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A B S T R A C T

Two recent models of void coalescence in columns are revisited to provide simpler, approximate expressions
for the effective yield surface. Unlike the exact criteria, these are not upper-bound preserving but provide
more flexibility in numerical implementation of the models. Both models correspond to limit analysis on
the same geometry, namely a cylindrical void of finite height embedded in a cylindrical cell. One model
employs a continuous velocity field, the other a discontinuous, yet kinematically admissible velocity field.
The approximations are assessed by direct comparison to the exact criteria for several sets of the internal
parameters.
1. Introduction

Void coalescence is the ultimate elementary stage of ductile failure.
Internal necking (Thomason, 1968) and coalescence under combined
ension and shear (Tvergaard, 1981) are the most common mecha-
isms. In many situations, voids link up along their main direction lead-
ng to columns of ruined material. This mechanism is called necklace
oalescence or void coalescence in columns; see Pineau et al. (2016).
The modeling of void coalescence from first principles has remained

lusive until recent years, e.g. Benzerga and Leblond (2014). In partic-
lar, void coalescence in columns has rarely been analyzed (Gologanu
t al., 2001). Yet, its role in ductile delamination (a type of splitting
ractures) (Bramfitt and Marder, 1977; Wang et al., 2022) is paramount,
ven if not yet fully recognized. Cell model analyses have often been
estricted to conditions where this phenomenon is not observed. Under
xisymmetric loading with a major lateral stress, Gologanu et al. (2001)
ave shown that the loss of load bearing capacity does not occur due
o the elastic unloading that accompanies internal necking, rather to
more gradual softening due to the formation of columns of ruined
aterial. More generally, other types of behavior may be observed in
ell model analyses, e.g. Srivastava and Needleman (2013).
Very recently, the authors developed two micromechanical models

of void coalescence in columns using limit analysis theory and tools
from homogenization theory (Torki et al., 2023). In the first, they
mployed a discontinuous, but kinematically admissible velocity field,
hich led to a closed-form expression of the yield criterion of the
ffective porous medium in a state of coalescence. The regular part
f the yield locus, however, involves transcendental functions. In the

∗ Correspondence to: Texas A&M University, College Station, TX 77845-3141.
E-mail address: benzerga@tamu.edu (A.A. Benzerga).

second model, the authors used a continuous velocity field thereby
producing a smooth yield surface, but that led to an implicit yield
criterion.

In this technical note, we present an approximate analysis of the
same two problems with the aim of producing more user-friendly
expressions of the effective yield loci. The expressions are expected
to be simpler for implementation in structural analysis codes. Both
approximations are thoroughly assessed against the exact criteria de-
veloped by Torki et al. (2023) for various combinations of the internal
parameters.

2. Problem statement

Effective yielding of a porous material is determined by the follow-
ing variational principle:

∀ 𝐃, 𝜮 ∶ 𝐃 ≤ 𝛱(𝐃),

𝛱(𝐃) = inf
𝐯∈(𝐃)

[

⟨ sup
𝝈∗∈

𝜎∗𝑖𝑗 𝑑𝑖𝑗 ⟩ +
1
𝛺 ∫𝑆

sup
𝝈∗∈

𝑡∗𝑖 [[𝑣𝑖]] d𝑆
] (1)

where ⟨⋅⟩𝛺 stands for averaging over domain 𝛺, 𝜮 ≡ ⟨𝝈⟩, 𝐃 ≡ ⟨𝐝⟩, [[𝐯]]
is the velocity jump across an interface 𝑆, 𝐭∗ is the surface traction,
and 𝛱(𝐃) is the effective plastic dissipation. Also, (𝐃) denotes the
set of kinematically admissible and incompressible velocity fields 𝐯
associated with 𝐃 and  is the convex of reversibility. The material
is modeled as rigid–ideally plastic and obeying 𝐽2 flow theory. If 𝛱(𝐃)
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Fig. 1. (a) Cylindrical cell representing column coalescence under triaxial loading. (b)
Meridian section of the cell, also showing the overall rate-of-deformation.

is differentiable then the effective yield surface is parametrically given
by:

𝜮 = 𝜕𝛱
𝜕𝐃

(2)

here 𝛱 now reduces to the first (volume) term in Eq. (1)2; see Benz-
erga and Leblond (2010).

To treat void coalescence in columns, Torki et al. (2023) used (1)
or Eq. (2) to carry out the limit analysis of an elementary cylindrical
ell embedding a coaxial cylindrical void under axisymmetric loading,
ig. 1. They divided the cell in three subparts: the void (V), the matrix
M) exclusive of plugs, and the plugs (P). The cell geometry is entirely
efined by three parameters out of the following:

= 𝜔
𝛺
, 𝜒 = 𝑟

𝑅
, 𝑤 = ℎ

𝑟
, 𝜆 = 𝐻

𝑅
, 𝑐 = ℎ

𝐻
(3)

here 𝜔, 𝑟 and ℎ denote the volume, radius and height of the void, 𝑅
nd 𝐻 the cell’s radius and height. Thus, 𝑓 is the void volume fraction,
the transverse ligament parameter, 𝑤 the void aspect ratio, 𝜆 the cell

aspect ratio, and 𝑐 the axial ligament parameter.
During coalescence in columns, a finite strain concentration occurs

in the plugs. Using strain compatibility and matrix incompressibility,
one can relate the average rates of deformation in the matrix and
porous regions to their macroscopic counterparts, leading to specific
constraints on the velocity fields to be used in limit analysis. The
simplest velocity field used by Torki et al. (2023) is given in cylindrical
coordinates (𝜌, 𝜃, 𝑧) by:

𝑣(M)
𝜌 = 𝑅

2

[

𝐷𝑘𝑘
𝑅
𝜌
−𝐷33

𝜌
𝑅

]

, 𝑣(M)
𝑧 = 𝐷33𝑧 in the matrix (4)

𝑣(P)𝜌 = 1
2

(

𝐷𝑘𝑘

𝜒2
−𝐷33

)

𝜌, 𝑣(P)𝑧 =
𝐷𝑘𝑘

𝜒2
(𝐻 − 𝑧) +𝐷33𝑧 in the plugs

(5)

The field in Eq. (5) is discontinuous across the P–M interface with:

[[𝑣𝑧(𝑧)]]𝜌=𝑟 =
𝐷𝑘𝑘

𝜒2
(𝐻 − 𝑧) (6)

Thus, Torki et al. (2023) introduced an alternative, continuous field
given by:

⎧

⎪

⎨

⎪

⎩

𝑣(P)𝜌 = −
𝜌
2

{

𝐷33 +
𝐷𝑘𝑘

𝜒2

[

−2 +
(𝜌
𝑟

)2
]}

𝑣(P)𝑧 = 2
[

1 −
(𝜌
𝑟

)2
]

𝐷𝑘𝑘

𝜒2
(𝐻 − 𝑧) +𝐷33𝑧

(7)

The dissipation function corresponding to the discontinuous velocity
ield {Eq. (4), Eq. (5)} was calculated as:

𝛱 = 𝛱 (M) +𝛱 (P) +𝛱 surf (8)
2

u

with

𝛱 (M) = 𝜎̄
|

|

𝐷𝑘𝑘
|

|

√

3

⎡

⎢

⎢

⎣

√

1 +
(

𝑢
𝜉

)2
− sinh−1

(

𝜉
𝑢

)

⎤

⎥

⎥

⎦

1

𝑢=𝜒2

, 𝜉 =
𝐷𝑘𝑘

√

3𝐷33

(9)

𝛱 (P) = (1 − 𝑐)𝜎̄ |

|

|

𝐷𝑘𝑘 − 𝜒2𝐷33
|

|

|

(10)

surf =
𝑤(1 − 𝑐)2

√

3𝑐
𝜎̄|𝐷𝑘𝑘| (11)

where 𝑤 and 𝑐 are defined in Eq. (3) and 𝜎̄ is the matrix yield strength.
The function 𝛱 (M)(𝐃) is differentiable. The term |

|

𝐷𝑘𝑘
|

|

appears therein
only because of using the dimensionless parameter 𝜉. On the other
hand, the functions 𝛱 (P) and 𝛱 surf are not differentiable.

On the other hand, for the continuous velocity field {Eq. (4),
Eq. (7)}, Torki et al. (2023) found that:

= 𝛱 (M) +𝛱 (P) (12)

ith 𝛱 (M) still given by Eq. (9) and

(P) = 𝜎̄ |

|

𝐷33
|

|

𝜒2
∫

1

𝑐
(𝑣) d𝑣, (𝑣) = ∫

1

0

√

(𝑢, 𝑣) d𝑢 (13)

where (see Appendix)

(𝑢, 𝑣) = 0 + 21(𝑣)𝑢 +2𝑢
2 (14)

0 = (𝜉 − 1)2, 1 = 𝜉 + 𝜉2(𝛿(𝑣) − 1), 2 =
13
12

𝜉2 (15)

𝜉 = 2
√

3
𝜉
𝜒2

, 𝛿(𝑣) = 2
3

(

𝑤(1 − 𝑣)
𝑐

)2
(16)

Using Eqs. (8) and (12) in either (1) or Eq. (2), Torki et al. (2023)
eveloped two yield criteria for coalescence in columns. They are both
uite complex. Here, simpler forms are sought.

. Approximate yield criteria

.1. Using the discontinuous field

The dissipation term 𝛱 (M) in Eq. (8), which actually results from
exact integration of:

𝛱 (M) = 𝜎̄ |

|

𝐷33
|

|∫

1

𝜒2

√

(

𝜉
𝑢

)2
+ 1 d𝑢 (17)

is replaced with the approximate integral

𝛱 (M) ≈ 𝜎̄ |

|

𝐷33
|

|

(1 − 𝜒2)

√

√

√

√

√

(

𝜉
1 − 𝜒2 ∫

1

𝜒2

d𝑢
𝑢

)2

+ 1

= 𝜎̄ |

|

𝐷33
|

|

√

(

ln 1
𝜒2

)2
𝜉2 +

(

1 − 𝜒2
)2 (18)

instead of the exact integral of Eq. (9). In going from Eq. (17) to Eq. (18)
e have used
√

𝑓 (𝜉)2 + 𝐶
⟩

≈
√

⟨𝑓 (𝜉)⟩2 + 𝐶 (19)

for any positive function 𝑓 and positive constant 𝐶. The above approxi-
ation becomes exact in two cases: (i) when the function 𝑓 is constant,

and (ii) when 𝐶 is zero. But it loses the upper-bound character of the
approach. The latter would be preserved if the mean of the square of 𝑓
were used. This alternative approximation is still exact in special case
(i) but not in (ii). Eq. (18)2 leads to a relatively simpler yield criterion.

The dissipation function given by Eq. (8) is non-differentiable owing
to the presence of absolute values in the expressions of Eq. (10)
and Eq. (11) of 𝛱 (P) and 𝛱 surf . This leads to singular parts on the yield
ocus, which must be analyzed with care. Obtaining a yield criterion
sing the velocity field defined by {Eq. (4), Eq. (5)} must then proceed



Mechanics of Materials 179 (2023) 104603M.E. Torki et al.

(
f

D
h

∀

w

𝑓

𝛴
𝜁

𝛴

w

𝛴

w

i

from inequality (1). The latter is rewritten for both pairs (𝐷𝑘𝑘, 𝐷33) and
−𝐷𝑘𝑘,−𝐷33) so as to only consider non-negative values of 𝐷33. The
unction 𝛱(𝐷𝑘𝑘, 𝐷33) being even one gets:

∀𝐷𝑘𝑘, 𝐷33, 𝐷33 ≥ 0

−𝛱(𝐷𝑘𝑘, 𝐷33) ≤ 𝛴11𝐷𝑘𝑘 + (𝛴33 − 𝛴11)𝐷33 ≤ 𝛱(𝐷𝑘𝑘, 𝐷33)
(20)

ividing all sides by 𝐷33 and using the fact that 𝛱 is positively
omogeneous of degree 1, one gets:

𝜉 ∈ R − 𝑔(𝜉) ≤ 𝑓 (𝜉) ≤ 𝑔(𝜉) (21)

here:

(𝜉) =
√

3𝛴11 𝜉 + 𝛴33 − 𝛴11
1
𝜎̄
𝑔(𝜉) = 1

𝜎̄
𝛱(

√

3𝜉, 1)

=

√

(

ln 1
𝜒2

)2
𝜉2 +

(

1 − 𝜒2
)2 + (1 − 𝑐) ||

|

√

3𝜉 − 𝜒2|
|

|

+𝑤
(1 − 𝑐)2

𝑐
|𝜉|

(22)

Let (𝜉) denote the first term in 𝑔(𝜉)∕𝜎̄. Then,

1
𝜎̄
𝑔′(𝜉) =

(

ln 1
𝜒2

)2 𝜉
(𝜉)

+
√

3(1 − 𝑐)sgn
(
√

3𝜉 − 𝜒2
)

+𝑤
(1 − 𝑐)2

𝑐
sgn (𝜉)

(23)

The curve 𝜁 = 𝑓 (𝜉) is a straight line parameterized by 𝛴11 and
33. On the other hand, the curves 𝜁 = 𝑔(𝜉) (sketched in Fig. 2) and
= −𝑔(𝜉) have the following characteristics:

• The curve 𝜁 = 𝑔(𝜉) is convex while the curve 𝜁 = −𝑔(𝜉) is concave.
• The expression of 𝑔(𝜉) in Eq. (22) contains terms proportional
to |

√

3𝜉 − 𝜒2
| and |𝜉|. It follows that the curves 𝜁 = 𝑔(𝜉) and

𝜁 = −𝑔(𝜉) have angular points at 𝜉 = 0 and 𝜉 = 𝜒2∕
√

3; except
at these points the curves are smooth.

• Both curves admit straight asymptotes for 𝜉 → ±∞; in addition,
the asymptote to the curve 𝜁 = −𝑔(𝜉) for 𝜉 → +∞ (resp. 𝜉 → −∞)
coincides with the asymptote to the curve 𝜁 = 𝑔(𝜉) for 𝜉 → −∞
(resp. 𝜉 → +∞).

A graphical method is then implemented to solve the inequalities
in (21). In order for the pair (𝛴11, 𝛴33) to lie on the yield locus, the
straight line 𝜁 = 𝑓 (𝜉) must meet one of the curves 𝜁 = 𝑔(𝜉), 𝜁 = −𝑔(𝜉)
at some point, without crossing it. Exploiting the point symmetry of the
yield locus, we only consider half of it. This portion is determined when
the straight line 𝜁 = 𝑓 (𝜉) meets the curve 𝜁 = 𝑔(𝜉) without crossing it.
This may occur in three cases:

1. The line 𝜁 = 𝑓 (𝜉) meets the curve 𝜁 = 𝑔(𝜉) at 𝜉 = 0 and lies
between the two tangents to this curve at this point, Fig. 2a. The
ordinate of the line at the origin is thus fixed, 𝑓 (0) = 𝛴33−𝛴11 =
𝑔(0). Its slope, on the other hand, may vary between bounds:
namely, 𝑔′(0−) ≤ 𝑓 ′(0) ≤ 𝑔′(0+). In other words, there is a
straight (singular) portion on the yield locus, defined by:

𝛴33 −𝛴11 = 𝜎̄(1 − 𝑐𝜒2) for
|

|

|

|

𝛴11
𝜎̄

+ (1 − 𝑐)
|

|

|

|

≤ 𝑤
√

3

(1 − 𝑐)2

𝑐
(24)

since from Eq. (22) 𝑔′(0±)∕𝜎̄ = −
√

3(1 − 𝑐) ±𝑤(1 − 𝑐)2∕𝑐. Fig. 2b
depicts the straight portion as two segments, plotted in the half
plane 𝛴m ≥ 0 for convenience.

2. The line 𝜁 = 𝑓 (𝜉) meets the curve 𝜁 = 𝑔(𝜉) at 𝜉 = 𝜒2∕
√

3 and
lies between the two tangents to the curve at this point, Fig. 2c.
Here, the ordinate is 𝑓 (𝜒2∕

√

3) = 𝛴33−(1−𝜒2)𝛴11 and the slope
may vary between 𝑔′(𝜒2∕

√

3
−
) and 𝑔′(𝜒2∕

√

3
+
). In this case, the
3

yield condition is then:

1
𝜎̄
𝑓

(

𝜒2
√

3

)

= 1
𝜎̄
𝑔

(

𝜒2
√

3

)

=

√

(

ln 1
𝜒2

)2 𝜒4

3
+
(

1 − 𝜒2
)2+

𝜒2
√

3
𝑤
(1 − 𝑐)2

𝑐

(25)

subject to the condition 𝑔′(𝜒2∕
√

3
−
) ≤ 𝑓 ′(𝜒2∕

√

3) ≤ 𝑔′(𝜒2∕
√

3
+
)

where:

1
𝜎̄
𝑔′

(

𝜒2
√

3

±)

= 𝐵 ± 𝐶 with (26)

𝐵 =
(

ln 1
𝜒2

)2 𝜒2
√

3(𝜒2∕
√

3)
+𝑤

(1 − 𝑐)2

𝑐

𝐶 =
√

3(1 − 𝑐)

(27)

Thus, the second singular part of the yield locus is given by (see
Fig. 2d):

(𝛴33 − 𝛴11) + 𝜒2𝛴11 = 𝐴 for
|

|

|

|

|

|

𝛴11
𝜎̄

− 𝐵
√

3

|

|

|

|

|

|

≤ 𝐶
√

3
(28)

where 𝐴 ≡ 𝑔(𝜒2∕
√

3), 𝐵 and 𝐶 are given by Eqs. (25) and (27).
3. The line 𝜁 = 𝑓 (𝜉) is tangent to the curve 𝜁 = 𝑔(𝜉) at neither 𝜉 = 0
nor 𝜉 = 𝜒2∕

√

3, Fig. 3a. The ordinate of the line at the origin
is then a smooth function of its slope; this means that the stress
point lies on the regular part of the yield locus, which is curved,
Fig. 3b.

The yield locus is now parametrically defined by Eq. (2), which on
account of Eq. (8), is expressed as:

𝛴11 =
𝜕𝛱
𝜕𝐷𝑘𝑘

= 𝜕𝛱 (M)

𝜕𝐷𝑘𝑘
+ 𝜕𝛱 (P)

𝜕𝐷𝑘𝑘
+ 𝜕𝛱 surf

𝜕𝐷𝑘𝑘

33 − 𝛴11 =
𝜕𝛱
𝜕𝐷33

= 𝜕𝛱 (M)

𝜕𝐷33
+ 𝜕𝛱 (P)

𝜕𝐷33
+ 𝜕𝛱 surf

𝜕𝐷33

(29)

Define

𝜮(M) = 𝜕𝛱 (M)

𝜕𝐃
(30)

ith 𝛱 (M) defined by Eq. (18). Then, taking axial symmetry into
account,

𝛴(M)
11 = 𝜎̄𝑎2

𝐷𝑘𝑘
√

𝑎2𝐷2
𝑘𝑘 + 𝑏2𝐷2

33

(M)
33 − 𝛴(M)

11 = 𝜎̄𝑏2
𝐷33

√

𝑎2𝐷2
𝑘𝑘 + 𝑏2𝐷2

33

(31)

here 𝑎 =
√

3 ln(1∕𝜒2) and 𝑏 = 1 − 𝜒2. Eliminating 𝜉 leads to:

[

𝛴(M)
33 − 𝛴(M)

11

(1 − 𝜒2)𝜎̄

]2

+ 3

⎡

⎢

⎢

⎢

⎣

𝛴(M)
11

ln
(

1
𝜒2

)

𝜎̄

⎤

⎥

⎥

⎥

⎦

2

= 1 (32)

Using the expressions of 𝛱 (P) and 𝛱 surf , Eqs. (10) and (11), the remain-
ng four terms in Eq. (29) are:

𝜕𝛱 (P)

𝜕𝐷𝑘𝑘
=(1 − 𝑐)𝜎̄sgn

(

𝐷𝑘𝑘 − 𝜒2𝐷33
)

, 𝜕𝛱 surf

𝜕𝐷𝑘𝑘
= 𝑤

√

3

(1 − 𝑐)2

𝑐
𝜎̄sgn

(

𝐷𝑘𝑘
)

𝜕𝛱 (P)

𝜕𝐷33
= − (1 − 𝑐)𝜒2𝜎̄sgn

(

𝐷𝑘𝑘 − 𝜒2𝐷33
)

, 𝜕𝛱 surf

𝜕𝐷33
= 0

(33)
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i
s

Fig. 2. Graphical solution to Eq. (21). (a) Case of 𝜉 = 0 leading to first type of singular parts on yield locus depicted in (b). (c) Case of 𝜉 = 𝜒2∕
√

3 leading to second type of
singular parts on yield locus depicted in (d).
Fig. 3. Graphical solution to Eq. (21). (a) Case of 𝜉 ≠ 0, 𝜉 ≠ 𝜒2∕
√

3 leading to regular, curved part on yield locus depicted in (b).
Then substituting for 𝛴(M)
11 and 𝛴(M)

33 their expressions given by Eq. (29)
nto Eq. (32), with due account for Eq. (33), delivers the final expres-
ion for the regular portion of the yield locus:
[

𝛴33 − 𝛴11

(1 − 𝜒2)𝜎̄
+ 𝜖1

(1 − 𝑐)𝜒2

1 − 𝜒2

]2

+ 3
4(ln𝜒)2

[

𝛴11
𝜎̄

− 𝜖1(1 − 𝑐) − 𝜖2
𝑤
√

3

(1 − 𝑐)2

𝑐

]2

= 1

(34)

with 𝜖1 = sgn
(

𝐷𝑘𝑘 − 𝜒2𝐷33
)

and 𝜖2 = sgn
(

𝐷𝑘𝑘
)

giving rise to four
distinct regular portions of the yield locus, two of which are represented
in Fig. 3. On the other hand, Eqs. (24) and (28) only determine two
segments of the singular parts. The other two are obtained by point
symmetry of the yield locus.
4

3.1.1. Synopsis

In summary, the yield locus is defined by the following:

𝛴33 − 𝛴11 = ±𝜎̄(1 − 𝑐𝜒2) for
|

|

|

|

𝛴11
𝜎̄

± (1 − 𝑐)
|

|

|

|

≤ 𝑤
√

3

(1 − 𝑐)2

𝑐

(𝛴33 − 𝛴11) + 𝜒2𝛴11 = ±𝐴 for
|

|

|

|

|

|

𝛴11
𝜎̄

∓ 𝐵
√

3

|

|

|

|

|

|

≤ 1 − 𝑐

[

𝛴33 − 𝛴11

(1 − 𝜒2)𝜎̄
+ 𝜖1

(1 − 𝑐)𝜒2

1 − 𝜒2

]2

+ 3
2

[

𝛴11 − 𝜖1(1 − 𝑐)− 𝜖2
𝑤
√

(1 − 𝑐)2
]2

= 1

(35)
4(ln𝜒) 𝜎̄ 3 𝑐
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Fig. 4. Comparison between minimum-continuity yield surfaces based on exact and approximate integrations: (a) for fixed (𝑤, 𝜆) and various ligament parameters 𝜒 , (b) for fixed
(𝜒, 𝜆) and various void aspect ratios 𝑤, (c) for fixed (𝜒,𝑤) and various cell aspect ratios 𝜆.


here 𝐴 and 𝐵 in Eq. (35)2 are functions of the internal parameters
iven by:

𝐴
𝜎̄

=

(

𝜒2
√

3

)

+
𝜒2
√

3
𝑤
(1 − 𝑐)2

𝑐

𝐵 =
(

ln 1
𝜒2

)2 𝜒2
√

3(𝜒2∕
√

3)
+𝑤

(1 − 𝑐)2

𝑐

(36)

1 = sgn
(

𝐷𝑘𝑘 − 𝜒2𝐷33
)

, 𝜖2 = sgn
(

𝐷𝑘𝑘
)

, and in Eq. (36) the function
(𝜉) is defined by:

(𝜉) =

√

(

ln 1
𝜒2

)2
𝜉2 +

(

1 − 𝜒2
)2 (37)

Fig. 4 shows comparisons between the surfaces corresponding to the
exact and approximate forms of the yield function for various values
of the void aspect ratio, ligament parameter, and cell aspect ratio.
Although the approximate criterion loses the upper-bound character,
it stays close to the rigorous upper-bound criterion.
5

3.2. Using the continuous field

To obtain a closed-form solution in this case, the following approx-
imation is adopted in Eq. (13):

𝛱 (P) = 𝜎̄ |

|

𝐷33
|

|

𝜒2
∫

1

𝑐
(𝑣) d𝑣 ≈ 𝜎̄ |

|

𝐷33
|

|

𝜒2(1 − 𝑐)̄ (38)

where ̄ is given by:

̄ = 1
2

[

(𝑢 + )
√

̄(𝑢) +  ln |(𝑢)|
]1

𝑢=0
(39)

for 𝛥 = 02 − ̄ 2
1 > 0 with

=
̄1
2

= 12
13

(

1
𝜉
+ 𝛿 − 1

)

 =
0 −

̄ 2
1

2
√

2
=
√

12
13

1
|

|

𝜉|
|

[

(𝜉 − 1)2 − 12
13

(

1 + 𝜉(𝛿 − 1)
)2
]

 =
√

2̄(𝑢) +2𝑢 + ̄1

(40)

The above results are formally identical to those corresponding to
exact integration of Eq. (38) following Gradshtein and Ryzhik (1971)
1
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t



𝛥

w
𝛱
t

d

𝛴

𝛴

w

A

d

s
but with 𝛿, ̄1 and ̄(𝑢) appearing instead of 𝛿(𝑣), 1(𝑣) and (𝑢, 𝑣)
with:

𝛿 ≡ ⟨

√

𝛿⟩ =
√

2
3
𝑤
𝑐

(

1
1 − 𝑐 ∫

1

𝑐
𝑣 d𝑣

)

= 𝑤
𝑐
1 + 𝑐
√

6

he averaging being carried out over 𝑣 in the interval [𝑐, 1], and

̄ 1 = 𝜉 + 𝜉2
[

⟨

√

𝛿⟩2 − 1
]

= 𝜉 + 𝜉2
[

1
6

(

𝑤(1 + 𝑐)
𝑐

)2
− 1

]

(41)

while ̄(𝑢) is given by Eq. (14) with 1(𝑣) replaced by ̄1. The case
< 0 is rare and is considered in the same way as in Torki et al. (2023).
In this case, the yield surface is parametrically defined using Eq. (2).

Based on Eq. (12) one may posit:

𝜮 = 𝜮(M) +𝜮(P) with 𝜮(M) = 𝜕𝛱 (M)

𝜕𝐃
and 𝜮(P) = 𝜕𝛱 (P)

𝜕𝐃
(42)

where 𝛱 (M) is given by Eq. (9) and 𝛱 (P) by Eq. (38)2. The dissipation
𝛱(𝐃) is positively homogeneous of degree 1; hence its derivative with
respect to 𝐃 is homogeneous of degree 0. Therefore, in Eq. (42) the
stresses depend on the components of 𝐃 only through their ratios.

Taking the axial symmetry into account, the first term in Eq. (42)1
is specified through:

𝛴(M)
11
𝜎̄

sgn
(

𝐷𝑘𝑘
)

= 1
√

3

(

sinh−1 |𝜉| − sinh−1
|𝜉|
𝜒2

)

𝛴(M)
33 − 𝛴(M)

11
𝜎̄

sgn
(

𝐷𝑘𝑘
)

=
√

1 + 𝜉2 −
√

𝜉2 + 𝜒4

(43)

here 𝜉 is the strain rate ratio introduced in Eq. (9)2. Note that the
(M) term could also be approximated as it was treated in the ‘‘discon-
inuous’’ model. This would lead to an additional loss of accuracy.
To obtain the second term in Eq. (42)1, note that ̄ in Eq. (39),

epends on 𝐃 through the ratio 𝜉 as per Eqs. (14), (16) and (40). Thus,

(P)
11 = 1

2
𝜕𝛱 (P)

𝜕𝐷11
= 1

2
𝜎̄|𝐷33|𝜒

2(1 − 𝑐) 2
𝜒2

2
𝐷33

𝜕̄
𝜕𝜉

(P)
33 = 𝜕𝛱 (P)

𝜕𝐷33
= 𝜎̄sgn

(

𝐷33
)

𝜒2(1 − 𝑐)̄ + 𝜎̄|𝐷33|𝜒
2(1 − 𝑐) 𝜕̄

𝜕𝜉
𝜕𝜉

𝜕𝐷33

(44)

where the factor 1/2 in the first equation accounts for the special
axisymmetric loading considered throughout. Straight from Eq. (39)
one gets:

𝜕̄
𝜕𝜉

= 1
2

[

′
√

̄ + (𝑢 + )∗ +  ′ ln || +  ′



]1

𝑢=0
(45)

here, with reference to the definitions in Eq. (40) and 𝜉 from Eq. (16):

′ = 𝜕
𝜕𝜉

= −12
13𝜉2

 ′ = 𝜕
𝜕𝜉

=

√

12
133∕2

sgn
(

𝜉
)

[

−2(𝛿 − 1)2 + 3 − 1
𝜉2

]

∗ = 1

2
√

̄

𝜕̄
𝜕𝜉

=
13
12 𝜉𝑢

2 + [1 + 2(𝛿 − 1)𝜉]𝑢 + (𝜉 − 1)
√

13
12 𝜉

2𝑢2 + 2𝜉[1 + (𝛿 − 1)𝜉]𝑢 + (𝜉 − 1)2

′ = 𝜕
𝜕𝜉

=
√

13
12

|

|

𝜉|
|

∗ + 13
6
𝜉𝑢 + [1 + 2(𝛿 − 1)𝜉]

(46)

fter simplifying and rearranging, one finally has:

𝛴(P)
11
𝜎̄
sgn

(

𝐷33
)

= 2(1 − 𝑐) 𝜕̄
𝜕𝜉

𝛴(P)
33 − 𝛴(P)

11
𝜎̄

sgn
(

𝐷33
)

= 𝜒2(1 − 𝑐)̄ − 𝜒2𝜉(1 − 𝑐) 𝜕̄
𝜕𝜉

(47)

In summary, if the approximation in Eq. (38)2 is used for the
issipation in the plugs, then a closed-form expression of the yield
6

urface is parametrically obtained as:

𝛴11
𝜎̄

= sgn
(

𝐷𝑘𝑘
) 1
√

3

(

sinh−1 |𝜉| − sinh−1
|𝜉|
𝜒2

)

+ 2 sgn
(

𝐷33
)

(1 − 𝑐) 𝜕̄
𝜕𝜉

𝛴33 − 𝛴11
𝜎̄

= sgn
(

𝐷𝑘𝑘
)

(

√

1 + 𝜉2 −
√

𝜉2 + 𝜒4
)

+ sgn
(

𝐷33
)

(1 − 𝑐)𝜒2
[

̄ − 𝜉 𝜕̄
𝜕𝜉

]

(48)

Alternatively, the integral in Eq. (38)1 can be evaluated numeri-
cally. The corresponding yield surface is compared in Fig. 5 with that
obtained using the approximation of Eq. (38)2 leading to the criterion
of Eq. (48). All surfaces have point symmetry with respect to the origin,
but the useful part for potential coalescence in columns is expected to
lie in the lower-right quadrant (𝛴33 − 𝛴11 < 0, 𝛴𝑚 > 0), except for
elongated voids (large values of 𝑤) or flat cells (small values of 𝜆).
While the employed approximation is not upper-bound preserving it
provides a good estimate of the exact yield criterion.

We emphasize that the term ‘‘exact’’ in this paper signifies exact
integration of the dissipation function. The true yield surface is not
known analytically, but can be evaluated using numerical limit analy-
sis. This was done in Torki et al. (2023) using a finite element method.
Furthermore, the true yield surface is actually hybrid, in that parts of
it may correspond to coalescence in columns while other parts would
correspond to void growth and void coalescence in layers, as treated for
example by Morin et al. (2016); see Torki et al. (2023) and references
therein for more details.

4. Conclusion

Approximate yield criteria were obtained for a porous material in
a state of void coalescence in columns. In the case of a discontinuous
velocity field, the yield locus consists of straight singular parts and reg-
ular curved parts. It is the expression of the latter that was simplified in
comparison with the reference exact expressions of Torki et al. (2023).
In the case of a continuous velocity field, a closed-form expression in
parametric form was obtained, unlike the expression of Torki et al.
(2023), which was obtained using exact numerical integration. In both
cases, the upper bound character of the yield locus is lost. However,
detailed comparisons between approximate and exact criteria show that
the approximate forms may be used in structural codes with no loss
of accuracy over a wide range of values of the internal parameters.
Circumstances under which coalescence in columns is favored include
cases with elongated voids that are closely packed along their main
axis, in keeping with experimental observations.
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ppendix. Derivation of Eq. (14)

A continuous velocity field is sought with an axial component given
n separable form as:
(P)
𝑧 (𝜌, 𝑧) = 𝐷33𝑧 + 𝑓0(𝑧) + 𝑓1(𝑧)𝜌2 (A.1)

here functions 𝑓0(𝑧) and 𝑓1(𝑧) are determined so as to ensure conti-
uity at the plug–matrix interface (𝜌 = 𝑟). On account of Eq. (4), this
entails
𝑣(P)𝑧 (𝑟, 𝑧) = 𝑣(M)

𝑧 (𝑧) = 𝐷33𝑧 ⇒ 𝑓0(𝑧) + 𝑓1(𝑧)𝑟2 = 0

𝑣(P)𝜌 (𝑟, 𝑧) = 𝑣(M)
𝜌 (𝑟) =

(

𝐷𝑘𝑘

𝜒2
−𝐷33

)

𝑟
2

(A.2)

Incompressibility leads to the following relationship between the
wo components:

iv 𝐯(P) = 1 𝜕(𝜌𝑣(P)𝜌 )
+ 𝑣(P) = 0 (A.3)
7

𝜌 𝜕𝜌 𝑧,𝑧
Combining Eqs. (A.1) and (A.3) delivers, after integration, the following
xpression for the radial component:

(P)
𝜌 (𝜌, 𝑧) = −

(

𝐷33 + 𝑓 ′
0(𝑧)

) 𝜌
2
− 𝑓 ′

1(𝑧)
𝜌3

4
(A.4)

Its continuity across the plug–matrix interface, Eq. (A.2)2, introduces a
new relation between the derivatives of the two unknown functions 𝑓0
and 𝑓1:

𝑓 ′
0(𝑧) +

𝑟2

2
𝑓 ′
1(𝑧) = −

𝐷𝑘𝑘

𝜒2
(A.5)

Combining the above equation with Eq. (A.2)1 gives after integration:

𝑓0(𝑧) = −2
𝐷𝑘𝑘

𝜒2
𝑧 + 𝑔0

1(𝑧) =
2
𝑟2

𝐷𝑘𝑘

𝜒2
𝑧 + 𝑔1

(A.6)

here 𝑔0 and 𝑔1 are constants determined from strain-rate compatibility
n the top surface, i.e. from the condition:

(P)
𝑧 (𝜌,𝐻) = 𝐷33𝐻, ∀0 ≤ 𝜌 ≤ 𝑟 (A.7)

hich requires that 𝑓0(𝐻) = 𝑓1(𝐻) = 0. It follows that

0(𝑧) = 2
𝐷𝑘𝑘 (𝐻 − 𝑧), 𝑓1(𝑧) =

−𝑓0(𝑧) (A.8)

𝜒2 𝑟2
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𝑑

𝛼

𝑑

t
𝜌

Substituting the above results in Eqs. (A.1) and (A.4) leads to the
continuous velocity field of Eq. (7).

Accordingly, obtain the rate of deformation components as:

𝑑(P)𝜌𝜌 = 𝑣(P)𝜌,𝜌 = 𝛼0 + 𝛼1𝜌
2

𝑑(P)𝜃𝜃 =
𝑣(P)𝜌

𝜌
= 𝛼0 +

1
3
𝛼1𝜌

2

𝑑(P)𝑧𝑧 = 𝑣(P)𝑧,𝑧 = −2𝛼0 −
4
3
𝛼1𝜌

2

(P)
𝜌𝑧 = 𝑑(P)𝑧𝜌 = 1

2
𝑣(P)𝑧,𝜌 =

4
3
𝛼1𝜌(𝐻 − 𝑧)

(A.9)

where

𝛼0 = −1
2
𝐷33 +

1
𝜒2

𝐷𝑘𝑘

1 = − 3
2𝜒2

𝐷𝑘𝑘

𝑟2

(A.10)

The equivalent strain rate is then calculated as

𝑑(P)
eq ≡

√

2
3
𝐝(P) ∶ 𝐝(P) =

√

2
3

[ 26
9
𝛼2
1𝜌

4 + 8𝛼0𝛼1𝜌2 +
32
9
𝛼2
1 (𝐻 − 𝑧)2𝜌2 + 6𝛼2

0

]

(A.11)

In terms of 𝐷𝑘𝑘 and 𝐷33:

2(P)
eq = 13

3
𝐷2

𝑘𝑘

𝜒4

(𝜌
𝑟

)4
+ 4

𝐷33𝐷𝑘𝑘

𝜒2

(𝜌
𝑟

)2
− 8

𝐷2
𝑘𝑘

𝜒4

(𝜌
𝑟

)2

+ 16
3

𝐷2
𝑘𝑘

𝜒4
𝐻2

𝑟2
(

1 − 𝑧
𝐻

)2 (𝜌
𝑟

)2
+

𝐷2
33 + 4

𝐷2
𝑘𝑘

𝜒4
− 4

𝐷33𝐷𝑘𝑘

𝜒2

(A.12)
8

which may be put in the form:

𝑑(P)eq =
√

 |

|

𝐷33
|

|

,  = 0 + 21𝑢 +2𝑢
2 (A.13)

he latter being Eq. (14) after operating the change of variable: 𝑢 =
2∕𝑟2 and 𝑣 = 𝑧∕𝐻 and using the reduced variable 𝜉 of Eq. (16) and
the relation 𝐻∕𝑟 = 𝑤∕𝑐.
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