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Abstract Fracture prognosis and characterization
efforts require knowledge of crack tip position and the
Stress Intensity Factors (SIFs) acting in the vicinity
of the crack. Here, we present an efficient numerical
approach to infer both of these characteristics under a
consistent theoretical framework from noisy, unstruc-
tured displacement data. The novel approach utilizes
the separability of the asymptotic linear elastic frac-
ture mechanics fields to expedite the search for crack
tip position and is particularly useful for noisy displace-
ment data. The manuscript begins with an assessment
of the importance of accurately locating crack tip posi-
tionwhen quantifying the SIFs fromdisplacement data.
Next, the proposed separability approach for quickly
inferring crack tip position is introduced. Comparing to
the widely used displacement correlation approach, the
performance of the separability approach is assessed.
Cases involving both noisy data and systematic devia-
tion from the asymptotic linear elastic fracturemechan-
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ics model are considered, e.g. inelastic material behav-
ior andfinite geometries.An open source python imple-
mentation of the proposed approach is available for use
by those doing field and laboratory work involving dig-
ital image correlation and simulations, e.g. finite ele-
ment, discrete element, molecular dynamics and peri-
dynamics, where the crack tip position is not explicitly
defined.

Keywords Stress Intensity Factors · Separability
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1 Introduction

Fracture prognosis and characterization efforts require
knowledge of crack tip position and the SIFs acting in
the vicinity of the crack. In many cases, the two tasks
are related, as the crack tip position is a necessary input
for identifying the SIFs. In the limit of scale separation,
e.g. crack tip process zone � crack size � specimen
size, ambiguities in the definition of crack tip position
are not significant. However in reality, scale separation
is often difficult to achieve and the definition of the
crack tip position may impact the inference of SIFs.

Crack tip position can be defined geometrically or
mechanically. When the characterization of SIFs is a
goal, it is sensible to define crack tip position using
the mechanical field (i.e. displacement). This can be
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problematic in that the definition of crack tip position
with respect to the mechanical field is ambiguous. For
example, one might define the crack tip position to be
the forwardmost location where no stress is transferred
across the fracture plane, or the locationwhere themax-
imum stress is transferred, or something different. In
this manuscript, we advocate that a mechanical defi-
nition of crack tip position should be consistent with
the model used for inferring the SIFs. In the ubiqui-
tous case of linear elastic fracture mechanics (LEFM)
(Zehnder 2012), this equates to choosing a crack tip
position that maximizes the correspondence between a
given data set and the LEFM model within an annulus
centered about the crack tip. This approach is widely
applicable, where the “given data set” can represent
field or laboratory measurements of displacements at a
set of points (e.g. Digital Image Correlation (DIC)) or
the calculation of displacements at a set of points via
computer simulations, e.g. finite element or molecular
dynamics modeling.

In the LEFM model, the distribution of stresses in
the vicinity of a sharp crack tip determine the SIFs.
SIFs are a construct of LEFM that are used to charac-
terise the amplitude of the crack driving force acting on
the crack tip for a homogeneous isotropic linear elas-
tic body. The distribution of near tip stresses is com-
pletely characterized by the three independent SIFs,
KI , KI I , and KI I I , and a constant background stress
known as the T-stress, T . The three SIFs correspond
to the opening, sliding, and tearing modes of deforma-
tion, respectively. The T-stress is often disregarded, but
it can play a significant role in some cases and is thus
included here (Suresh 1998; Stepanova and Roslyakov
2016; Ayatollahi and Nejati 2011; Rice 1974; Smith
et al. 2001). For brevity, attention will be restricted to
2D problems involving an elastically isotropic linear
material undergoing the opening and sliding modes,
noting that extension to cases involving out-of-plane
tearing or elastic anisotropy would be straightforward.

With the stress field not being observable, we focus
on the associated displacement field, which can be
expressed as
[
u(r,µ, K )

v(r,µ, K )

]
=
[√

r f1(µ, θ)
√
r f2(µ, θ) r f3(µ, θ)√

rg1(µ, θ)
√
rg2(µ, θ) rg3(µ, θ)

]

×
⎡
⎣ KI

KI I

T

⎤
⎦ (1)

with

⎡
⎢⎢⎢⎢⎢⎢⎣

f1(µ, θ)

f2(µ, θ)

f3(µ, θ)

g1(µ, θ)

g2(µ, θ)

g3(µ, θ)

⎤
⎥⎥⎥⎥⎥⎥⎦

= 1

2μ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
1
2π

((
κ − 1

2

)
cos θ

2 − 1
2 cos

3θ
2

)
√

1
2π

((
κ + 3

2 ) sin θ
2 + 1

2 sin
3θ
2

)
1
4 (κ + 1) cos θ√

1
2π

((
κ + 1

2

)
sin θ

2 − 1
2 sin

3θ
2

)
√

1
2π

((
κ − 3

2

)
cos θ

2 + 1
2 cos

3θ
2

)
1
4 (κ − 3) sin θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

relative to a local coordinate system centered and
aligned with the crack tip, having basis vectors ê1 and
ê2, as depicted in Fig. 1 (Williams 1957). In Eq. (1), r
represents the distance from the crack tip and θ rep-
resents the angle relative to the ê1 basis vector, which
lies in the plane of the crack. To compactly illustrate
functional dependencies, we use the bold characters
r = [r, θ ], µ = [μ, κ], and K = [KI , KI I , T ].

We will consider the elastic constants to be known ,
with k = (μ the shear modulus and κ the Kolosov con-
stant) κ = (3−ν)/(1+ν) for plane stress condition and
κ = 3−4ν for plane strain (ν is Poisson’s ratio). Thus,
the LEFMmodel displacement field Eq. (1) depends on
six parameters: crack tip position, xtip

′
and ytip

′
, ori-

entation of the crack tip, φ′, and KI , KI I , and T . xtip
′
,

ytip
′
andφ′ are described relative to a global coordinate

system with basis vectors ê′
1 and ê′

2 (Fig. 1). Hence,
the identification of the crack tip position and SIFs
from observed displacement data can then be viewed
as a single nonlinear minimization/optimization prob-
lem, whereby the discrepancy between the given dis-
placement data set and the asymptotic LEFM displace-
ment field within an annulus is minimized over these
six parameters. To assess the discrepancy between the
given data set and the asymptotic LEFM field, a dis-
placement data point i , observed in the global coordi-
nate system at x ′

i and y′
i and having displacement com-

ponents of uobs
′

i and vobs
′

i , can be expressed relative to
Eq. (1)

via a rigid transformation
[
uobsi (φ′)
vobsi (φ′)

]
=
[
cosφ′ sin φ′

− sin φ′ cosφ′
][

uobs
′

i
vobs

′
i

]
(3)

and
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Fig. 1 The displacement fields in the x and y directions for a
mode I and b mode II loading. Configurational details demon-
strating. c the crack tip relationships with the local coordinate
system, centered and aligned with the crack tip, and the annulus

of K-dominance with inner radius Rin and outer radius Rout .
d The global coordinate system with basis vectors ê

′
1 and ê

′
2,

showing the crack tip position, (xtip
′
, ytip

′
)

[
xobsi (φ′, x′

i , x
t i p′

)

yobsi (φ′, x′
i , x

t i p′
)

]
=
[
cosφ′ sin φ′

− sin φ′ cosφ′
] [

x ′
i−xtip

′

y′
i−ytip

′

]
,

(4)

where

robsi (φ′, x′
i , x

t i p′
)

=
√
xobsi (φ′, x′

i , x
t i p′

)2 + yobsi (φ′, x′
i , x

t i p′
)2

θobsi (φ′, x′
i , x

t i p′
) = arctan

yobsi (φ′, x′
i , x

t i p′
)

xobsi (φ′, x′
i , x

t i p′
)

The position of the crack tip in the global coordinate

system is expressed compactly as xt i p
′ =

[
xtip

′
, ytip

′]
while the coordinates of a particular data point i in the

given data set are presented as x
′
i =

[
x

′
i , y

′
i

]
. In addi-

tion to aligning coordinate systems, this transformation
will also remove any in-plane rigid body motions that
might exist in the given displacement data set. The left
side of Eq. (4) will be subsequently represented in com-
pact form as robsi (φ′, x′

i , x
t i p′

).
The discrepancy between the LEFM model and a

given data point i is quantified with a residual vector,[
Ru

i
Rv

i

]
=
[
uobsi (φ′)−u(robsi (φ′, x′

i , x
t i p′

),µ, K )

vobsi (φ′)−v(robsi (φ′, x′
i , x

t i p′
),µ, K )

]
.

(5)

Subsequently, the 6 model parameters xt i p
′
, φ′, and K

that minimize the residual vector’s normalized length
across the data set with n number of data points,

Φdc = 1

n

n∑
i=1

((
Ru

i

)2 + (
Rv

i

)2)
, (6)

is the best fit LEFM model in terms of a least squares
measure when the elastic constants µ are known.

When xti p
′
and φ′ are prescribed to be fixed val-

ues, the minimization of Φdc simplifies to a linear
regression problem, as detailed in Wilson et al. (2019).
Numerous examples of this displacement correlation
approach are found throughout literature (Sanford and
Dally 1979; Ayatollahi and Nejati 2011; Seitl et al.
2017; Lim et al. 1992). Hamam et al. (2007) suggest a
number of improvements to displacement correlation
using an “integrated DIC approach” that employs ana-
lytic gradients while also coupling measurement and
identification stages. However, the authors ignore noise
in their analysis and mention the need to extend their
analysis to more complex loading conditions. Both of
these deficiencies are addressed in our manuscript.

It is also worth noting that the configurational crack
driving force can be computed without the knowledge
of the crack tip using the J-integral (Rice 1968), as
demonstrated by Gonzáles et al. (2017), Réthoré et al.
(2005) and Yoneyama et al. (2014). These approaches
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directly compute the J-integral from displacement
fields in order to derive the SIFs using their equiva-
lence relationship for isotropic linear elastic materials
(Yoda 1980). However, though the J-integral approach
does not require accurate location of the crack tip, it is
often more complex due to the effects of crack closure,
crack tip blunting and residual strains (Gonzáles et al.
2017), thereby leading to inappropriate conclusions. In
this manuscript, the authors focus on accurately and
efficiently inferring the crack tip position from full-
field displacement data. Then, the SIFs are computed
to quantize the crack driving force.

We present an approach for the nonlinear problem
of identifying crack tip position when xti p

′
is not pre-

scribed. The approach utilizes the separable charac-
teristic of the asymptotic LEFM displacement field to
accelerate the computation of crack tip position by
avoiding a minimization over the six unknown param-
eters of Eq. (6). Following a search for the crack tip
positionwith the proposed separability approach, a sin-
gle nonlinear optimization problem over , KI , KI I , and
T can be performed at that crack tip position to iden-
tify the SIFs. Our approach assumes a fixed value for
crack orientation (φ′) as prescribed by the basis set
projection method developed by Wilson et al. (2019).
We do not solve for φ′, though this can be imple-
mented. The concept can also be extended to the case
of a dynamic fracture, in which case the formulation
is expected to be more complicated than the one pre-
sented in this manuscript. Nonetheless, the proposed
separability approach is expected to be applicable to
the case of dynamic fracture as the displacement rates
for modes I, II and III remain separable into r and θ

(Freund 1998).
The manuscript begins with an assessment of the

implications of inaccurately locating crack tip position
for the purpose of quantifying the SIFs from a given
displacement data set. Then, the proposed approach is
presented and its performance across a rangeof applica-
tions is examined.We note that multiple other advance-
ments in algorithmic approaches have been proposed,
like the use of domain-independent integrals (Réthoré
et al. 2005), interpolation (Jiang et al. 2015), super res-
olution in the post processing stage (Hansen et al. 2021)
and combing multiple optimization approaches (Wu
et al. 2016). In this work, we do not attempt to make
comparisons to what might be considered advanced
approaches. Here, we make a consistent comparison
between pattern search optimization (Zanganeh et al.

2013; Hooke and Jeeves 1961) of traditional displace-
ment correlation and our separability approach, thus
including the use of a single non-linear optimization
approach for both cases. The proposed approach pre-
sented here will be subsequently referred to as the
“separability approach”. The widely used regression
approach described by Eqs. (3)–(6) will be referred to
as the “displacement correlation approach”.

2 Role of crack tip position in the computation of
stress intensity factors

The role of the crack tip position in the determination
of the SIFs is illustrated here with a simple example. To
highlight the universality of the results presented in this
and subsequent sections, the SIFs are presented in units
of μ

√
Rout , where μ is the shear modulus of the mate-

rial. Rout is the outer radius of an annulus centered at
the crack tip and is the only length scale of the problem.
Hence, all length scales are represented in units of Rout .
The normalized variables are denoted using a tilde, e.g.
ũ = u/Rout , r̃ = r/Rout , and K̃ I = KI /μ

√
Rout .

To highlight the importance of the assumed crack
tip for correctly computing SIFs, a synthetic infinite
medium mode I displacement field was created with
a known position of the crack tip at (0,0). A collec-
tion of 250,000 points was placed as a regular grid
within a square domain arranged in a grid spacing of
L = 0.05Rout . The example presented here (Fig. 2)
corresponds to synthetic displacement data generated
from Eq. (1) with K̃ I = 1.10, ˜KI I = 0.00 and
T̃ = 0.00.

The annulus was centered on the presumed crack
tip, with Rin chosen to be 0.1Rout , and it encompassed
1240 points. Points lying within a distance of 1.5Rout

of the true crack tip position, in both x and y direc-
tions, were used as potential crack tip positions. The
associated KI value, Kin f er

I , was inferred using Eq.
(1) for each of these potential crack tip positions. In
order to compute errors in the inferred KI values, the
KI value associated with K̃ I = 1.10 was considered as
the ground truth and this value is referred to as K true

I .

The errors between K true
I and Kin f er

I for each assumed
crack tip position are plotted in Fig. 2.

Figure 2 demonstrates that inaccuracy due to an
incorrectly assumed crack tip position can lead to both
over and under predictions of KI , dependent upon the
relative location of the assumed position. This was
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Fig. 2 Errors between
actual KI values (K true

I ) for
a square domain with
K̃ I = 1.10,˜KI I = 0.00,
T̃ = 0.00 and the inferred
KI values (K

in f er
I )

computed as a function of
assumed crack tip position.
The actual crack tip is
marked with a ’+’ sign and
located at (0,0), where the
error is zero as indicated by
the color bar on the right

found to be true for KI I as well, though it has not been
shown here for the sake of brevity. With respect to the
goal of locating the crack tip, Fig. 2 demonstrates that
a search seeking to maximize or minimize SIFs such as
KI will not suffice to identify the crack tip position. Fur-
ther, the values of SIFs that are computed at an incorrect
crack tip position do not bound the true value. For KI ,
the error nears its maximum along the crack propaga-
tion direction ê1, where it scales approximately linearly
with distance below 0.5Rout . This motivates the choice
of using a maximally-sized annulus when inferring KI

to minimize error arising from an incorrectly assumed
or inferred crack tip position.

3 Inferring crack tip position

Having established the importance of accurately locat-
ing the crack tip position, we now propose an approach

to expedite the inference of the crack tip position. The
proposed approach is referred to as the “separability
approach,” as it exploits the multiplicative separability
of the asymptotic near tip stress field into radial and
angular components. It will be shown to be effective
even when substantial noise exists in the observed dis-
placements.

To begin, the separability approach considers the
expected value (Bertsekas and Tsitsiklis 2008) of each
component of the displacement field within a sub-
annulus j , where the inner radius of this sub-annulus j
is defined as Rin

j = j
m

(
Rout − Rin

)
for a total number

of m sub-annuli. The outer radius of the sub-annulus
j is a multiple of the inner radius, i.e. Rout

j = αRin
j ,

where α ∈ R

+.
From Eq. (1), the expected values are expressed as

123



52 S. Gupta et al.

⎡
⎣

j
E [u(r, θ)]
j
E [v(r, θ)]

⎤
⎦ =

⎡
⎣

j
E [√r] j

E [ f1(µ, θ)] j
E [√r] j

E [ f2(µ, θ)] j
E [r] j

E [ f3(µ, θ)]
j
E [√r] j

E [g1(µ, θ)] j
E [√r] j

E [g2(µ, θ)] j
E [r] j

E [g3(µ, θ)]

⎤
⎦
⎡
⎣ KI

KI I

T

⎤
⎦ (7)

where the linearity of the expectation operator
j
E in

the sub-annulus j allows the expectation to be applied
independently to each entry in the 2× 3matrix, and the
separable nature of each entry allows the expectation
to be applied over r and θ independently. In probabil-
ity theory, the expectation of a function is the integral
of the function multiplied with it’s probability density
function, over a given interval. The formof the θ depen-
dent terms and the range of the expectation, [−π, π ],
produces zeros in 4 of the 6 components, reducing Eq.
(7) to⎡
⎣

j
E [u(r, θ)]
j
E [v(r, θ)]

⎤
⎦

=
⎡
⎣

j
E [√r] j

E [ f1(µ, θ)] 0 0

0
j
E [√r] j

E [g2(µ, θ)] 0

⎤
⎦

⎡
⎣ KI

KI I

T

⎤
⎦ (8)

For all observed data points having positions within
a sub-annulus j , the average displacement components

are denoted as
j

uobsi and
j

vobsi , respectively. Accordingly,
j

uobsi and
j

vobsi can be viewed as approximations of
j
E [u]

and
j
E [v]with residuals

j

Ru
i and

j

Rv
i . From this vantage,

Eq. (7) can be utilized to write
⎡
⎢⎢⎣

j

uobsi
j

vobsi

⎤
⎥⎥⎦ =

⎡
⎣

j
E [√r] j

E [ f1(µ, θ)] 0 0

0
j
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⎤
⎦

×
⎡
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T

⎤
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⎡
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j

Ru
i
j

Rv
i

⎤
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which reduces to⎡
⎢⎢⎣

j

uobsi
j

vobsi

⎤
⎥⎥⎦ =

⎡
⎣ KI
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E [ f1(µ, θ)]
KI I
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E [g2(µ, θ)]

⎤
⎦+

⎡
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j

Ru
i
j

Rv
i

⎤
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(10)

j
E
[√

r
]
can be expressed in closed form

j
E [√r] =

∫ Rout
j

Rin
j

2π r
√
rd r

∫ Rout
j

Rin
j

2π rd r
= 4

5

√
Rout
j

1 − α−5/2

1 − α−2 ,

(11)

where the outer radius of the sub-annulus j is defined
as Rout

j = αRin
j .

Equation (10) can then be understood to equate the
average observed value of displacement components
to the radius of the sub-annulus with a single constant
that is independent of crack orientation, KI , KI I , and
elastic properties of the material, i.e.

j

uobsi = C1

√
Rout
j +

j

Ru
i (12)

and
j

vobsi = C2

√
Rout
j +

j

Rv
i . (13)

Similar to Eq. (5), the discrepancy between the aver-
age observed value of displacement components at a
given data point i and the product of the constant with
the square root of the outer radius of the sub-annulus
j , is quantified with a residual vector

⎡
⎢⎣

j

Ru
i
j

Rv
i

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

j

uobsi −C1

√
Rout
j

j

vobsi −C2

√
Rout
j

⎤
⎥⎥⎥⎦ . (14)

Given values of
j

uobsi and
j

vobsi for each sub-annulus
j , the values of the constants C1 and C2 that minimize
the normalized length of the residual vector across all
m sub-annuli that partition the annulus give the best fit
LEFM model via a least squares measure,

Φsep = 1

m

m∑
j=0

n∑
i=1

⎛
⎝
(

j

Ru
i

)2

+
(

j

Rv
i

)2
⎞
⎠ . (15)

Thus, the separability (Eq. (15)) is minimized in
the 2D parameter space of r and θ whereas the dis-
placement correlation cost function (Eq. (6)) involves
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a 6D minimization problem over r , θ , φ′, KI , KI I and
T -stress. It should be noted that the performance of the
separability approach is independent of the level of T-
stress (Eq. (8)). However, once the crack tip position is
inferred, a single nonlinear optimization is performed
to find KI , KI I , and T . This is different from displace-
ment correlation, whereby if T-stress is not included
in the expansion, an elevated level of T-stress would
hinder the utility of the algorithm.

Equations (6) and (15) are nonlinear equations w.r.t.
the unknown parameters. A pattern search optimization
algorithm (Zanganeh et al. 2013; Diniz-Ehrhardt et al.
2019) was used to find the minimum of the displace-
ment correlation and separability cost functions.

4 Analysis of separability and displacement
correlation approaches

To assess the utility of the separability approach rela-
tive to the existing displacement correlation approach,
four attributes are considered: (1) cost function land-
scape, (2) robustness in application to non-ideal data
sets, (3) robustness relative to noise in the data set, and
(4) computational expense.

4.1 Cost function landscape

Cost function landscapes for the displacement corre-
lation (Eq. (6)) and separability (Eq. (15)) approaches
are presented in Fig. 3 for a range of assumed crack

tip positions, ˜xtip′ and ˜ytip′ . Each row of the figure
corresponds to the cost function landscapes for the
two approaches associated with a different synthetic
data set. The first three rows correspond to displace-
ments generated from Eq. (1) using pure mode I, pure
mode II, and mixed mode loading with nonzero T -
stress. The fourth set mimics the third but includes the
addition of an independent and identically distributed
Gaussian noise to each component of the data set. The
noise had a mean of zero and a standard deviation of
σ = 0.025Rout = 0.5L , i.e. δui ∼ N (0, σ 2) and
δv
i ∼ N (0, σ 2) were added to each component of the
data set.

For perspective, we note that this noise level is large
relative to the molecular dynamics of common struc-
tural materials at 300K, which would have noise levels

in the range of σ = 0.01L to 0.04L (Liang and Ye
2014; Williams 1957; Mai and Choi 2018).

For consistency with Sect. 2, the grid and annulus
sizes remained L = 0.05Rout and Rin = 0.1Rout

respectively, which equated to 1240 points within the
annulus. In all cases, the synthetic data set corresponds
to a crack tip positioned at (0,0) and having an orien-
tation of 0◦. Two sub-annuli were used for the sepa-
rability approach, i.e. m = 2 in Eq. (15). Based on
the analysis shown in Sect. 4.3, this value of m = 2
minimizes the amount of noise for a given number of
points.

As expected from the linearity of LEFM fracture
modes, the mixed mode contour landscapes (Fig. 3e, f)
can be viewed as the sum of mode I and mode II land-
scapes, plus the influence of a uniformT-stress that acts
parallel to the crack face plane. The landscape of the
fourth row (which includes noise) does not differ signif-
icantly from the third, showing that the addition of this
level of noise was nominally inconsequential. With the
parameters used, a very large noise level of σ = L was
required before the effects of noise were substantial in
the two approaches. Taking an average over 50 simu-
lations at the noise level of σ = L , the position error
for the displacement correlation approach was 0.16L
and for separability, this error in inferred crack tip was
0.20L. Doubling the number of points within the annu-
lus reduced this error to 0.15L for displacement corre-
lation and 0.06L for separability. All landscapes shown
in Fig. 3 have a global minimum at the true crack tip
position and are convex within a distance of Rout about
that position.

Beyond these similarities, the separability land-
scapes display some inferior attributes relative to the
displacement correlation landscapes. First, the separa-
bility landscapes display a roughness, even in the cases
where no noise was added to the synthetic data set. This
is attributed to the error in computing the expectation in
Eq. (11) from a finite-sized data set. Second, the sepa-
rability landscape can show multiple minima, whereas
the displacement correlation landscape remains con-
vex with a single minimum within the 4Rout domain
examined. If insufficient points are used in the separa-
bility method, either due to low point density or insuf-
ficiently sized annulus, multiple minimum can appear
at multiples of Rout . Fortunately, the multiple minima
of the separability approach are organized along the
crack plane at a spacing of Rout , which does reduce
their impact on the identification of the crack tip, i.e.
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Fig. 3 Comparison of the cost function landscapes of the dis-
placement correlation and separability approaches for a, bmode
I, c, dmode II and e, f mixed modes (including T-stress) of frac-
ture in the case of no noise in the data. g, h Effect of noise on
the displacement correlation and separability cost functions in
the mixed mode scenario. The value of noise points to the mean

of a random displacement of Gaussian distribution. The global
minimum value of the respective cost functions, signifying the
position of the crack tip inferred by each approach, is represented
by the ′+′ sign in the color maps. The ′X ′ sign signifies the mul-
tiple local minima seen in the separability cost function plots
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the minimization algorithm can be set to expect this
specific situation. The occurrence of such local min-
imum is dependent of the choice of annulus dimen-
sions, both α and Rout , and the number of points in the
annulus. Third, the separability cost function is flatter,
i.e. has less curvature, meaning that it would be more
easily disrupted by noise. The effect of this difference
with respect to noise is discussed more quantitatively
in Sect. 4.3.

4.2 Robustness in application to non-ideal data sets

To assess the robustness of the separability approach,
three cases involving data sets that do not correspond
to the ideal asymptotic LEFM solution were examined.
In all cases, the data sets were generated from non-
deal displacements obtained by Finite Element (FE)
solutions to boundary value problems. The FE mesh
involved two regions, each entailing a uniform grid of
six-noded quadratic triangular elements. The FE solu-
tion was obtained by fully integrating the elements
with six integration points. Centered at the crack tip
was a 3Rout by 3Rout region of finer elements with an
edge length of 0.05Rout . This finer meshed region was
encompassed in a 10Rout by 10Rout region of coarser
elements with an edge length of 0.1Rout . A crack of
length of 5Rout extended across half of the FE domain.

A Poisson’s ratio of 0.28 was assigned, correspond-
ing to a Kolosov constant (= 3–4ν) of 1.88 in plane
strain.

In all cases the symmetry of the problem permitted
simulation of only half the domain, mirrored about the
crack plane (Fig. 4). For the cost function landscapes
presented in Fig. 4, there were ∼1260 points within
the annulus in the fine mesh region. As the annulus
gradually moved outside of the fine mesh region to
evaluate the cost function at distances up to 4Rout away
from the crack tip, the number of points within the
annulus reduced. Once the annulus lied entirely in the
coarse mesh region, there were ∼300 points within the
annulus.

Case I entailed a linear elastic domain with dis-
placement boundary conditions taken from the the
LEFM solution for a sharp crack in an infinite isotropic
elastic medium (Eq. (1)). Specifically, the boundary
conditions corresponded to pure mode I loading with
K̃ I = 1.10 and ˜KI I = T̃ = 0. In the domain, the
FE displacements differ from the LEFM solution in

Fig. 4 Separability cost function maps in non-ideal datasets. a
Linear Elastic Finite Element. b Elastic Plastic Finite Element,
and c Linear Elastic Finite Domain Finite Element. The global
minimum value of the respective cost functions, signifying the
position of the crack tip inferred by each approach, is represented
by the ′+′ sign while the ′X ′ sign demonstrates the presence of
the local minimum seen. The boundary conditions for each case
are shown in grey. Sub-figure (b) also displays the plastic zone
in the crack tip region in the elastic–plastic case
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Table 1 A comparison of separability (sep) and displacement
correlation (dc) approaches applied to non-ideal cases: Linear
Elastic FractureMechanics (LEFM) Finite Element (FE), Elastic

Plastic Fracture Mechanics (EPFM) FE and linear elastic Finite
Domain FE

K̃ I ˜KI I T̃ x̃ ỹ Avg. itera-
tions

Avg.
time(s)

1. Analytic solution 1.10 0.00 0.00 0.00 0.00 – –

2. LEFM FE-given tip 1.03 0.04 0.00 0.00 0.00 – –

3. LEFM FE-dc 0.83 −0.01 0.01 0.20 0.02 166 3.43

4. LEFM FE-sep 0.88 0.03 0.01 0.15 0.00 22 0.01

5. EPFM FE-given tip 1.17 0.05 −0.03 0.00 0.00 – –

6. EPFM FE-dc 0.91 −0.01 −0.01 0.25 0.02 148 4.02

7. EPFM FE-sep 1.38 0.06 −0.04 −0.25 0.00 24 0.07

8. EPFM FE-dc, apt annulus 1.05 −0.02 −0.01 0.08 0.01 362 7.49

9. EPFM FE-sep, apt annulus 1.13 0.03 −0.01 0.02 0.00 45 0.25

10. Finite domain FE-given tip 0.92 0.03 −0.02 0.00 0.00 – –

11. Finite domain FE-dc 0.43 0.01 0.00 0.55 0.04 108 3.98

12. Finite domain FE-sep 0.49 −0.01 0.00 0.47 −0.03 32 0.07

13. Finite domain FE-dc, apt annulus 0.64 0.01 −0.01 0.30 0.00 174 3.12

14. Finite domain FE-sep, apt annulus 0.75 0.02 0.01 0.18 0.00 34 0.08

Bold values denotes separability approach’s expedited solution, thereby highlighting the large difference between average times to
solutions between the two approaches
‘Apt annulus’ refers to a modified annulus size that was more appropriate for the given case

the region near the crack tip where the quadratic shape
functions are incapable of capturing the LEFM solu-
tion. Given that the FE solution is stiffer, its displace-
ment magnitudes approaching the crack face are less
than the LEFM solution (Hughes 2012); and thus, the
inferred SIF is less than the far field applied value when
providing the correct (0,0) crack tip position (line 2 in
Table 1).

With both the displacement correlation and separa-
bility approaches, the crack tip position is inferred to
be in front of the true position. This is consistent with
the discrepancy in displacements between the FE and
LEFM solutions being most significant in the region
immediately behind the crack tip. As such, the cost
functions areminimized at a location ahead of the crack
tip. As shown in Fig. 2, this error in crack tip position
leads to an underpredicted SIF, KI . Hence, both dis-
placement correlation and separability lead to under-
predicted stress intensity factors for this data set due
to two distinct causes: the lower displacement magni-
tudes at the crack tip and the identification of a crack
tip position that is in front of the true crack tip.

Case II entailed the same boundary conditions as
case I, but involved an elastic–plastic linear hardening
J2 plasticity material model with a normal flow rule

(Fig. 4b). A kinematic hardening modulus of 0.10E,
isotropic hardening of also 0.10E and an initial yield
strength of 0.12E was used, where E is the Young’s
modulus. The initial yield strength was chosen so that
there was substantial overlap between the plastic zone
and the annulus, as can be seen in Fig. 4b. The length
of the plastic zone along the y axis was 2Rout for the
selected loading and material properties.

The addition of plastic strain to the model increases
the displacement magnitudes near the crack tip relative
to case I. This equates to an increase in the inferred
SIF relative to case I (line 5 in Table 1). When using
displacement correlation to locate the crack tip posi-
tion, the occurrence of plasticity causes the inferred
crack tip position to shift forward, due to the great-
est discrepancy in displacements occurring behind the
crack tip (comparing elastic–plastic with LEFM case).
This shift is consistentwith small scale yielding elastic–
plastic fracturemechanics (Zehnder 2012).As depicted
in Fig. 2, the shift/error in crack tip position decreases
the predicted SIF, counteracting the effect of increased
displacement magnitudes. In the case where separabil-
ity is used to identify the crack tip position, the inferred
crack tip is shifted behind the true tip position (Fig. 4b),
leading to an even greater value of inferred SIF.
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Case III entailed the same linear elastic material
model as case I, but different boundary conditions. In
this case, the left and right boundaries of the domain
were traction free and a constant tractionwas applied to
the top and bottomboundaries (Fig. 4c). Themagnitude
of the applied traction was chosen following the LEFM
equations for an edge crack in afinite plate of size 5Rout

by 10Rout (Tada et al. 1973) such that K̃ I = 1.10 to
enable direct comparison with the previous cases. In
total, the FE model of case III produces a displacement
field that differs from the asymptotic LEFM solution
both close and far from the crack tip. In close range the
difference is due to the FE approximation, while at far
range the difference is due to the boundary effects of
the finite domain.

For a crack tip position at (0,0) in this geometry, a
smaller SIF of 0.92 is inferred (line 10 in Table 1). The
difference between this value and that of case I (line 2 in
Table 1) can be attributed to the presence of the model
domain boundaries and is consistent with the elasticity
solution (Tada et al. 1973). When displacement corre-
lation and separability are used to infer the crack tip
position, both return a predicted crack tip position that
is in front of the true position.We interpret this result to
be due to the displacement field being more influenced
by the finite domain behind the crack tip, rather than
in front of it. This error in crack tip position further
reduces the inferred crack tip SIF as shown in Table 1.

In all cases, the non-ideal nature of the data did not
qualitatively alter the cost function landscape (Fig. 4).
Quantitatively, the minimum of the separability land-
scapes (inferred crack tip position) displayed equal
or greater accuracy than the displacement correlation
landscapes. That said, in the case of crack tip non-
linearity, the separability approach produces an error
in the opposite direction of the displacement correla-
tion approach. This can have substantial implications
on the value of the SIF that is ultimately inferred. With
separability, the error in the crack tip position leads to
an error in SIF. This discrepancy adds to the error asso-
ciated with the plastic displacements near the crack tip.
That said, in practice one should attempt to chose an
annulus that is larger than the plastic zone size (Pataky
et al. 2012) and significantly smaller than the domain
size. In Table 1 and Fig. 4, this was not the case.

For illustration, case II was reexamined with Rout

being twice the plastic zone size. In this scenario, the
separability approach infers a SIFs within 1.8% of the
values at true crack tip position (0,0). In this setting, the

inferred crack tip returned by the separability approach
is (0.02, 0.00)Rout (lines 8 and 9 in Table 1). Qualita-
tively different from lines 6 and 7 in Table 1, these
values are more accurate than the values computed
with the displacement correlation approach, where the
inferred SIF is 7.50% from the true value and the asso-
ciated inferred crack tip is (0.08, 0.01)Rout . Similarly
for case III, selecting a more appropriate annulus leads
to greater convergence with the true values (lines 13
and 14 vs lines 11 and 12 in Table 1). Thus, the choice
of annulus is fundamental to the accuracy of the sepa-
rability approach.

4.3 Robustness relative to noise in the data set

The sensitivity of the cost functions to random noise
in the observed data is a key attribute that controls the
utility of the cost functions for inferring crack tip posi-
tion. The separability approach involves minimization
of a cost function with less curvature than displace-
ment correlation (Fig. 3), but the separability approach
is built upon average values of the displacement mak-
ing it less sensitive to noise when there are sufficient
data points to compute the averages precisely.

In the simple case where the observed displacement
vector components only differ from the linear elastic
model by an independent and identically distributed
Gaussian noise of mean zero and standard deviation σ ,
i.e. δui ∼ N (0, σ 2) and δv

i ∼ N (0, σ 2), Eq. (6) takes
the form

Φdc = 1

n

n∑
i=0

((
δui
)2 + (

δv
i

)2)
. (16)

In this case, Φdc is a sampled statistic that follows a
Chi-squared distribution with a standard deviation of

stdev(Φdc) = 2σ 2/
√
n. (17)

where n is the number of points within the annulus.
The analysis of the separability cost function ismore

complicated, requiring the distribution of the sampled
average displacement components in sub-annuli j to

be assessed,
j

uobsi and
j

vobsi . To start,
j

uobsi and
j

vobsi are
written in terms of the expectation of u and v in the
LEFM model and in the sub annulus j as

j

uobsi = j
E [u]+ j

ε [ui ] + δui ,

j

vobsi = j
E [v]+ j

ε [vi ] + δv
i ,

(18)
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with
j
ε [ui ] and

j
ε [ui ] representing the difference

between the sampled average values and the expecta-

tion in the absence of noise. In other words,
j
ε [ui ] and

j
ε [ui ] represent the residual associated with approx-
imating the integral in the expectation operator with
Monte Carlo Integration.

PluggingEqs. (12) and (13) intoEq. (18) provides an
expression for the residuals given sampled data points
within an annulus j ,

j

Ru
i = C1(KI , KI I , μ, κ, φ)

√
Rout
j

− (
j
E [u]+ j

ε [ui ] + δui ),

j

Rv
i = C2(KI , KI I , μ, κ, φ)

√
Rout
j

− (
j
E [v]+ j

ε [vi ] + δv
i ).

(19)

In the simple case considered previously, where the
observed sampling of displacement vector components
only differ from the linear elastic model by an indepen-
dent and identically distributedGaussian noise ofmean
zero and standard deviation σ , Eq. (19) reduces to

j

Ru
i = −(

j
ε [ui ] + δui ),

j

Rv
i = −(

j
ε [vi ] + δv

i ).

(20)

The cost function for the separability approach, Eq.
(15), reduces to

Φsep = 1

m

m∑
j=0

(
j
ε [ui ] + δui

)2

+
(

j
ε [vi ] + δv

i

)2

,

(21)

Given that δui ∼ N (0, σ 2), the sampled average
of δui on n/m data points within a sub-annulus is dis-
tributed as δui ∼ N (0, σ 2 m/n). Here, n/m data points
per sub-annulus are considered to enable a direct com-
parison between the displacement correlation and sep-
arability approaches when the same number of data
points are utilized in both cases.

The distributions of
j
ε [ui ] and

j
ε [vi ] depend on the

distribution of the population from which ui and vi are
sampled. This depends on KI , KI I , μ, κ, φ. While one
could compute it exactly for a specific choice of these
parameters, we proceedmore generally, approximating
it as a uniform distribution from umin to umax within

the annulus. umax is the maximum observed displace-
ment component from the linear elastic model, given
KI , KI I , T, μ, κ, φ, Rout , and umin is taken to be -
umax .

With this assumption,
j
ε [ui ] follows a Bates

distribution with mean zero and standard deviation
umax/

√
3n/m. Considering the value of n/m in prac-

tice, the Bates distribution can be approximated by a

normal distribution, i.e.
j
ε [ui ] ∼ N (0, mu2max/3n)

as n/m −→ ∞. With this approximation and pro-

vided
j
ε [ui ] and δui are independent,

j
ε [ui ] + δui ∼

N (0, mu2max/3n + σ 2 m/n). By the same reasoning,
j
ε [vi ] + δv

i ∼ N (0, mv2max/3n + σ 2 m/n).
In this context, each side of Eq. (21) can then be

viewed as a sampled statistic following a sum of two
Chi-squared distributions. Insight into the scaling of
the variability of Φsep can subsequently be obtained
by considering the simplified case when u2max and v2max

are equal and
j
ε [ui ] and j

ε [vi ] are independent, i.e.

stdev(Φsep) = 2
√
m

n
(u2max/3 + σ 2). (22)

A direct comparison of stdev(Φsep) and stdev(Φdc)

does not provide a fair comparison of the ability of the
separability and displacement correlation methods to
handle noisy data sets, as the landscape of Φsep has
less curvature. From Fig. 3, a factor of 100 can be seen
to provide a reasonable approximation of the curva-
ture difference. Therefore, with respect to finding a
crack tip in a noisy data set, separability would favor-
able when 100× stdev(Φsep) < stdev(Φdc). Utilizing
Eqs. (17) and (22) then gives an approximate inequal-
ity between an effective signal-to-noise ratio and the
number of points in the data set, giving an indication
of when separability would be favorable

umax

σ
<

√
3

10

√√
n

m
− 1 (23)

Acknowledging that the separability approach per-
forms best with two sub-annuli, i.e.m = 2 (in Eq. (22),
m = 2 gives the minimum value of stdev(Φsep)), Eq.
(23) suggests separability to be favorable at signal-to-
noise ratios ( umax

σ
) below 0.2, 0.4, 0.8, and 1.4 for 10,

100, 1000, and 10,000 data points, respectively. With
that said, we point out that umax is not just a func-
tion of the stress intensity and elastic modulus, but also
a function of the annulus size, increasing linearly with
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√
Rout . Therefore, the signal-to-noise ratio sufficient to

motivate the use of the separability approach depends
on the annulus size, such that the separability approach
is favored at smaller annulus sizes, which aremotivated
in practice by a desire to limit finite domain effects in
the data set.

4.4 Computational expense

The utility of the separability approach depends not
only on its robustness when using noisy non-ideal data
sets, but also on its computational expense.

The computational expense of the separability cost
function (Eq. (15)) in the practical case of n/m 
 1 is
dominated by the computation of the average displace-
ment components in the sub-annuli. This requires 2n
additions. The other computations scale withm andm2

and are thus insignificant when n/m 
 1.
The evaluation of the displacement correlation cost

function (Eq. (6)) requires significantly more com-
putation, i.e. n square roots, 4n trigonometric oper-
ations, 12n multiplications, and 6n addition opera-
tions. Further, the cost function must be evaluated
more timeswith the displacement correlation approach,
as it involves minimization in a 6D parameter space,
whereas the separability cost function is minimized in
a 2D parameter space.

Table 1 demonstrates the significant difference in
computation time and number of iterations for the two
approaches considering the non-ideal data sets that
were discussed in Sect. 4.2. The time taken for finding
the crack tip is directly proportional to the number of
points in the annulus and can end up being several hours
for displacement correlation. Pattern search optimiza-
tion (Zanganeh et al. 2013; Hooke and Jeeves 1961;
Lewis et al. 2000) was, thus, incorporated to expedite
the computations as a researcher would do in practice.

In all the cases shown in Table 1, pattern search
optimization algorithm was used to find the minimums
of the cost functions, and n varied between ∼300 and
∼1260 depending uponwhether the trial crack tip posi-
tion was in the fine or coarse meshed regions. A start-
ing guess of (Rout/2, Rout/2) was used for all cases. In
this context, the computational time of the separability
approach is shown to be approximately 30× superior to
the displacement correlation approach and is the result
of both fewer iterations to solution and less computa-
tional time per iteration.

This difference in computational expensemeans that
Eq. (23) is not a sufficient indicator in the decision
of whether to use the separability approach. For equal
computational cost, ∼ 30× points can be used with
the separability approach, i.e. nsep = 30ndc, and there-
fore following Eq. (24) and utilizing the approxima-
tions 30

√
ndc/m − 1 ≈ 30

√
ndc/m and

√
90/10 ≈ 1,

the separability approach can be considered favorable
when

umax

σ
<
(ndc
m

)1/4
. (24)

Acknowledging again that the separability approach
performs best with two sub-annuli, i.e.m = 2, Eq. (23)
suggests separability to be favorable at signal-to-noise
ratios ( umax

σ
) below 1.5, 2.7, 4.7, and 8.4 for 10, 100,

1000, and 10,000 data points, respectively, considering
the computational costs observed in Table 1.

Finally, we note that the storage requirements of the
separability and displacement correlation approaches
are both minimal, as neither scales with n (Wilson et al.
2019).

5 Demonstrations

The separability approach presented in this manuscript
has wide-ranging applications. It can be utilized on
any displacement dataset that encapsulates a crack tip,
from computer simulation and laboratory experiment
to field data. The wide applicability is demonstrated
in this section by extending beyond the finite element
datasets analyzed in the previous section, considering
Molecular Dynamics (MD) and Digital Image Corre-
lation (DIC) datasets as two examples.

The MD simulation data presented in Wilson et al.
(2019) was used an an example upon which to utilize
the separability approach to infer crack tip position.
The Wilson et al. data was generated using the Large-
scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) (Plimpton 1995; Thompson et al. 2021)
and involved the fracture of a silica glass sample sub-
jected to a uniaxial strain in the y direction with an
initial edge crack extending in the x direction that was
subjected tomode I loading. The samplewas 55× 22×
5 nm and consisted of 362 thousand atoms at 300K. In
the z direction, the specimenwas simulated as infinitely
thick via periodic boundary conditions. With the uni-
axial strain held fixed at a sufficiently high value, the
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molecular dynamics simulation resulted in crack prop-
agation, with the atomic configurations being analyzed
every 400,000 time steps. The separability approach
was used to infer the crack tip position at each timestep,
with Rout = 62.5 Å and α = 2.5 that yielded n ≈
29,000 in this case. Here, the elastic properties of the
material were known and could be used to also com-
pute the SIFs associated with the inferred crack tips.
In other atomistic fracture simulations where the elas-
tic properties are unknown, the separability approach
can still be used to infer crack tip positions without
calculating the SIFs values.

The results of the separability approach across
sequential atomic configurations have been compared
to the crack positions inferred by visually examining
the geometry of the configurations. The degree of cor-
respondence between the two approaches is shown in
Fig. 5a. Human inference based upon the geometry of
the configurations can be seen tomostly overpredict the
length of the crack relative to the separability approach.
This over prediction is attributed to the crack tip blunt-
ing that occurred in the simulations, which moves the
crack tip position defined by LEFM forward relative to
the geometrically observable tip position. From Fig. 2,
this implies that the inferred SIF from a human inferred
crack tip position would be an over prediction of the
true value. For engineering applications where simu-
lation data of KI vs crack velocity might be used to
infer material behavior, the error is not conservative.
Had sufficient bridging behind the crack occurred, the
opposite result would be expected.

The data presented in Carroll et al. (2009) was used
as an example to demonstrate the utility of the sepa-
rability approach to infer crack tip position and ulti-
mately sSIFs from DIC experiments. Carroll et al.’s
experiments consisted of cyclically loaded single edge-
notched tension specimens of commercially pure tita-
nium.

A 2–8 Hz cyclic loading was performed such that
Kmax was maintained at 19 MPa

√
m with a load ratio

of nearly zero. Periodically, the cyclic loading rate was
slowed to 0.004 Hz to measure the SIF during the load
cycle via DIC. The slower cycle allowed 120 images
to be captured throughout the loading cycle. Figure5b
gives the inferred KI values during one of these mea-
surement cycles (as given in Fig. 12a in Carroll et al.
(2009)), using 5600 displacement points captured in a
710X40micronfield of view surrounding the crack tip.
The values of KI obtained by Carroll et al. were cal-

culated using the displacement correlation technique
on the displacement vector in the direction normal to
the crack plane and using a crack tip position that was
human inferred from the geometry visible using 28x
optical microscopy. Carroll et al. excluded a region of
80 µm around the crack tip from the displacement cor-
relation data set to exclude the plastic zone.

Inferred KI values from the separability method
applied to this data set are also shown in Fig. 5b. Two
different annuli sizes were used for separability. Annu-
lus 1 KI values were obtained using Rout = 108µm
and α ≈ 2.2, which yielded n = 128 whereas annulus
2 was defined by Rout = 100µm and α = 5, thereby
encompassing n = 134 points. The results from both
Carrol et. al’s and separability approaches are found to
be similar, although the separability inferred KI values
were noisier for annulus 1. This noise can be attributed
to a large signal to noise ratio for the governing param-
eters, as developed in Sect. 4.3, which leads to a noise
in the inferred crack tip position and ultimately in the
inferred KI value as presented in Fig. 2. Increasing the
annulus width improves the performance, as can be
seen in Fig. 5b with annulus 2. Wilson et al. (2019)
also discuss the effect of scaling the annulus in detail
in their analysis. Thus, as demonstrated, choosing dif-
fering sets of annulus parameters for analysis leads to
varying degrees of accuracy in the results. We further
leave the determination of appropriate parameters to
the user for obtaining accuracy in their application.

6 Conclusions

The occurrence and prevention of fracture has been
estimated to consume 4% of the US GNP (Reed 1983).
In attempts to reduce this burden, quantifying the SIFs
acting near the crack is often paramount. Identifying
the crack tip position is a required step towards this
goal.

This manuscript has presented a new approach to
identify crack tip position from displacement data. The
new approach, which we refer to as the separability
approach, is particularly useful in cases involving noisy
displacement data, where many data points are needed
to obtain sufficiently accurate results. Such cases are
becoming more prevalent with the increased digitiza-
tion of the physical world, e.g. digital imaging of lab-
oratory and field data. Further, there are multiple sim-
ulation approaches that are used to study fracture that
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Fig. 5 Applications a Comparison of crack tip locations calculated by Separability with the crack tips inferred from MD data. b
Comparison of K1 values from the Separability with DIC data shown in Fig. 12a in the paper by Carroll et al. (2009)

often involve noisy data, such asmolecular dynamics at
the nanoscale (Zhao et al. 2022) and discrete element
and peridynamics at the continuum scale (Baker and
Warner 2012; StenströmandEriksson2019;Wanget al.
2020). In all of the mentioned cases, crack blunting
(Gu and Warner 2021), bridging (Wilson et al. 2019),
and microcracking (Buehler et al. 2006) can create an
inconsistency between geometric approaches to locate
crack tip position and the mechanically defined posi-
tion needed to accurately identify the SIFs.

When the dataset is ideal, i.e. in accord with asymp-
totic linear elastic fracture mechanics, the separability
approach will produce a similar result as the widely
used displacement correlation approach. Therefore, the
appeal of the newly presented separability approach is
that it offers computational expediency over the exist-
ing approach. This expediency results not only from
its time to solution, but also from its ability to pro-
ducemore accurate solutions from large noisy data sets,
enabling the use of smaller displacement data sets in
some contexts with the separability approach.

The effect of deviations in the data set from the
asymptotic linear elastic ideal, e.g. finite boundary
effects and non-linearity near the crack tip, is shown
to not be substantially different between the two
approaches. In all examined cases, the user of the sep-
arability approach should be aware of the potential for
multiple local minima behind the ideal crack tip loca-

tion, if the choice of annulus dimensions is inappro-
priate or the number of points in the annulus is insuf-
ficient. Nonetheless, the challenge of multiple minima
can easily be addressed within the minimization rou-
tine, especially given the computational expediency of
the separability approach. In addition to its efficiency,
anothermajor advantage of the separability approach is
its ability to infer the crack tip locationwithout knowing
any elastic constants. This makes separability a partic-
ularly valuable approach for those studying atomistic
fracture.

A generally applicable python implementation of
the separability approach is given at DOI: 10.5281/zen-
odo.7850717. It includes an example involving its uti-
lization within a python wrapper that calls LAMMPS
(Plimpton 1995; Thompson et al. 2021) and uses the
output data to infer crack tip locations and their asso-
ciated SIFs at each time step.
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