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Harnessing ab-initio electronic structure calculations, this study reveals the role of surface adsorbates on the
tendency of brittle fracture - a key failure mode of minerals such as calcite. The results demonstrate that (1)
adsorbates can both enhance and inhibit the tendency to fracture, depending on the bonding configuration of the
adsorbate to the calcite surface, and (2) the disassociation/reaction of water at the surface substantially enhances
its degrading effect on fracture. This establishes the feasibility for tuning in either direction the tendency of brittle

minerals to fracture by manipulating the composition of secondary elements in environments and materials.

The presence of minute chemical species from the environment can
have catastrophic consequences in both natural and engineered load
bearing structures. In many cases, the mechanism by which environ-
mental species act to influence fracture is not established; and thus,
engineers are faced with considerable uncertainty when designing for
contexts where empirical data does not exist. Beyond unforeseen fail-
ures, this lack of understanding leads to the use of overly conservative
and inefficient safety factors, while also inhibiting the design and adop-
tion of new technologies.

The mechanical integrity of calcite, CaCOj3, provides a prime exam-
ple. Calcite is one of the most abundant minerals in the Earth’s crust,
plays a key role in numerous biological processes [1] and the inorganic
carbon cycle, and has been central to many technological innovations in
geoengineering. Across these contexts, the mechanical integrity of cal-
cite can be a governing concern. Applications of subsurface hydrogen,
compressed air, and CO, storage, are timely technological examples,
where subsurface fractures are key to the transport and reaction rates
of geologically stored compounds [2]. Reaction and transport rates
ultimately govern economics, safety, and viability of subsurface stor-
age [3,4].

Laboratory studies of calcite fracture have involved a myriad of
conditions, dating back at least three decades [5-7]. The most recent
studies [8,9] highlight multiple environmental effects. First, the pres-
ence of water (in liquid or vapor form) enhances fracture. Second, the
tendency to fracture in water can be sensitive to the presence of specific
anions, but not changes in pH or the rate of dissolution. When the pres-

ence of anions is of consequence, fracture is inhibited upon the addition
of anions to deionized water.

Of the above effects, the increased tendency for fracture in water
is the most widely acknowledged [7,8]. Consequently, it is natural to
hypothesize that the observed inhibition of fracture by anions is due
to anions protecting the calcite surface from the water [8,9]. Here, the
molecular-scale basis for this hypothesis is examined, as well as the
more general question of how and why do adsorbates affect the fracture
of calcite?

Experimental methodologies capable of isolating individual contri-
butions to the extent needed to answer these questions have yet to be
established, and direct microscopic observation at the scales needed
remains out of reach [10-16]. This leaves atomic-scale computer mod-
eling as perhaps the most capable tool to characterize the action of
environmental fracture mechanisms. Here, ab-initio electronic structure
calculations were utilized to answer the above question and to more
generally provide a basis for understanding environmental effects. The
central finding is the demonstration that adsoption can have a dual
role. It can both enhance and inhibit fracture, leading to a complexity
that has likely contributed to the long-standing challenge of accurately
predicting macroscopic fracture behavior from atomic-scale processes
[17,18]. That said, the complexity revealed here also presents an op-
portunity for atomic-scale design of fracture behavior via control of
environment and material composition.

This study utilizes the Density Functional Theory electronic struc-
ture method [19,20] to obtain meaningful atomic configurations of
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calcite in bulk, slab, and rod forms (Fig. S1), with and without sur-
face adsorbates. The energy difference between the slab and bulk (or
rod and slab) configurations can be interpreted as a cleavage energy,
AE, associated with the rupture of bonds across a cleavage plane. Ac-
cordingly, AE provides an indicator of the tendency to fracture, which
in the terminology of fracture mechanics is characterized as a fracture
toughness [21], K. In the limit of an ideally brittle material with a
homogeneous cleavage energy density on the fracture plane and no lat-
tice trapping [22], K. can be expressed as

K;c=14/2C A/TE, (D)
with C being an elastic constant and A being the surface area created
by cleavage. Thus, the expected change in fracture toughness result-
ing from the changes in the cleavage energies reported here will be
moderated by a square root operator. They will also scale with the con-
centration of the adsorbates along the crack tip.

The electronic structure was modeled using the Kohn-Sham Density
Functional Theory approach [20] with the Born-Oppenheimer approxi-
mation [23] as implemented in the Vienna Ab initio Simulation Package
(VASP 5.4.4.18) [19]. The exchange-correlation energy was modeled
using the Perdew-Burke-Ernzerhof [24] (PBE) generalized gradient ap-
proximation (GGA). Physical phenomena beyond the PBE exchange-
correlation model were not explicitly considered [25] and are left for
future studies, e.g. dispersion [26,27]. To keep the modeling compu-
tationally tractable, the projector augmented wave (PAW) potentials
given in Table S1 were used. Forces were calculated from the electronic
structure using the Hellmann-Feynman theorem [28]. The model was
discritized using plane wave basis with an energy cut-off of 520 eV.
Gaussian smearing of 0.05 eV was used in all calculations.

Central to this study is a slab configuration derived from a relaxed
primitive rhombohedral unit cell of a calcite lattice, shown in Fig. S2.
The relaxed primitive cell was obtained by optimizing the cell degrees
of freedom to an energy tolerance of 0.01 meV. The electronic structure
for these calculations was obtained by integrating the irreducible part
of the Brillouin zone with a grid of 13 Gamma-centered k-points. This
relaxed primitive cell had dimensions of « = 46.15° and a = 6.447 A.
The [ZOT], [TO 2], and [1 3 1], lattice vectors of the primitive cell were
then used as basis vectors to create the supercell slab geometry. The su-
percell had boundaries parallel to the (211), (112), and (010) planes,
with the first two belonging to the family of commonly observed cal-
cite cleavage planes [29,30]. The hexagonal representation of calcite
is often referenced in literature as it provides a clear view of calcite’s
alternating layers of carbonate and calcium atoms, and a clear perspec-
tive of the nonpolar nature of the cleavage plane. With respect to the
hexagonal unit cell, the cleavage plane is expressed as {1014}.

The supercell slab geometry consisted of a lattice of two periodic
lengths along the [201] direction and one periodic length along the
[102] and [13 1] directions. The [102] basis vector was extended 20 A
beyond the lattice to create the slab-vacuum geometry, consisting of
two {211} surfaces separated by three layers of atoms (Fig. 1). The
further extension of each of the basis vectors and lattice by one periodic
unit returned an energy within 4 meV for a test case that included a Cl
adatom. This provides a measure of periodic cell effects.

The aforementioned geometry is convenient for this study as the
extension of the [20 1] basis vector converts the slab to a rod geome-
try with four {211} surfaces. The transition from slab to rod can be
interpreted as a cleavage event on the experimentally observed (211)
cleavage plane that intersects a (1 12) surface. In that spirit, the calcu-
lations presented here give insight into the occurrence of mixed mode
cleavage at a blunted crack tip (Fig. 2). The blunted configuration has
been chosen as a limiting case, where impurity access to crack tip
bonds is not constrained by a narrow crack geometry. In slab and rod
geometries, the electronic structure was obtained from a single Gamma-
centered k-point.
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Four bonds per lattice period span the (21 1) cleavage plane at the
(112) slab surface. In all cases, the bonds are between Ca and O atoms.
The Ca atoms lie on a common (1 12) surface plane. Two of the Ca-O
bonds lie within this plane, one drops below it into the bulk, and the
other rises out of it (Fig. 2). These three cases of surface Ca-O bonds
will subsequently be referred to as the a, f, and y bonds, respectively.

All Ca atoms on the (112) surface have reduced nearest neighbor
coordination relative to their bulk state, i.e. five nearest neighbor bonds
as apposed to six. Three fourths of the O atoms at the surface have
bulk nearest neighbor coordination. The O atoms that do not have bulk
coordination, i.e. have two nearest neighbor bonds as opposed to three,
are associated with y Ca-O bonds across the cleavage plane.

Six distinct surface adsorbate geometries were examined (Fig. S3):

» H bonded to the under coordinated O atom of the y bond to assess
the effect of H on cleavage energy,

OH, Cl, and SO, bonded to the Ca atom of the @ bond to assess the
effect of OH, Cl, and SO, on cleavage energy,

H, 0 bound to the Ca atom of the & bond to assess the effect of H,O
on cleavage energy, and more generally the effect of an adsorbate
that is not ionically or covalently bonded.

Cl bonded to the surface Ca atom of the y bond to assess the effect
of binding site on cleavage energy,

SO, bonded to a Ca atom of a @ bond and the Ca atom of the f
bond on the opposite side of the (112) cleavage plane to assess
bidentate binuclear configurations;

H,O0 bound to a Ca atom of the @ bond that spans the cleavage
plane and an O atom of a y bond that does not span the cleavage
plane, to assess a bidentate binuclear configuration that is distinctly
different than the above case;

The majority of cases were examined in two contexts, i.e. a vac-
uum environment at the (112) slab surface and a structured double
layer of water. In all cases, the initial slab geometry was obtained
by minimizing the forces on all atoms on and above the top surface
layer of calcite to a 10 meV/A tolerance. In each step of the structural
minimization, the electronic structure was converged to 0.001 meV,
noting that less demanding tolerances were found to produce elec-
tronic structures that were dependent upon the minimization scheme
and initial guess in some cases. The mononuclear SO, configuration is
an intermediate configuration obtained during the atomic minimization
from a mononuclear SO, starting guess. The single mononuclear water
molecule configuration is unstable and was simulated without atomic
minimization. This configuration was created by removing all but one
water molecule from the minimized water double layer structure. The
results of the unrelaxed single mononuclear water molecule configu-
rations were consistent with the minimized double layer simulations,
and were thus viewed to be meaningful. In all cases reported herin, the
cleavage energies correspond to a rigid cleavage energy, whereby the
atomic positions are held fixed as simulation cell is expanded. Further
details of the configurations and methods are given in the supplemen-
tary materials.

With the above preliminaries in place, we begin by comparing the
rigid cleavage energy of the slab and bulk configurations. Cleaving the
bulk configuration requires less energy than cleaving the slab configura-
tion. For the specific case of simulation cells simulated here, composed
of three atomic columns across the fracture plane (Fig. S1), cleavages
energies of AE =7.19 eV for the bulk and AE =9.50 eV for the slab
were obtained. In a mode I plane stress scenario, the bulk result cor-
responds to K;~ =0.21 MPa \/Z, in the limit of equation (1) with
C ~ 97 GPa in the direction normal to the cleavage plane using the
laboratory measured room temperature anisotropic elastic constants of
calcite [31]. For comparison, laboratory measured values of calcite crys-
tals are in the range of 0.10 - 0.16 MPa\/Z at room temperature in
laboratory air [8].
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Fig. 1. View of relaxed calcite slab configuration with water double layer from three orientations. The three types of surface Ca-O bonds referenced in the text, i.e.
v, @, and beta are labeled. In a and c, the (211) calcite cleavage plane is visable and highlighted with a bold dashed line. Atomic coloring of blue - Ca, red - O,
brown - C, and white - H. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
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Fig. 2. Images a, b, and ¢, illustrate sequential configurations of cleavage fracture initiated from a blunt crack tip. d displays a simulation cell with a calcite slab and
a mononuclear SO, adsorbate and is intended to represent the atomic configuration at the blunted crack tip in a. e displays a zoomed view of d that shows the three
types of Ca-O bonds at the outermost surface layer. A larger view of e is available in Fig. S6. f displays a simulation cell with a calcite rod configurations having a
mononuclear SO, adsorbate and is intended to represent the atomic configuration at a cleaved blunted crack tip as shown in c. The directions and Miller indices of
planes are given with respect to the basis vectors of the Rhombohedral calcite primitive unit cell.

The increased cleavage energy of the slab configuration can be at-
tributed to an effect that is localized to the Ca-O bonds nearest the
preexisting surface of the slab. This is deduced by partitioning AE
across the atomic columns spanning the cleavage plane via a force
integration approach that is described in the supplementary material.
Following the labeling in Fig. 2f, partitioned cleavage energies of 3.60,
2.40, and 3.59 eV are found for slab columns I, II, and III respectively.
These energies contrast the bulk configuration, where each column has
the same partitioned cleavage energy of 2.40 eV. The consistent value
of column II among the bulk and slab cases establishes that the effect of
the prexisting surface on cleavage energy is due to the outer most layer
of atoms and their Ca-O bonds that span the cleavage plane. This find-
ing is consistent with the traditional understanding of bonding [32],
whereby atoms with reduced nearest-neighbor coordination are more
strongly bonded to their neighbors.

Focusing first on mononuclear [33] adsorbate configurations, single
adsorbates lower the cleavage energy of the slab by 0.43 - 0.48 eV, in
the examined cases of Cl, OH, SO,, and H (Fig. 3). In these cases, the

Cl, OH, and SO, are ionically bonded to a surface Ca atom that has a
Ca-O bond across the cleavage plane (labeled as a in Fig. 2). In the case
of H, the adsorbate is covalently bonded to a surface O atom having
a Ca-O bond across the cleavage plane (labeled as y in Fig. 2). Force
integration reveals that this effect is localized to the outermost calcite
surface layer of Ca, C, and O atoms. It is noteworthy that despite a
significant variation in Bader charge [34] among the adsorbates (-0.55,
-0.43, -0.72, and +0.58) they have a similar effect on cleavage. In the
case of a single water mononuclear adsorbate bonded to a surface Ca
atom, the result is significantly different.

In contrast to the previous cases, the charge neutral mononuclear
water adsorbate does not transfer electrons or form a covalent bond
with the calcite. Instead, it is bound by a dipole-dipole interaction
between the O of the water molecule and the surface Ca atom, a config-
uration that has been observed elsewhere in the literature [35]. In this
case, the rigid cleavage energy decreases by only 0.05 eV due to the
presence of the water molecule at the surface Ca. In the case of a struc-
tured layer of water molecules (which is discussed in later paragraphs
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Fig. 3. Top: Zoomed images from selected relaxed calcite slab configurations. See supplementary figures for complete set of configurations. The black dashed line
represents the plane across which cleavage acted in each case. Atomic coloring of blue - Ca, red - O, brown - C, white - H, yellow - S, and green - Cl. Bottom:
Calculated energy to cleave calcite simulation cells along dashed black line. Gray bars correspond to slab configurations in vacuum with a single adsorbate and blue
bars correspond to slab with hydrated surface. Bulk cleave energy is shown as a reference.

and presented in Figs. 3 and S4), the effect is increased nearly propor-
tionally to the number of water molecules (8) bound to the surface Ca
and O atoms with bonds spanning the cleavage plane. Together with
the results of the previous paragraph, the calculations presented thus
far suggest that when water molecules disassociate/react on a surface,
they can have a much more substantial impact on cleavage relative to
binding in their associated state. This provides support for a long held
hypothesis of crack tip chemomechanics [36], and is thus a key result
of the paper. In the case of calcite, such a disassociation reaction is ex-
pected [29] at surface defects, e.g. steps, and may be a key contributor
to fracture initiating from such defects.

The simulation results presented to this point display two trends
that diverge from experimental observations [8,9]: (1) of the adsorbates
considered, pure water in its associated state exhibits the least detri-
mental effect on fracture, (2) among the remaining adsorbates which
chemically bound to the calcite surface, their type does not have a sig-
nificant effect. That said, the results do align with fundamental bonding
principles, where higher coordination corresponds to reduced binding
strength [32].

In the case of SOy, a simple explanation was observed, via extensive
structural relaxation. The structural relaxation revealed the existence
of a lower energy binuclear [33] adsorbate configuration for SO,. This
configuration can bridge the cleavage plane, increasing the number of
bonds that must be broken for a cleavage event to occur. Thus, while the
adsorption of SO, to calcite decreases the binding of the calcite bonds
across the cleavage plane, it increases the number of bonds that must be
broken, and ultimately increases the cleavage energy by 0.16 eV. The
net increase in calculated cleavage energy of the binuclear configura-
tion provides a consistency with the experimentally observed trend of
increased fracture resistance with the addition of SO, to the environ-
ment.

The increase of cleavage energy due to adsorption is not unique to
SO,. It was also observed for a single water molecule adsorbate in a fully

relaxed configuration, whereby it bonded with the Ca and O surface
atoms in a binuclear configuration. When this configuration spans the
cleavage plane, the cleavage energy increased by 0.32 eV. The tendency
of the SO, and water molecule to form binuclear configurations that can
inhibit fracture, while the H, OH, and CI do not, may be attributed to the
larger size of the SO, and water molecules, which allows them to easily
bind to the calcite in two locations. A full exploration of the possibility
of OH forming a binuclear configuration remains to be explored.

The concept of adsorbates spanning the cleavage plane and enhanc-
ing cleavage resistance extends beyond binuclear adsorbates. When the
calcite surface is saturated by water, a structured double layer of water
molecules form, whereby each water molecule is bound to the calcite
surface in a mononuclear configuration [29,37,38]. The double layer
spans the cleavage plane and cleaves together with the calcite. While
the presence of the water layer does reduce the cleavage energy within
the calcite, the reduction is more than offset by the additional cleavage
energy required to cleave the water layer itself.

Given that this result is in contrast to experimental observations
that suggest that water reduces cleavage resistance [7], it is reasonable
to hypothesize that a structured layer of associated water molecules
does not exist at the crack tip, making the simulations discussed here
disconnected from the real-world situation [7]. Nonetheless, this does
not diminish the takeaway point that adsorbate films can increase
fracture resistance, even when the individual adsorbate molecules are
weakly bound in mononuclear configurations via dipole-dipole inter-
action. Managing the disruption of such films by controlling chemical
heterogeneity and surface defects, might then be a strategy for altering
fracture properties.

Regarding the effects of pH, the results shown in Fig. 3 suggest
that both increases and decreases in pH from neutral would decrease
cleavage energy. Specifically, both H and OH decrease cleavage en-
ergy more than water. This is not aligned with the results of fracture
experiments [8], where the effect of solution pH is indiscernible over a
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substantial range about the neutral value of 7. The resolution to this dis-
crepancy is straight forward in that the pH of a surface water layer has
been shown to be largely independent of the pH of the solution [39].

In summary, laboratory studies [8,9] suggest that water enhances
fracture and that the enhancement can be inhibited by the presence of
specific anions in the solution, e.g. SO, and Cl. In accord, the modeling
presented here suggests that an unstructured water layer will enhance
fracture, and that if water were to disassociate at the crack tip, it would
have an even greater enhancing effect. The presence of SO, in a bin-
uclear configuration will inhibit such enhancement, either by directly
increasing the cleavage energy or by inducing crack deflection [40]. In
contrast, the modeling did not show discernible enhancement with CI,
and in this way is inconsistent with the cited laboratory work [8,9].
This suggests the operation of mechanisms having greater complexity
than examined here in the case of Cl.

Ultimately, the interplay of environmental factors on the cleavage
process of calcite and, by extension, other brittle materials, has been
found to exert both amplifying and detractive effects. The simulations
indicate that modifications in composition, even minor ones, can alter
surface properties. This can result in the reduction of individual bond
strength across the cleavage plane, while potentially augmenting the
count of bonds spanning the same plane. Despite the many simplifica-
tions of the modeling relative to real calcite-adsorbate systems, these
are robust concepts that are unlikely to change with more complete
analyses.

Not only do these results elucidate the origin of intricate environ-
mental effects observed at the macroscopic scale, they also suggest
strategies for nanoscale optimization of environmental conditions and
material composition. Beyond enhancing control over the tendency to-
wards brittle fracture, the findings may bear relevance to intrinsically
ductile materials that emit dislocations from crack tips [41-43], with
application to both static and fatigue loading [18]. In the intrinsically
ductile case, plastic slip breaks surface bonds and creates new surface
at a slip step. The breaking of such surface bonds might be impacted by
environmental conditions and material composition in similar ways to
the brittle calcite material studied here, particularly when one considers
cases involving the presence of nonmetallic surface films.
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