Advertisement

The FASEB Journal / Volume 36, Issue S1

Novel approach to analyzing steady-state intracellular pH and the recovery from NH4+ -induced acidosis in rat hippocampal neurons and astrocytes

Vernon A. Ruffin, Walter Boron

First published: 13 May 2022

https://doi.org/10.1096/fasebj.2022.36.S1.R6304

NIH

Abstract

Optimal function in the brain, especially in hippocampus—an area involved in learning and memory—requires tight regulation of intracellular pH (pHi) within neurons and neuroglial. The Na-H exchangers (NHEs) are the major family of acid/base proteins involved in regulating pHi in the absence of CO2/HCO3. In the present study, we used the pH-sensitive dye BCECF to examine the regulation of steady-state pHi and the recovery of pHi from NH4+ -induced intracellular acid loads in HC neurons and astrocytes, co-cultured from embryonic (E18-20) Sprague Dawley rats, and studied in CO2/HCO3 –-free HEPES buffered ("HEPES") solutions. After at least 14-days in a CO2/HCO3 – incubator, cells were removed, loaded with BCECF, and placed in a recording chamber with flowing HEPES. At the beginning of each experiment, we measured pHi (checkpoint A) after allowing pHi to stabilize for 5 minutes (checkpoint C), and reported mean "initial pHi"/SEM for neurons as 7.351/0.0597; N=37 (astrocytes: 7.189/0.0118, N=25) the value at checkpoint C = (pHi)C. After using the twin paired NH4+ -pulse protocol to acid load cells, we find that—after the pHi recovery from the first acid load—the average neuronal steady-state pHi (now at checkpoint E; (pHi)E) is 6.953/0.0601(astrocytes: 7.037/0.0081). After the second NH4+ pulse the neuronal steadystate pHi (now at checkpoint F; (pHi)F) in neurons is 6.937/0.010 (astrocytes: 7.020/0.0062). The recovery from acidosis is fit with a double exponential (DExp) which we replot as dpHi/dt vs pHi. With this traditional approach, dpHi/dt, the fit as it approaches the

asymptotic pHi, becomes slightly non-linear. To exploit the mainly linearity portion of the dpHi/dt vs. pHi plot (from the DExp fit) of the double exponential, we fit these dpHi/dt vs. pHi points with a DExp with a quasi- single exponential (SExp) to produce a quasi-single-exponential rate constant (kqSExp) measured as dpH/dt. This analysis—when transformed to the pHi vs. time domain—generally produces a very good fit to the original pHi vs. time data. The mean kqSExp1 in neurons is 0.0054/ 0.0008 (astrocytes: 0.0107/0.0002) whereas the mean kqSExp2 in neurons is 0.0055/0.0008 (astrocytes: 0.0010/0.0003). We summarize the twin pHi recoveries from individual experiments in which we display as thumbnails the quasi-single-exponential dpHi/dt line segments that represent the pHi recoveries from the first and second NH3/NH4+ pulses. These new analytical approaches may ultimately provide mechanistic insight into cell-to-cell heterogeneity of pHi regulation in the nervous system.

This is the full abstract presented at the Experimental Biology meeting and is only available in HTML format. There are no additional versions or additional content available for this abstract.

© 2024 Federation of American Societies for Experimental Biology (FASEB)

ABOUT WILEY ONLINE LIBRARY

Privacy Policy
Terms of Use
About Cookies
Manage Cookies
Accessibility
Wiley Research DE&I Statement and Publishing Policies

HELP & SUPPORT

Contact Us
Training and Support
DMCA & Reporting Piracy

OPPORTUNITIES

Subscription Agents
Advertisers & Corporate Partners

CONNECT WITH WILEY

The Wiley Network Wiley Press Room

Copyright © 1999-2024 John Wiley & Sons, Inc or related companies. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.