x 1077 to 2 x 107°. Based on this and other trial-and-error analyses
we have settled on the value of §F = 107° for all analyses presented
in the paper. As noted in the main text, this method is costly and very
demanding on memory.

Appendix B. Strain concentration around the void

The evolution of the ratio of maximum to minimum plastic strain

around the void, &,,,/éni, is shown in Fig. B.1a for the tension case
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Fig. B.1. &,,/é,,, entering Eq. (39), versus E for (a) L = -1, the same calculation as in Fig. 12, and (b) L = 0, the same calculation as in Fig. 14. Key: (o): onset of

unhomogeneous yielding; (+): strain localization, Eq. (29); (0): energy criterion, Eq. (38).

(L = -1) analyzed in Fig. 12. For this calculation, the minimum value
was actually zero for much of the deformation history. Thus, what is
plotted is the ratio of the strain rate averaged over twelve elements at
the pole of the void to the strain rate averaged over six elements at
the equator. Because the end of the curve is steep, the exact value of
the critical parameter Z in Eq. (39) does not matter much for Z > 20
or so. However, for any values below Z = 20 arbitrary values of the
“coalescence strain” would be obtained; see inset in Fig. B.1a.

The same ratio is plotted against the cell’s equivalent strain in
Fig. B.1b for the shear case (L = 0) analyzed in Fig. 14. The ratio
reaches arbitrarily large values. If the critical value Z = 15 proposed
by Tekoglu et al. (2015) is used then the criterion would be met at an
arbitrarily small strain. If a larger critical value is used, say Z = 50,
then the criterion would be met close to (but before) the onset of
unhomogeneous yielding. Given the corresponding levels of porosity
(see Fig. 6b) one could hardly speak of void coalescence at this stage,
especially for the non-hardening matrix.
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