Mechanics of Materials 179 (2023) 104603

journal homepage: www.elsevier.com/locate/mecmat

Contents lists available at ScienceDirect

Mechanics of Materials

MECHANICS
IMATERIALS

Research paper

Approximate analysis of necklace coalescence

M.E. Torki *", A.A. Benzerga ™", J.-B. Leblond ¢

Check for
updates

aSchool of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA

Y Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843, USA

¢ Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
d Sorbonne Universites, UPMC Univ Paris 06, CNRS, UMR 7190 Institut Jean Le Rond d’Alembert, F-75005, Paris, France

ARTICLE INFO ABSTRACT

Keywords:

Ductile fracture
Porous plasticity
Strain localization
Void growth
Delamination

Two recent models of void coalescence in columns are revisited to provide simpler, approximate expressions
for the effective yield surface. Unlike the exact criteria, these are not upper-bound preserving but provide
more flexibility in numerical implementation of the models. Both models correspond to limit analysis on
the same geometry, namely a cylindrical void of finite height embedded in a cylindrical cell. One model
employs a continuous velocity field, the other a discontinuous, yet kinematically admissible velocity field.

The approximations are assessed by direct comparison to the exact criteria for several sets of the internal

parameters.

1. Introduction

Void coalescence is the ultimate elementary stage of ductile failure.
Internal necking (Thomason, 1968) and coalescence under combined
tension and shear (Tvergaard, 1981) are the most common mecha-
nisms. In many situations, voids link up along their main direction lead-
ing to columns of ruined material. This mechanism is called necklace
coalescence or void coalescence in columns; see Pineau et al. (2016).

The modeling of void coalescence from first principles has remained
elusive until recent years, e.g. Benzerga and Leblond (2014). In partic-
ular, void coalescence in columns has rarely been analyzed (Gologanu
et al., 2001). Yet, its role in ductile delamination (a type of splitting
fractures) (Bramfitt and Marder, 1977; Wang et al., 2022) is paramount,
even if not yet fully recognized. Cell model analyses have often been
restricted to conditions where this phenomenon is not observed. Under
axisymmetric loading with a major lateral stress, Gologanu et al. (2001)
have shown that the loss of load bearing capacity does not occur due
to the elastic unloading that accompanies internal necking, rather to
a more gradual softening due to the formation of columns of ruined
material. More generally, other types of behavior may be observed in
cell model analyses, e.g. Srivastava and Needleman (2013).

Very recently, the authors developed two micromechanical models
of void coalescence in columns using limit analysis theory and tools
from homogenization theory (Torki et al.,, 2023). In the first, they
employed a discontinuous, but kinematically admissible velocity field,
which led to a closed-form expression of the yield criterion of the
effective porous medium in a state of coalescence. The regular part
of the yield locus, however, involves transcendental functions. In the
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second model, the authors used a continuous velocity field thereby
producing a smooth yield surface, but that led to an implicit yield
criterion.

In this technical note, we present an approximate analysis of the
same two problems with the aim of producing more user-friendly
expressions of the effective yield loci. The expressions are expected
to be simpler for implementation in structural analysis codes. Both
approximations are thoroughly assessed against the exact criteria de-
veloped by Torki et al. (2023) for various combinations of the internal
parameters.

2. Problem statement

Effective yielding of a porous material is determined by the follow-
ing variational principle:
VD, X :D<IID),
D)= inf |(s *d )+1 sup tf [v;]dS m
Tk | grae TG [T
where (), stands for averaging over domain 2, X = (¢), D = (d), [v]
is the velocity jump across an interface S, t* is the surface traction,
and I1(D) is the effective plastic dissipation. Also, X(D) denotes the
set of kinematically admissible and incompressible velocity fields v
associated with D and C is the convex of reversibility. The material
is modeled as rigid—ideally plastic and obeying J, flow theory. If IT(D)
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Fig. 1. (a) Cylindrical cell representing column coalescence under triaxial loading. (b)
Meridian section of the cell, also showing the overall rate-of-deformation.

is differentiable then the effective yield surface is parametrically given

by:

ro ol
oD

where IT now reduces to the first (volume) term in Eq. (1),; see Benz-

erga and Leblond (2010).

To treat void coalescence in columns, Torki et al. (2023) used (1)
or Eq. (2) to carry out the limit analysis of an elementary cylindrical
cell embedding a coaxial cylindrical void under axisymmetric loading,
Fig. 1. They divided the cell in three subparts: the void (V), the matrix
(M) exclusive of plugs, and the plugs (P). The cell geometry is entirely
defined by three parameters out of the following:

r h H h
PER WSS AR TH ®
where w, r and h denote the volume, radius and height of the void, R
and H the cell’s radius and height. Thus, f is the void volume fraction,
 the transverse ligament parameter, w the void aspect ratio, A4 the cell

aspect ratio, and ¢ the axial ligament parameter.

(2)

(]
f=35

During coalescence in columns, a finite strain concentration occurs
in the plugs. Using strain compatibility and matrix incompressibility,
one can relate the average rates of deformation in the matrix and
porous regions to their macroscopic counterparts, leading to specific
constraints on the velocity fields to be used in limit analysis. The
simplest velocity field used by Torki et al. (2023) is given in cylindrical
coordinates (p, 6, z) by:

R R P . .
UEJM) =3 [Dkk; = D33 E] ’ UE,,M) = D33z in the matrix @
D D
o = L (e Dy )p, P =" (H_z)+Dy;z  in the plugs
» 2\ 22 3 z 7 3
)
The field in Eq. (5) is discontinuous across the P-M interface with:
D
020 pmy = ﬁ(H -2) ®)

Thus, Torki et al. (2023) introduced an alternative, continuous field
given by:

D 2
®__P kk | _ /_’>
o® = 2{D33+ pe 2+ (2

)
P\?| Pk
U(ZP) =2 [l - (;) ] 7(H—Z)+D33z

The dissipation function corresponding to the discontinuous velocity
field {Eq. (4), Eq. (5)} was calculated as:

1 =0™ 4+ q® 4+ f ®)
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with
1
2
1100 = 512 1+<5> ~ sinh™! <§> . =2 (g
V3 ¢ ! =2 V3Ds;s
% =(1-cs )Dkk - 12D33) (10)
2
= wld — o | Dy an

V3e

where w and ¢ are defined in Eq. (3) and & is the matrix yield strength.
The function 7™ (D) is differentiable. The term |D,,| appears therein
only because of using the dimensionless parameter ¢&. On the other
hand, the functions I7® and IT5"' are not differentiable.

On the other hand, for the continuous velocity field {Eq. (4),
Eq. (7)}, Torki et al. (2023) found that:

=™ 4 g® 12)

with IT™ still given by Eq. (9) and

1 1
n® =5 |Dy| 1° / I(w)do, I()= / VR, v)du a3
c 0

where (see Appendix)

R(u,v) = Uy + 2V, (0)u + Usi? as
U=E-17, 1 =E+B60 -1, V=18 (as)
2
Ezz\/gi, 5(0):2 <M> (16)

X 3 c

Using Egs. (8) and (12) in either (1) or Eq. (2), Torki et al. (2023)
developed two yield criteria for coalescence in columns. They are both
quite complex. Here, simpler forms are sought.

3. Approximate yield criteria
3.1. Using the discontinuous field

The dissipation term IT™ in Eq. (8), which actually results from
exact integration of:

1 2
H(M):5|D33|/2‘/<§> +1 du a7
X

is replaced with the approximate integral

2
_ & U du
1™ ~ 5| D3| (1 - 1% < > — ] +1
1—y% /2 u

2
=5-|D33|\/<ln%> 2+ (1-22)° 18)

instead of the exact integral of Eq. (9). In going from Eq. (17) to Eq. (18)
we have used

(Vier+c)~Ju@r+c 19)

for any positive function f and positive constant C. The above approxi-
mation becomes exact in two cases: (i) when the function f is constant,
and (ii) when C is zero. But it loses the upper-bound character of the
approach. The latter would be preserved if the mean of the square of f
were used. This alternative approximation is still exact in special case
(i) but not in (ii). Eq. (18), leads to a relatively simpler yield criterion.

The dissipation function given by Eq. (8) is non-differentiable owing
to the presence of absolute values in the expressions of Eq. (10)
and Eq. (11) of IT® and I75"". This leads to singular parts on the yield
locus, which must be analyzed with care. Obtaining a yield criterion
using the velocity field defined by {Eq. (4), Eq. (5)} must then proceed
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from inequality (1). The latter is rewritten for both pairs (D, D33;) and
(—Dyx,—Ds33) so as to only consider non-negative values of Dj;. The
function IT1(D,,, D;3) being even one gets:

VD4 D33, D33 20

(20)
—1I(Dyy, D33) < 2y Dy + (233 — X11) D33 < I(Dyy, D33)

Dividing all sides by D;; and using the fact that IT is positively
homogeneous of degree 1, one gets:

VEeR -8 < f(&<g® @1
where:

f©= ‘/5211 E+ 25—y
Lo = Lnnen
[0} (o2

12 ) o (d=e)
= <ln?> £+ (1-42) +(1—c)‘\/§§—)( (+w—|5|

c

(22)

Let Q(¢) denote the first term in g(£)/6. Then,

2 2
| PP 1 ¢ _ 2 (-9
gg(@—(ln?) o V30 - esen (Vaz— ) w0 sgn @

(23)

The curve ¢ = f(¢) is a straight line parameterized by X;, and
3. On the other hand, the curves ¢ = g(¢) (sketched in Fig. 2) and
¢ = —g(&) have the following characteristics:

» The curve { = g(¢) is convex while the curve ¢ = —g(&) is concave.

» The expression of g(¢) in Eq. (22) contains terms proportional
to |\/§§— 72| and |&|. It follows that the curves ¢ = g(&) and
¢ = —g(¢) have angular points at & = 0 and & = y?2/ \/5; except
at these points the curves are smooth.

* Both curves admit straight asymptotes for £ - +oo; in addition,
the asymptote to the curve ¢ = —g(¢) for & — +oo (resp. & » —o0)
coincides with the asymptote to the curve ¢ = g(¢) for £ > —
(resp. & = +o0).

A graphical method is then implemented to solve the inequalities
in (21). In order for the pair (Z,;, Z3;) to lie on the yield locus, the
straight line ¢ = f(£) must meet one of the curves ¢ = g(&), ¢ = —g(&)
at some point, without crossing it. Exploiting the point symmetry of the
yield locus, we only consider half of it. This portion is determined when
the straight line ¢ = f(£) meets the curve ¢ = g(¢) without crossing it.
This may occur in three cases:

1. The line ¢ = f(¢) meets the curve ¢ = g(&) at & = 0 and lies
between the two tangents to this curve at this point, Fig. 2a. The
ordinate of the line at the origin is thus fixed, f(0) = 23; -2, =
g(0). Its slope, on the other hand, may vary between bounds:
namely, g/(07) < f'(0) < g'(0"). In other words, there is a

straight (singular) portion on the yield locus, defined by:

Zu-%,=6(1-cy?) for |% (1 —c)‘ < i@ 24)
since from Eq. (22) g/(0%)/6 = —/3(1 — ¢) + w(l — ¢)?/c. Fig. 2b
depicts the straight portion as two segments, plotted in the half
plane X > 0 for convenience.

2. The line { = f(£) meets the curve ¢ = g(¢é) at & = ;(2/\/3 and
lies between the two tangents to the curve at this point, Fig. 2c.
Here, the ordinate is f(2/V/3) = 33— (1-x?) X, and the slope

& +
may vary between g'(y2/+/3 )and g'(42/v/3 ). In this case, the
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yield condition is then:

V(AN _1 (). 1\ 2 2 1t (=cf
gf<\—@>-gg<\_/g>‘\/<1“?> AR eyt

(25)

subject to the condition g'(x2/V3 ) < f'(x>/V3) < g’()(z/\/§+)

where:
1, ~F .
g | = =B+C with (26)
(%)
B=<1nl>2 z =9
) \Ba?/V3) ¢ 27)

C=V3(1-0¢)

Thus, the second singular part of the yield locus is given by (see
Fig. 2d):

Zn_B|_C

B YA

where A = g(;{z/\/g), B and C are given by Egs. (25) and (27).

3. The line ¢ = f(¢) is tangent to the curve ¢ = g(&) at neither £ = 0
nor & = y?%/ \/3, Fig. 3a. The ordinate of the line at the origin
is then a smooth function of its slope; this means that the stress
point lies on the regular part of the yield locus, which is curved,
Fig. 3b.

(Zy— )+ 122 =A for < (28)

The yield locus is now parametrically defined by Eq. (2), which on
account of Eq. (8), is expressed as:

o o™ om® ot
I === + +
Dy, 0Dy, 0Dy = 0Dy 29
5 off _ oo™ om®  omvt
BTSN TOD,, T 9Dy, | 0D3; | 0Dy
Define
™M)
s _ 0 (30)

oD

with IT™ defined by Eq. (18). Then, taking axial symmetry into
account,

D
I T
\/@DZ, + b2 D%,
D (€3]
a®D2, + b2 D2,
where a = V/31In(1/4?) and b = | — 42. Eliminating ¢ leads to:
s 2
M) (M) (M)
25— 20 3 i -1 (32)
(1= x5 ln<L)5—
12

Using the expressions of IT® and IT5""f, Egs. (10) and (11), the remain-
ing four terms in Eq. (29) are:

orn® orrsurt w (1- C)Z

=(1 —c)osgn (D, —;(2D33 s = osgn (D
0Dy, ( ) 0Dy, \/5 c ( )
aH(P) ) 2 ansurf

=—({1- osgn (D,, — y“Dzy), =0
Dy, (1 - c)x*asgn (Dyy — x*D33) D53

(33)
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(255-Z,)/G

(d)

(E5-Z)/6

L—/ ‘ Em/5

Fig. 2. Graphical solution to Eq. (21). (a) Case of ¢ = 0 leading to first type of singular parts on yield locus depicted in (b)
singular parts on yield locus depicted in (d).

. (c) Case of & = f/\ﬁ leading to second type of

(a) (b)

(E3-Zy)/6

Fig. 3. Graphical solution to Eq. (21). (a) Case of & #0,& # 42/ \/E leading to regular, curved part on yield locus depicted in (b).

Then substituting for Zﬁ’[) and Zgl) their expressions given by Eq. (29) 3.1.1. Synopsis
into Eq. (32), with due account for Eq. (33), delivers the final expres-
sion for the regular portion of the yield locus:

In summary, the yield locus is defined by the following:
[233—211 (1—0)){2}2

— te

(1= x»5 IS

b _ )2
Sy =2 =+6(1 —cy?) for '#i(l—c)|giu
) (34) o 3 c
3 P w (1-c)? >
- _ — ) — €y — = B
+4(1n}()2 |: & al-c)—e ¢ 1 (233—211)+)(2211 =+A for 4i— <l-c¢
G \/5
with e; = sgn (D — x*Ds3) and e, = sgn(Dy,) giving rise to four

, (35)
. . . ¢ 2 —2n (1-o)*

distinct regular portions of the yield locus, two of which are represented [ -9 +€ .2 ]

in Fig. 3. On the other hand, Egs. (24) and (28) only determine two x x )
segments of the singular parts. The other two are obtained by point + 3 [ Zu (1 — w (1— 5)2] -
symmetry of the yield locus. !

dny)?* | & Ry c
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Fig. 4. Comparison between minimum-continuity yield surfaces based on exact and approximate integrations: (a) for fixed (w, 4) and various ligament parameters y, (b) for fixed
(x,4) and various void aspect ratios w, (c) for fixed (y,w) and various cell aspect ratios A.

where A and B in Eq. (35), are functions of the internal parameters

given by:

;ﬂ) 2 (1—cp?
=Q| = |+ =—=w
<\/§ V3o
(-cp

1\? 72
B = <ln —2> +w
) A3 /V3) ¢

€, = sgn (Dy — ¥*Dy3), €; = sgn (D), and in Eq. (36) the function
Q(¢) is defined by:

2
() = \/<ln%> 24+ (1- )

Fig. 4 shows comparisons between the surfaces corresponding to the

SIS

(36)

37)

exact and approximate forms of the yield function for various values
of the void aspect ratio, ligament parameter, and cell aspect ratio.
Although the approximate criterion loses the upper-bound character,
it stays close to the rigorous upper-bound criterion.

3.2. Using the continuous field

To obtain a closed-form solution in this case, the following approx-
imation is adopted in Eq. (13):

n® =5 |Dy| 4° /1 I(w)dv » & | D3| x> (1 — oI (38)
where T is given by:
= % [(u + B)\/%+ Pln |£(u)|]:=0 (39)
for A =V,U; — U2 > 0 with
2
V- (40)

P=

R e 2 gy
N NERE [(‘f 7= (146 1))]
L=\/VrRW) + Vou+ T,

The above results are formally identical to those corresponding to
exact integration of Eq. (38), following Gradshtein and Ryzhik (1971)
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but with §, U, and R(u) appearing instead of 6(v), U;(v) and R(u, v)
with:

1
55(\5):\/%%(110/ vdv>=%1\}—£

the averaging being carried out over v in the interval [c, 1], and

771=§+52[<\/5>2—1] «’:+52[—<M> 1] 41

c

while R(u) is given by Eq. (14) with U/(v) replaced by U;. The case
A < O israre and is considered in the same way as in Torki et al. (2023).

In this case, the yield surface is parametrically defined using Eq. (2).
Based on Eq. (12) one may posit:

Z=3M41 3® with M= and

o™ or®
aD =735 (42)

where IT™ is given by Eq. (9) and IT® by Eq. (38),. The dissipation
I1(D) is positively homogeneous of degree 1; hence its derivative with
respect to D is homogeneous of degree 0. Therefore, in Eq. (42) the
stresses depend on the components of D only through their ratios.
Taking the axial symmetry into account, the first term in Eq. (42),
is specified through:
(M)

—Lsgn (Dy) = % <sinh—1 |é| - sinh™! 'f')

=00 _ 50
%sgn (D) = VI+82 =1/ + 1

where ¢ is the strain rate ratio introduced in Eq. (9),. Note that the
IIT™ term could also be approximated as it was treated in the “discon-
tinuous” model. This would lead to an additional loss of accuracy.

To obtain the second term in Eq. (42),, note that 7 in Eq. (39),
depends on D through the ratio & as per Egs. (14), (16) and (40). Thus,

(43)

® _ 1om® 2 2 oI
=50 = 6|D33|)( (1-0=
' 29Dy 22 D33 98 44)
® _ o®  _ > 01 0&
=P = 2 = 5sgn (Dy3) 221 — oI +6|Dys| 21 — )=
3~ 9Dy, gn (Ds3) x 331X 9% 3D,

where the factor 1/2 in the first equation accounts for the special
axisymmetric loading considered throughout. Straight from Eq. (39)
one gets:

9L _ [B’\/_+(u+B)R*+7>’1n|£|+p_] 45)
% 2 u=0
where, with reference to the definitions in Eq. (40) and & from Eq. (16):
p=28_-12
08 13

,_op_ V2 I 1
P = 33/25gn(.§) -2(6-1) +3—£—2
e L R __ pfe 411426 DEu+E-1 (46)

2\/_ % B2 4+ 281+ - DEu+E— 172

0L _ 131z, 135 5 1)
£_a£_ 12|§|R+6§u+[1+2(6 E]

After simplifying and rearranging, one finally has:

(P)
—sgn (D33) =201 - c)—g
Z(P) Z(P) B _ o
%sgn (D33) = £*(1 = )T - y2&(1 - 9%

(47)

In summary, if the approximation in Eq. (38), is used for the
dissipation in the plugs, then a closed-form expression of the yield
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surface is parametrically obtained as:

% = sgn (Dyy) \;5 <smh 1| = sinh™! 1€ l) +2sgn (Dy3) (1 0)%
2 -2 _ > |
- = sgn (Dyy) <\/1+c§ E2 4y )
Dy3) (1 —c)p? 1‘—'—1:]
+sgn(Ds3) (1—c)y [ 66};
(48)

Alternatively, the integral in Eq. (38), can be evaluated numeri-
cally. The corresponding yield surface is compared in Fig. 5 with that
obtained using the approximation of Eq. (38), leading to the criterion
of Eq. (48). All surfaces have point symmetry with respect to the origin,
but the useful part for potential coalescence in columns is expected to
lie in the lower-right quadrant (X3; — X;; < 0, X, > 0), except for
elongated voids (large values of w) or flat cells (small values of A).
While the employed approximation is not upper-bound preserving it
provides a good estimate of the exact yield criterion.

We emphasize that the term “exact” in this paper signifies exact
integration of the dissipation function. The true yield surface is not
known analytically, but can be evaluated using numerical limit analy-
sis. This was done in Torki et al. (2023) using a finite element method.
Furthermore, the true yield surface is actually hybrid, in that parts of
it may correspond to coalescence in columns while other parts would
correspond to void growth and void coalescence in layers, as treated for
example by Morin et al. (2016); see Torki et al. (2023) and references
therein for more details.

4. Conclusion

Approximate yield criteria were obtained for a porous material in
a state of void coalescence in columns. In the case of a discontinuous
velocity field, the yield locus consists of straight singular parts and reg-
ular curved parts. It is the expression of the latter that was simplified in
comparison with the reference exact expressions of Torki et al. (2023).
In the case of a continuous velocity field, a closed-form expression in
parametric form was obtained, unlike the expression of Torki et al.
(2023), which was obtained using exact numerical integration. In both
cases, the upper bound character of the yield locus is lost. However,
detailed comparisons between approximate and exact criteria show that
the approximate forms may be used in structural codes with no loss
of accuracy over a wide range of values of the internal parameters.
Circumstances under which coalescence in columns is favored include
cases with elongated voids that are closely packed along their main
axis, in keeping with experimental observations.
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Fig. 5. Comparison between the exact and approximate yield surfaces obtained using a continuous velocity field (a) for fixed (w, 1) and various ligament parameters y, (b) for
fixed (y, 4) and various void aspect ratios w, (c) for fixed (y,w) and various cell aspect ratios A.
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Appendix. Derivation of Eq. (14)

A continuous velocity field is sought with an axial component given
in separable form as:

vPp,2) = Dysz + fo(2) + f1(2)p” (A1)

where functions f,(z) and f,(z) are determined so as to ensure conti-
nuity at the plug-matrix interface (p = r). On account of Eq. (4), this
entails

W2y =vMz) =Dz = f@+ f1(2)F =0

D,
P) M)y kk r
v, (r,z)—up (r)= (—){2 D33> 7

(A.2)

Incompressibility leads to the following relationship between the
two components:

(P)
a(pv, ")

div v®P = la—p + v(zpz) =0 (A.3)

p 0p ¢

Combining Egs. (A.1) and (A.3) delivers, after integration, the following
expression for the radial component:

3
oP(p.2) = = (D3 + 1) & - f{0 5 (A4)

Its continuity across the plug-matrix interface, Eq. (A.2),, introduces a
new relation between the derivatives of the two unknown functions f
and f:

2 D
HORESHOE —T’j (A5)

Combining the above equation with Eq. (A.2), gives after integration:

Dy
fO(Z) = —2—22 + 80
4 (A6)
2 Dy
fi(z) = r—272+g1

where g, and g, are constants determined from strain-rate compatibility
on the top surface, i.e. from the condition:

vW(p,Hy=Dy3H, YO<p<r (A.7)
which requires that f,(H) = f;(H) = 0. It follows that
D —fo(z
S =22 -, fi = 0 )
X I
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Substituting the above results in Egs. (A.1) and (A.4) leads to the
continuous velocity field of Eq. (7).
Accordingly, obtain the rate of deformation components as:

== v

(P) 1
A

P . (A.9)
dg) = v(zl?; =—2q) — Sa]pz

p_p»m_1»_4
dP) =d® = zug,; = sup(H - 2)

where

1 1
@ = =5 D33 + ?Dkk

Al
3 Dy (A.10)

) =——=—

212 2

The equivalent strain rate is then calculated as

df = \/ %d(") 1 d® = \/ % [29—606/)4 + Baga; p? + 2otf(H —z22p* + 6ag]

9
(A11)
In terms of Dy, and Ds;:
2 2
20 _ 13 D (2)4 D33 Dy (2)2 Di (2)2
eq 3 44 \r 72 r 74\
D2 2 2 2
+Eﬂi(1_i> (2) i (A.12)
3 }(4 r2 H r
DI, DyuD
D}y 44—tk 4B
X x
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which may be put in the form:
P
de(:q) = \/%|D33| >

the latter being Eq. (14) after operating the change of variable: u =
p?/r* and v = z/H and using the reduced variable & of Eq. (16) and
the relation H/r = w/c.

R = Uy + 2V u + Vyi? (A.13)
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