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Secure Distributed Optimization
Under Gradient Attacks

Shuhua Yu

Abstract—In this article, we study secure distributed optimiza-
tion against arbitrary gradient attacks in multi-agent networks.
In distributed optimization, there is no central server to coordinate
local updates, and each agent can only communicate with its neigh-
bors on a predefined network. We consider the scenario where out
of n networked agents, a fixed but unknown fraction p of the agents
are under arbitrary gradient attacks in that their stochastic gradi-
ent oracles return arbitrary information to derail the optimization
process, and the goal is to minimize the sum of local objective
functions on unattacked agents. We propose a distributed stochastic
gradient method that combines local variance reduction and clip-
ping (CLIP-VRG). We show that, in a connected network, when the
unattacked local objective functions are convex and smooth, share a
common minimizer, and their sum is strongly convex, CLIP-VRG
leads to almost sure convergence of the iterates to the exact sum
cost minimizer at all agents. We quantify a tight upper bound on
the fraction p of attacked agents in terms of problem parameters
such as the condition number of the associated sum cost that
guarantee exact convergence of CLIP-VRG, and characterize its
asymptotic convergence rate. Finally, we empirically demonstrate
the effectiveness of the proposed method under gradient attacks on
both synthetic and real-world image classification datasets.

Index Terms—Distributed optimization, multi-agent networks,
security, resilience, gradient descent, variance reduction.

I. INTRODUCTION

N THIS article, we study the problem of secure distributed
I optimization in peer-to-peer multi-agent networks under
arbitrary gradient attacks. In distributed optimization over n
networked agents, each agent i € [n] holds a local objective
function f;, has access to stochastic gradients of its local f;
via a local and private stochastic gradient oracle, and may only
communicate with its direct neighbors defined by an inter-agent
communication graph to cooperatively minimize the aggregated
objective function } -, f;- The sum-cost minimization and its
stochastic variants as described above have emerged as natural
abstractions of performing various distributed signal processing
and machine learning tasks and seen extensive research over
the past decade with the primary focus of building distributed
stochastic gradient like procedures based on consensus [1], [2]
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or diffusion processes [3] with proven convergence or learning
guarantees [4].

This article studies the adversarial setting where a fixed but un-
known fraction p of agents are under gradient attacks in that their
stochastic gradient oracles return arbitrary adversarial informa-
tion when queried during algorithm execution. In distributed
network based settings such a scenario arises in which the local
cost functions (often reflecting the local data at the agents) are
manipulated by an adversary, corresponding to the practical class
of data injection attacks." Denoting by A the set of agents,
unknown apriori, whose gradients are potentially attacked and
by A the non-attacked agents such that |A| + |[A| = n, in the
adversarial scenario, instead of minimizing the global aggregate
Zie[n] fi, we aim to solve

minimizey ga f(X) := ﬁ Z fi(x). (1)
ieN
When NV = [n], problem (1) reduces to the classical distributed
optimization formulation (in non-adversarial environments) as
discussed above.

Many machine learning and statistical inference tasks are
currently being implemented via decentralized computation
paradigms such as Federated Learning [5], [6] instead of the clas-
sical cloud-based paradigm, to deal with scalability, robustness
and privacy issues. As server-worker paradigms, where there is a
central server to coordinate local model updates, are prone to sin-
gle point of failures and bottlenecks, fully distributed paradigms
that distribute the computation task among multiple entities have
gained increasing attention [4], [7], [8]. However, distributed
data and communication pose additional challenges such as data
integrity concerns. As many distributed optimization methods
are based on stochastic gradient computation, gradient attacks
induced by malicious data injection is a serious security concern
that needs to be addressed. For example, the adversary can
inject malicious data points to some participating agents in
decentralized machine learning training [9], or corrupt sensor
measurements in statistical inference over sensor networks [10],
[11]. In these settings, undefended distributed algorithms can be
arbitrarily misled by such gradient attacks, thus motivating the
current work.

'In what follows, we will refer to such data injection attacks as gradient
attacks as the constructed optimization procedures are based on first order
gradient optimization. Although for abstraction purposes we model the attacks
as affecting the gradients, it follows from a straightforward inspection of our
algorithms that the proposed constructions carry over to other types of attacks
that directly manipulate the data or cost functions at the agents.
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Our work is closely related to Byzantine-robust distributed
optimization. Byzantine attack [12] is the most difficult threat
model considered in the distributed optimization literature in
that Byzantine agents can deviate from the prescribed algorithm
and send arbitrary adversarial messages to its neighbors. In
contrast, the threat model considered in this article assumes
that those attacked agents still preserve normal computation
and communication capabilities, i.e. still follow the prescribed
algorithmic procedures. Thus, our threat model is weaker and
subsumed by the Byzantine attack. While data attacks are sub-
sumed by the Byzantine model, it is important to note that
certain types of Byzantine behavior may be addressed or de-
tected by the use of appropriate cryptographic protocols (e.g.
digital signatures) [13]), whereas, data (gradient) attacks, even
via passive honest agents as considered in this work, may be
hard to detect due to the heterogeneous nature of agent data
and noise, thus making standard cryptographic solutions in-
adequate. This is why the data injection attack model, albeit
weaker than the most general Byzantine model, is of interest
in its own right. To cope with Byzantine agents, different ap-
proaches to aggregate information from neighbors [14] have
been proposed. The works [15], [16], [17], [18] use trimmed
average of model updates from neighbors, but this approach
requires that the majority of non-Byzantine agents’ neighbors
are also non-Byzantine, while in our threat model we do not
have such strict requirements on the distribution of attacked
agents over networks. If data are independent and identically
distributed (i.i.d.), [ 19] proposes to use local data points to eval-
uate the models communicated from neighbors and only trust
those with good performance on local data. Algorithmically, the
most related method to the approach proposed in this article,
designated as CLIP-VRG, is SCCLIP proposed in [20] that com-
bines local momentum and self-centered clipping on differences
between local and incoming models. In contrast, the proposed
CLIP-VRG approach uses decaying stepsizes to achieve local
variance reduction, and the clipping operator in CLIP-VRG is
applied on a suitably constructed gradient estimators instead of
model differences. More practically, CLIP-VRG uses predefined
clipping sequences, whereas, SCCLIP relies on information that
may not be accessible in a distributed environment for obtain-
ing its clipping thresholds. In addition, [21] proposes a TV-
regularized approximation of the Byzantine-free optimization
problem along with a subgradient method that converges to a
neighborhood of the optimal solution. Exact minimum is also
achievable if some redundancy condition and a complete com-
munication graph are assumed [22]. Our “common minimizer”
assumption is mildly stronger than the redundancy assumption
in [22], but our algorithm applies to general connected network
topology and is based on stochastic gradients while [22] requires
exact (full) gradient. Note that there exists a trade-off between
redundancy and the robustness to adversarial attacks. In the
Byzantine threat model, the adversarial agents have unrestricted
capabilities, so more stringent forms of network connectivity
conditions (as well as a limit on the number of Byzantine agents)
need to be enforced to ensure that the non-Byzantine agents
retain access to useful information [14], [17], [22]. While in
our setup, due to a more restricted attack model, the robustness
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requirement boils down to having simply a connected network
and a limit on the fraction of agents attacked, both of which can
be readily checked.

Our work is also related to the resilient distributed parameter
estimation in terms of threat model considered. The papers [10],
[23] consider sensor attacks in distributed parameter estimation
that can arbitrarily manipulate sensor measurements but assume
that the computation and communication capabilities of sensors
remain intact, which is similar to the gradient attack scenario
studied in this work. To counter sensor measurement attacks,
a distributed estimator based on saturated local update is pro-
posed in [10], [23] which is the first clipping based method
to achieve resilience in distributed inference to the best of our
knowledge. From an optimization perspective, this method is
indeed a gossip-type distributed stochastic gradient method with
local gradient clipping. In contrast, CLIP-VRG applies to a
wider range of distributed optimization models compared to the
de facto least-squares model considered in [11], [23]. From an
algorithmic perspective, CLIP-VRG uses a constant consensus
mixing matrix while [11], [23] employ a sequence of time-
varying mixing matrices following the consensus+innovations
framework [24]; additionally, CLIP-VRG further involves gra-
dient estimators to achieve variance reduction locally, which is
discussed in more detail in Remark 5. The article [25] studies
robust distributed estimation over networks when measurements
are corrupted by impulsive noise. In [25], the impulsive noise
corrupt measurements of all networked agents, in contrast to
a bounded fraction of agents in this article, but the considered
impulsive noise is assumed to be zero-mean, symmetric and
stationary with bounded variance, whereas, the gradient attack
in our work is arbitrary. We refer the reader to [ 1 1 ] and references
therein for a broader survey on more countermeasures to achieve
resilient distributed inference in multi-agent networks.

Other Related Works: Distributed optimization has been
extensively studied with various algorithmic frameworks and
constructions [26], including distributed (sub)gradient de-
scent methods [1], [27], gradient tracking based methods [7],
[28], [29], acceleration schemes [30], variance reduction
schemes [31], primal-dual methods [32], [33], [34], to name
a few. Distributed optimization has also been studied taking
into account different communication topologies [35], [36],
compressed communication [37], data heterogeneity [38] and
data privacy [39]. Although adversarial robustness of distributed
optimization is relatively less studied, in server-worker type
setups with a central trustworthy server, several approaches
to achieve Byzantine robustness have been proposed. In these
approaches the central server employs robust gradient aggre-
gators such as the median [40], [41], [42], [43], geometric
median [44], concentration filtering [45], [46], signSGD [47],
[48], gradient clipping [49], and worker momentum [50]. When
the central server also has access to the training data, the server
can score the incoming gradients and abandon those abnormal
ones [51],[52], and may also reach exact minimum by exploiting
redundancy [53]. In the case that the probability of an agent being
Byzantine or trustworthy follows a two-state Markov Chain, [54]
proposes a method with temporal and spatial robust aggregation,
and gradient normalization. In addition, in the decentralized
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optimization setting with a trustworthy server, Byzantine ro-
bustness combined with other challenging constraints have also
been studied, including privacy [55], asynchronous decentral-
ized computing [56], and in particular data heterogeneity. Given
distributed heterogeneous data, and that the attackers may take
advantage of the variance of good workers over time [57] mak-
ing it hard to distinguish Byzantine workers, methods such as
bucketing [58], RSA [48] and concentration filtering [46] have
been developed to counter this issue.

Main Contributions: The main contributions of this article
are as follows: (1) We consider an arbitrary gradient attack
model that is relatively unexplored in the context of distributed
optimization; (2) We develop a distributed stochastic gradient
based method, i.e., CLIP-VRG, that combines local variance
reduced gradient estimation and clipping, and analytically and
empirically illustrate its robust performance against gradient
attacks; (3) For convex and smooth unattacked local objec-
tive functions that share a common minimizer, if the sum of
unattacked objective functions is strongly convex, we prove that
CLIP-VRG asymptotically and almost surely converges to the
exact minimizer as long as the proportion p of attacked agents
satisfies p < 1/(1 + &), where £ is the condition number of the
aggregated unattacked objective function.

Notations: We use [n] = {1,2,...,n} to denote the set of all
network agents, and | - | to denote cardinality for an argument set
such as V. We use || - || to denote Euclidean norm for vectors
and || - ||2 for spectral norm of matrices, respectively. We use
diag(-) to denote the diagonal matrix whose diagonal entries
are components of the argument vector. We use 1, to denote
the column vector of ones of length p, and bold lower case and
upper case letters to denote vectors and matrices, respectively.
Equalities or inequalities that involve random variables hold
true almost surely. Random variables are often indexed by a
superscript or subscript w to indicate their sample path behavior.

Organizations: In Section II, we formalize the problem as-
sumptions and discuss their implications. In Section III, we
develop CLIP-VRG and present our main theoretical results.
Section IV details the implementations and empirical perfor-
mance of CLIP-VRG for a regularized logistic regression model
onboth synthetic and image classification datasets. The proofs of
the main results are provided in Section V, whereas, Section VI
concludes the article.

II. PROBLEM SETUP

Referring to the scenario in (1), recall, by A we denote the
set of agents whose stochastic gradient oracles are arbitrarily
manipulated by some adversary. For simplicity, leta = |N|,b =
|A|,a 4+ b=n, and the fraction of attacked agents p = b/n.
Agents aim to minimize f as defined in (1) by local computa-
tions and communications with neighbors, i.e., in a distributed
manner, as is common in the distributed consensus or gossip
based computing literature [1], [2], [3]. We consider iterative
processes that at each agent i € [n] generate a sequence of
state vectors {x! : ¢ > 0}, where x{ is algorithm initialization
treated as constant. At each iteration ¢, each agent ¢ calls a local
stochastic gradient oracle that returns m; (x!) (shortened as m!)
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at query x!. For i € N/, we can write
t t t
m; =V fi(x;) + &,

where 55 denotes stochastic gradient noise. We work with a
rich enough probability triple (€2, F,P), and define the natural
filtration as the o-algebra generated as

Fo=o({&:0<k<t—1ieN}),

where F; intuitively represents historical information associated
with algorithm iterates up to iteration ¢ — 1. We make the fol-
lowing assumption on the stochastic gradient oracles that also
formalizes the threat model considered in this work.

Assumption 1: At each iteration t: for each regular agent
i € N, wehavem! = Vf;(xt) + & where E(¢! | ;) = 0and
E(|[&4]]? | Ft) < o2, and the set {&!: i € N} is mutually in-
dependent; for each attacked agent 7 € A, m! is arbitrary, but
m’; need not be F; measurable, i.e., the attacker may access
arbitrary information (not available to the algorithm) to design
the attack. The sets NV and A are fixed but apriori unknown.
We further assume that agents in .4, although suffering from
potential gradient (data) attacks, are otherwise non-adversarial
and follow recommended algorithmic protocols as specified.

Remark 1: Our gradient model works for general expected
risk minimization. In machine learning or statistical inference
tasks, f; can be defined as

fi (X) = Ezﬁ‘~’Di Fi (X, 29),

where F; is defined on local data samples ¥J; that with distri-
bution D;, and the unattacked stochastic gradient oracles return
VF;(x,1).If f; is defined as a finite sum over data points, then
one can still sample stochastic gradients from mini-batches.

Note that this threat model only involves attack on gradient
oracles but attacked agents will still follow the recommended
algorithmic procedures, i.e., we assume data injection attacks
on a subset of networked agents but otherwise the agents them-
selves are non-Byzantine. The noise model for regular agents is
standard. The gradient attacks are allowed to be arbitrary, which
subsumes all specific data injection attack designs.

Assumption 2: For each unattacked agent i € N, f; is L-
smooth, i.e., Vx,y € R?, we have

IVfi(x) = Vi)l < Llx =yl

Assumption 3: For each unattacked agenti € N/, f; is convex
and twice differentiable. The average objective on unattacked
agents f is p-strongly convex, i.e., VX,y € R4,

F(9) > () + (V). y =) + Slly = x|

Since f is also L-smooth by definition (1) and Assumption 2,
we can define the condition number of f as k := L/pu.

Note that this strong convexity assumption is made on the
average of local objective functions in N instead of for every
single € N.

Assumption 4: We assume that there exists a common global
minimizer X* = arg miny g« f;(x) for every i € N.

Remark 2: Note that we do not assume that x* in Assump-
tion 4 is the unique minima of each f; in A. In particular,
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the individual f;’s may have multiple non-overlapping minima
that are not minimizers of the global function f, and hence the
agents need to collaborate to find the minimizer of f. Clearly,
in the adversarial setting, this task is further complicated by the
presence of an adversary that aims to hinder such coordination
to converge to a minimizer of the global cost f.

This assumption clearly subsumes the case where each agent
i € N performs the same machine learning tasks on i.i.d. (in-
dependent and identically distributed) data distributions by op-
timizing the same strongly convex such as logistic regression.
On the other hand, it also includes the case where data is not
i.i.d across agents such as in distributed sensing. For example,
in the problem of distributed linear parameter estimation where
the parameter to be estimated is globally observable based on
the collective data [23], there exists a unique global minimizer
of the associated global risk function, but the data distribution on
different agents can be heterogeneous when agents have different
observation matrices, and hence each agent may have multiple
minimizers associated with their local risk functions that are
not globally optimal. We also elaborate on this case by using
experiments in Section I'V part A.

Distributed network-based algorithms typically involve one
information mixing step to aggregate decision variables from
neighboring agents, the neighborhoods being specified by an
inter-agent communication graph G.

Assumption 5: The inter-agent communication graph G is
undirected and connected.

Suppose in each step of local computation each agent holds
EH/ 2, we consider fixed nonnegative mixing parame-
ters w;; in update x} = Y7 w; x;H/ ?. We make the follow-
ing standard assumption on the mixing matrix W composed of
entries w;;.

Assumption 6: The nonnegative weight matrix W' satisfies
thatw;; # 0 only if there is a communication link between agent
i and j in graph G, or i = j. Further, W is real symmetric, dou-
bly stochastic, and has eigenvalues 1 = A\; (W) > [A2(W)| >
.o 2 A (W) with 8 := |A2(W)] € [0, 1).

Remark 3: Note that, under Assumption 5, there exists a
W satisfying Assumption 6 (see [59]). In particular, in the
special case when the graph G is complete, we may choose
W = (1/n)11" which recovers computing in centralized sce-
narios, then the problem setup reduces to the Byzantine dis-
tributed optimization where a trusted central server is present and
p-fraction working clients may report adversarial gradients [40],
while our convergence analyses remain applicable.

Assumption 7: The fraction p of attacked agents satisfies p <
1/(1+ ).

Remark 4: We use an example to show that, for the fam-
ily of all strongly convex and smooth global objective func-
tions, p < 1/(1 + k) is indeed tight for the considered threat
model, i.e., recovering the exact minimum is impossible when
p>1/(14 k). Suppose a set of 2m agents hold the same
object function z2 (note x = 1 in this case), and there exists
an algorithm M with which each agent can resiliently find the
optimal solution 0 when m agents, i.e., p=1/(1+ k) = 1/2,
are under arbitrary gradient attack. Let every attacked agent

variable x
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TABLE I
PARAMETERS FOR ALGORITHM |
Step size ar =ca(t+ @) 7.
VR step size Nt = cp(t+ @)~ .
Clipping threshold | v = ¢y (t 4+ @) 7.
Constraints Caycy > 0,,¢y € (0,1),
0 <27y < To <min(l,1—7),
T = 2(Ta +74)/3.
o>1/(1- g/ (rat n,)) — 1.
Example 5 =0.5, ]
a¢ = 0.5(t 4+ 1)5/6,
ne = 05<L+ 1)723/3()"
e = 10(t +1)"1/8,
simulate objective function (z — 1)?, then
M| 222 (-1, (2 -1)%] =0 ()

m regular agents m attacked agents

Now, if we set the local objectives on all 2 m agents as (z — 1)2,
and m agents are under arbitrary gradient attack and say they
simulate local objective functions of x2, then, by our hypoth-
esis (2), and Assumption 1 that the set of attacked agents are
unknown to M, M will lead to solution O instead of the true
optimizer 1. Hence, such M will not exist and the upper bound
in Assumption 7 cannot be relaxed. On the other hand, for the
subfamily of global objective functions that correspond to the
same , for example x = 1/3, 1/(1 + ) may not be tight when
considering all algorithms in general.

III. ALGORITHM DEVELOPMENT AND MAIN RESULTS

We next develop our algorithm CLIP-VRG, see the tabular
description Algorithm 1 and its parameter list Table I for details.
In the distributed computation setup, each agent ¢ € [n] holds
a local iterative decision variable x! € R? at iteration . Recall
that each regular agent i € N’ computes a stochastic gradient
m!. We apply variance reduction and clipping operations on
the stochastic (and possibly attacked) gradients at all agents
with the following intended outcome: For regular agents N,
the variance reduction scheme is expected to yield a strongly
consistent gradient estimator from m; For attacked agents A,
the clipping operation can bound the influence of adversarial
gradients.

By the smoothness property in Assumption 2, if the distance
between consecutive iterates converges to 0, the difference be-
tween consecutive true gradients also converges to 0. Thus, we
employ alocal recursive averaging scheme to reduce the variance
of local gradient estimates on regular agents. To this end, we
develop a recursive gradient estimator v computed as,

vi=m) viT = (1 —n)vi +pmiTVien], @3

79

with the variance reduction (VR) step size
m=cy(t+¢) ™ e (0,1), ()]

for some positive constants c,, 7,, and some positive integer ¢
specified in Table I.
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Algorithm 1: CLIP-VRG.

1 Input: oy, vy, ;.

2 Initialization: x} = x9,Vi, j € [n].
3fort=0,...,7—1do

4 for agent i € [n] in parallel do
5

6

Query stochastic gradient oracle that returns m;
Update
; m;, t=0,
Vi = t—1 t ’
(I =me1)v;  +mmg, t>1,
1, v < v,
7 Compute k! = A I ;H = :
Yellvill = Vil > e,
8 Send x! — iy klv! to all neighbors of agent i;
t+l _ N t At
9 Update x; " = > 7 wy; (xj — (nkjvj),
10 end
11 end

—
(]

Output: {x] };c},.

We use clipping to combat arbitrary adversarial gradient
attacks on attacked agents A. Specifically, we use the follow-
ing distributed clipped gradient method with decaying clipping
threshold, i.e., for each i € [n],

n
t+1 t t .t
X[ = Ty (xh = arkfvY) ®)
i=1

where the w;;’s are entries of the matrix W as in Assumption 6,
the adaptive clipping coefficient &/ is defined as

1
kf=<"
{%||Vf||1,

and the clipping threshold +; and step size o, are defined as
= cy(t+ @), ©)
ar =co(t+¢) ™ €(0,1), @)

for some positive constants ¢, 7.y, Cq, T 10 be chosen.

We outline the procedures of CLIP-VRG in Algorithm 1, and
list the parameters, i.e., three decaying sequences o, 5, Vt, as
well as their design requirements in Table I. Under this setup,
we present the main results as follows.

Theorem 1: Under Assumptions 1-6, suppose that cv, vy, 1
are taken as in (4), (6), and (7) for some tunable posi-
tive constants cq, ¢y, ¢, With 7, = 2(74 + 7)/3,27y < 7o <
min(1,1 — 7,) and integer ¢ > 1/(1 — g%/ (7«+72)) — 1. Then,
for all i € [n], for every 0 < 7 < min(7,, (7o — 27y)/3), we
have

Vil < e,
Vil >,

1 T t— * = =
P(}ggc(tﬂ) [ o) 1.

Corollary 1: Under Assumptions 1-6, we can choose
Ta, Ty, Ty in Theorem 1 to achieve that for any i € [n], any €
with 0 < e < 1/3, almost surely,

Jim (¢ 4+ 1)/ (f(x]) = f(x7)) = 0.

Remark 5: Theorem 1 states that asymptotically, the algo-
rithm iterates x! of any agent i almost surely converge to

7

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

the exact minimum of f. The convergence rate is sublinear
and depends on the choices of 7, 7,. To obtain Corollary 1
from Theorem 1 we solve a linear program involving 7, 7 to
maximize min(7,, 7,/3 — 27,,/3) under the constraints 27., <
To < min(1,1 — 7,), which leads to the optimal assignment
Ta = 5/6, 7, = 1/6. Thus, we can achieve a convergence rate
that is arbitrarily close to O(t~1/%) for ||x! — x*||. Since f is
also L-smooth, using a standard descent lemma [60], we have
X,y € RY,

F(y) < F) +{VFG)y %)+ 5y — x

Taking x = x* and using the fact that V f(x*) = 0 that follows
from Assumption 3—4, we have f(x!) — f(x*) < (L/2)||x! —
x*||, and thus the convergence rate for f(x!) — f(x*) can be
arbitrarily close to O(t~'/3). Note that our convergence rate is
established in the almost sure sense, while most existing works
in distributed stochastic optimization prove mean square con-
vergence [3], [8], [20], [29] to the exact minimum by decaying
step sizes or to some neighborhood around the optimum using
constant step sizes, with the exception of [61] (see also refer-
ences therein). The almost sure convergence is beneficial in that
it provides convergence guarantee for nearly every algorithm
sample path instance.

Note that CLIP-VRG does pay a price in convergence rate
for the sake of security. In a one machine setup, the almost
sure convergence rate of stochastic gradient descent for strongly
convex and smooth objective function can be designed to be
arbitrarily close to O(t~!) [62]. In the distributed setup with
no gradient attack, [61] also proves almost sure convergence
arbitrarily close to O(t~1) for distributed stochastic gradient
with the aid of gradient tracking.

Finally, we point out some technical differences with re-
spect to [23] that also uses decaying thresholds to achieve
perfect recovery in distributed estimation. A key difference in
our construction is the use of an additional gradient estimator
(locally at each agent) based on instantaneous stochastic gradi-
ents. Intuitively, these gradient estimators lead to asymptotically
decaying gradient variance which is required for convergence
as the clipping operation induces additional nonlinearities. By
leveraging the special form of the linear regression type cost
models studied in [23], this step was essentially bypassed in
lieu of a simple arithmetic mean of gradients which is not
applicable in the current scenario. The addition of the non-trivial
gradient estimators in turn necessitate different choices of the
algorithm parameters (weight sequences and thresholds) and
hence new proof techniques. However, although CLIP-VRG
applies to more general convex models, we point out that the
SAGE algorithm developed in [23] is optimized for linear re-
gression models and for such setups yields a (’)(t’l/ 4) almost
sure convergence rate of the agent iterates to the true minimizer,
which is better than the O (¢ ~1/6) rate we obtain for more general
convex models in the adversarial setting.

Remark 6 (Proof Sketch): The proofs for Theorem 1 proceed
in three steps. First, we show that in Lemma 1, thanks to
the local clipping operation in Algorithm 1, in a almost sure
sample path sense, the local iterate x! converges to the network
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average iterate X' = (1/n) 2 icin] x!; Further, its convergence
rate is quantified, thus enabling us to conveniently focus on the
behavior of X* in subsequent proofs. Second, in Lemma 2 and
Lemma 3, we show that for regular agents \V, the developed re-
cursive estimator v for the corresponding true gradient V f; (x!)
is strongly consistent and its convergence rate is also quantified.
Third, we focus on the dynamics of the network average X'
and show that the sequence {X'};>¢ effectively evolves as a
gradient descent type process with errors including consensus
errors (from the first step), gradient estimation errors (second
step), and biases introduced by local clippings, and adversarial
gradient attacks. This third step is technical and, among other
complexities, requires a careful analysis of the biases resulting
from clipping regular (unattacked) stochastic gradients and those
resulting from attacks. The derivation is achieved by considering
two cases: Case 1, if X! enters some region as characterized in
Lemma 5, we show that X* would stay in this region and converge
to x* at the same sublinear rate as clipping threshold ;; Case
2, if xt, as described in Lemma 6, never falls into Case 1, then
for each iteration ¢, we can lower bound the set of clipping
coefficients {k! : i € N}, that effectively leads the X" sequence
to behave as a time-varying contractive process (due to convexity
and smoothness of the objective functions) with a (controlled)
clipping bias, enabling us to obtain the convergence to x* at
another sublinear rate. Combining these two cases concludes
our analysis.

IV. EXPERIMENTS

In this section, we compare the numerical performance of
CLIP-VRG, the baseline distributed stochastic gradient descent
(DSGD) which is the most common construction employed in
non-adversarial settings, as well as Byzantine-resilient algo-
rithms BRIDGE [18] and SCCLIP [20]. The DSGD algorithm we
implement is adapted from the diffusion variant studied in [63],
i.e., each agentin parallel updates its local estimate x! as follows,

Z wij(x

SCCLIP relies on some practically unknown network-wide pa-
rameters to compute clipping thresholds, which we empir-
ically choose in our experiments as suggested by Remark
4 in [20]. BRIDGE is a DSGD-type of algorithmic frame-
work, and we implement, by applicability, its three realizations
grounded on different aggregation rules for regular agents to
combine iterate information from their neighbors, i.e., BRIDGE-
T based on coordinate-wise trimmed mean, BRIDGE-M based
on coordinate-wise median, BRIDGE-K based on Krum, a type
of secure aggregation studied in [41]. Note that SCCLIP enforces
stringent constraints on the weight matrix for entries associated
with Byzantine agents, and BRIDGE-T requires that regular
agents have “enough” number of regular neighbors, and these
conditions may be hard to verify and are not necessarily satisfied
in our experiments. Neither BRIDGE-K or BRIDGE-M has
convergence guarantee. In addition, all algorithms are initialized
from the zero vector, use Metropolis weights [64] as mixing ma-
trix W, and are fine tuned using grid search in all experiments.

t+1 _ t
X; — aymyj).
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Fig. 1.

2D grid network of 625 agents.

A. Distributed Heterogeneous Measurements

In this synthetic example, we demonstrate the effectiveness of
CLIP-VRG in a distributed heterogeneous measurement model.
We consider an undirected 2D grid network that consists of 625
agents as shown in Fig. 1, and as indicated by inter-agent links,
each agent can only communicate with its direct neighbors or
agents at its diagonal position. In Fig. 1, green nodes represent
regular agents in A/ while black nodes are agents in .4 that have
adversarial stochastic gradient oracles (arbitrarily corrupted sen-
sor measurements). The network of agents aims to estimate
a long vector of 625 environment parameters 0, with each
component of 6, corresponding to the true scalar environment
parameter at the location of each agent. However, each agent
only has noisy measurements on environment parameters at
positions within distance of 5 units (the side length of each
cell in the grid is 1 unit), so these agents need to collaborate
to estimate 6, that has network-wide information. Specifically,
for each agent i € A/, we consider the following measurement
model,

= HZBX + WE,

where each row of measurement matrix H; is a canonical basis
vector of length 625 that measures one component of 6. and
{w!};>0 are i.i.d. zero mean Gaussian noises. The sensing
matrix H; is defined to enable agent i to measure all components
of 0. that are in positions within distance of 5 units from agent
1. For example, for agent ¢ at the center of the grid, H; has
46 rows, but if agent ¢ is at the corner of the grid then H; has
26 rows. To recover the true parameter vector 8., we formulate
an /5 loss minimization problem over regular agents N,

minimize,crezs Z Ew, ||Hx -y (8)
ieN
In this example, as shown in Fig. 1, we randomly sample 100

agents that are under gradient attacks. In our setting, each local
objective function

fi = Ewi

is convex and smooth, the true aggregated objective function
> ien fi is strongly convex with condition number x = 4.35,

—yil?

H;x;
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Fig.2. Maximum ¢2 estimation errors comparison.

and 0. is an optimal solution for each f;. Note that each f; may
have infinitely many minimizers, see also the general discussion
in Remark 2. Per Assumption 7, the fraction of attacked agents in
this experiment is less than 625/(1 + k) ~ 117. We sample 0.
from [—40, 180]%2% (range of temperature), and design the vari-
ance of Gaussian noise as 10. In our formulation, stochastic gra-
dients only have nonzero entries corresponding to components
being measured. For example, the stochastic gradients computed
by an agent at the corner of the grid only have 26 nonzero
components. To simulate gradient attack, for agents in .4, we set
the nonzero components of their gradients as —200 persistently.
Note that in this example the stochastic gradient computed on a
regularagenti € NV'is 2H, (H;x! — H;0. + w!) with gradient
noise being 2H, w!, and the gradient noise here satisfies the
conditions in Assumption 1 due to our choice of w!’s as i.i.d.
Gaussians.

We compare the maximum /5 estimation errors over all reg-
ular agents NV, i.e., (1/525) max;y || x: — 6.||2 of for DSGD,
CLIP-VRG, SCCLIP and BRIDGE-M (other variants are not
applicable), in Fig. 2. After careful tuning: for DSGD, we
pick o, = 22/(t + 1); for CLIP-VRG, we choose o, = 220(t +
1)7982 v, = 600(¢t + 1)1, = 7(t + 1)~°5; for SCCLIP,
we compute momentum step size, model step size, and clipping
thresholds as suggested in the article [20]; for BRIDGE-M,
we use the same step size as DSGD. Under the considered
gradient attacks, DSGD fails to converge to the true parameter 6.
and diverges after some iterations, BRIDGE-M does not make
any progress, SCCLIP converges to some neighborhood of the
optimum then starts to diverge, and only CLIP-VRG resiliently
minimizes the /5 error towards 0.

B. Distributed Binary Classification

In this experiment we use real-world image classification
datasets to test the efficacy of CLIP-VRG. We study a scenario
where each networked agent solves the same empirical risk
minimization formulation for a binary classification task to
simulate distributed learning or inference on homogeneous data.
Specifically, each agent has the same dataset {6,,&;} and tries
to minimize a regularized logistic regression objective

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

where 6; denotes the feature vector of ith data point, &; is its
corresponding binary label in {—1, 1}, and A is a regularization
parameter to control overfitting. We perform this experiment on
two graph topologies with different datasets.

In the first experiment setup, we consider an undirected geo-
metric random graph of 100 agents, among which 25 agents are
under arbitrary gradient attack (See Fig. 3, black nodes represent
attacked agents). Each agent has access to the same Fashion-
MNIST dataset [65], and use data points with labels “pullover”
and “coat”. Each label has 5000 training data points and 2000
test data points, and each agent solves the same regularized
logistic regression formulation with A = 0.1 on training data.
For regular agents in A/, mini-batch stochastic gradients from
200 data points are sampled by shuffling at each iteration, but
for attacked agents in .4, at each iteration their gradient oracles
persistently return c17g4 for constant ¢ /~ 0.714. In this setup, we
can estimate the upper bound on the fraction of attacked agents in
Assumption 7 is 1/(1 4+ k) > 0.26, which is larger than the ac-
tual fraction of the attacked agents 0.25. Note that Assumptions
2-7 are all satisfied in this experiment setup, except that As-
sumption 1 is not necessarily satisfied since regularized logistic
regression may have unbounded gradient when x is unbounded.
In Fig. 3, we compare the performance of DSGD, BRIDGE-M,
SCCLIP and CLIP-VRG in terms of average test accuracy on
test data points and the average optimality gap of training
IOSS, i.e., Z(Xt, {01-,51»}1-:17“,,,1) - E(X*, {9“ gi}i:l,...,n)a over
regular agents. Under the aforementioned attacks, CLIP-VRG
achieves comparable test accuracy compared with the base-
line DSGD without attack, but CLIP-VRG converges slower
in terms of the optimality gap. This validates our discussions
in Remark 5 that the best achievable almost sure convergence
rate of CLIP-VRG is inferior with respect to the theoretically
achievable in non-adversarial environments. (In this experiment,
we use the optimized 7, 7y as in Remark 5). From Fig. 3 we see
that CLIP-VRG outperforms both BRIGE-M and SCCLIP while
BRIDGE-M does obtain good test accuracy. Note that BRIDGE-
M is an empirical method, and SCCLIP’s underperformance may
be due to that the mixing matrix in this setup is far away from
what SCCLIP assumes.

In the second experiment setup, we use a simpler topol-
ogy, a connected cycle of 15 agents where each agent has 8
neighbors, and 3 agents are under arbitrary gradient attacks
(see Fig. 4, black agents represent attacked agents). Each agent
has access to the same binary classification dataset a9a [65],
which contains 32561 training data points and 16281 test data
points. We compare the performance of DSGD, BRIDGE-K,
BRIDGE-M, BRIDGE-T, SCCLIP, and CLIP-VRG in terms
of the average test accuracy and average optimality gap of
training loss, over regular agents. In this setup, we choose a
regularization parameter A = 1/32561, and each attacked agent
receives persistent gradient c1;23 for a constant ¢ ~ 1.8. Fig. 4
shows that, under gradient attacks, CLIP-VRG performs at a
comparable level with BRIDGE-K, BRIDGE-M, BRIDGE-T.
Furthermore, CLIP-VRG is computationally cheaper than these
counterparts, atleast in terms of constant factor. BRIDGE-M and
BRIDGE-T involves finding some coordinate-wise percentile
of incoming vectors, BRIDGE-K even requires computing
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An undirected random geometric graph of 100 agents with Fashion-MNIST dataset. Performance comparison of DSGD, BRIDGE-M, SCCLIP, and

CLIP-VRG under persistent gradient attacks; and DSGD without attack as baseline.
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under persistent gradient attacks.

pair-wise {5 distance among incoming vectors. Overall, the
proposed CLIP-VRG demonstrates its effectiveness and some
advantages.

V. PROOF OF THEOREM 1

Define the network average of all local decision variables
at iteration ¢ as X' := (1/n)> " | xt. Then, by the double
stochasticity of W, averaging (5) over all ¢ € [n] gives that

_t+1:—t_oﬁnkw_fz_€ 9
X X - ; iV, (&)
Define long vectors and diagonal matrix
x| vi
x! = V= s
x! v!
K' = diag([kt, ... k!]) ® 1 .
Then, all local updates at iteration ¢ can be summarized as
xT = (W@ I)(x" — o Kivh). (10)

We first develop the following lemma to estimate consensus
error ||x* — 1,, ® x|, i.e., the distance between local variables
x! and network average X'.

Lemma 1: Take integer ¢ > 1/(1 — 1/ (7e*+72)) — 1. Then,
the iterate x' generated by CLIP-VRG satisfies that

[)'0 i’“ l;ll) k'] ?EID 1’\60 ﬁl;ﬂ XY’)(I IT)'(ITI
Iteration Count

An connected cycle of 15 agents with a9a dataset. Performance comparison of DSGD, BRIDGE-K, BRIDGE-M, BRIDGE-T, SCCLIP and CLIP-VRG

for any constant ¢ > max(3/[(¢/(1+ @)™ — 8], B(1 +
1/p)7=T7), we have Vt > 1,

t—1
X' -1, @' < Vn Y B any. < evnayy. (1)
s=0

Proof: By the definition of k!, we have

Vi e [n], [kivill <. (12)
From (10) we have
t—1
xX'=(Wol)x"-) Wal) *a,Kv:. (13)
s=0
Then,
[x' =1, @ x|
1 T t
= [ {Tna — =1,1, @14 | x|
n
1 t—1
=|(=1.1 @1, -1, W @I *a,K*v®
||<n =) d>§( ® 1) a KV
t—1 1
< _1n1T_Wtfs SKS s
< ;IIR n [[2]|cs K V7|

(12)

t—1
< \/ﬁz Bt’sasfys.
s=0
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In the second equality above, we exploited the fact that

(Ind - %1,41 ® Id> (W o1,;)'x" =0, (14)
owing to the initialization x) = x9 for all 7,5 € [n] and the
assumption that W is doubly stochastic. In the first inequality
above, we used the Assumption 6 that W is real symmetric so
W=$ has eigenvalues (\;(W))"¢ for i =1,...,n, and W
is stochastic thus the eigenvector of W associated with 1 is

(1/4/n)1,,. We next show by induction that for some positive
¢ :=¢(B, Ta, Ty, @), we have
-1
> By, < ca. (15)
s=0
First, for ¢t = 1, if we take
1 To+Ty
exp(1+2) (16)
4
then we have
Baoyo < car. a7

Next, suppose (15) holds true for some ¢ > 1. Given that, we
want to ensure that (15) also holds for ¢ 4 1, which is

t—1
Zﬁt“ oy =B By + By < corpaigr
s=0 s=0

Since we have that (15) holds for ¢, to ensure the above relation,
it suffices to have

cfaryr + Bouyr < capp1Vi1, VE > 0,
which can be rearranged as
— Bawy) > oy, vt > 0.

Then, we take ¢ such that ayy17y:41 > Bagy for all ¢t > 0,
which is equivalent to

el 1741 (18)

1

e 1

© >

Now that avg+1ve+1
(18) leads to

— Bayy: > 0, dividing it from both sides of

Bouye
Q4 17t+1 —

¢z

V>0

i )

Bouy
and taking the maximum of the right hand side gives that
c> p

el (l_f_w)rﬂ-ﬁ—rw _B.

(20)

Taking positive ¢, ¢ that satisfy (16), (19)-(20), and combing
with the base case (17) completes the proof of this lemma.
Note that we determine the choice of ¢ for the purpose of
characterizing the constant c in (11), and all of ¢, c,, ¢, only
affect the scaling constants of convergence rate. Instead, the
choices of 7, and 7, are crucial in the asymptotic rate. U
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We next try to upper bound the gradient estimation errors
on regular agents. As an intermediate result, we first show the
following lemma.

Lemma 2: Let {z:} be an R, stochastic sequence. Let Gy
be the o-algebra generated from {z;}*_, . Suppose that for some
positive constants ¢1,¢2,0 < a <1 and a <b<a+1, {z}
satisfies that

E (Zt+1 | gt+1)

Then, we have that for any 0 < ¢y < b — a,

(1—ci(t+1)" Yz +ea(t+ 170 @21

i (hm (t+1)bac0z, = 0) =1

t—o00

Proof: The proof is adapted from the proof of Lemma 1
in [66]. Applying Lemma 7 in the Appendix leads to that
VO< e <b—a,

lim (¢ + 1)* 72K (z,) = 0. (22)
t—o0

Now, we fix €. Since 0 < b—a —¢y <1, (t+1)P797 is a
concave function of ¢, and thus

(t+2) 0 < (t+ 1)1+ (b—a—e)(t+1)71.

Multiplying the both sides of the above relation into the both
sides of (21) we obtain that for sufficiently large ¢, there exist
some constants cg, ¢4 such that

(t+2)""*"“E (241 | Gis1)

1 c1 +b—a—60_cl(b—a—eo)
= (t+1)e t+1 (t+ 1)ot1
—a— —CL—EQ
t 1ba€0
(t+1) Zt+t+1a+60< —— )

>(t+1)b GOy b —— . (23)

(-

Define the process

V(t) =

(t + 1)a+€o
bfafé()
(t+1) 2t

ti (- ) s

1=

Using Lemma 8 in the Appendix we obtain that

-1 c
. 3
lim {(Hg (1= —
i=0

4
) i) o @

ol +1)7) =

t—oc 4 (j + 1)‘1

where we used the convention that Hz’ i1 (1 —
1 for j = ¢ — 1. Also note that we can split

32 (1 (- 570) v
- -7 ; (2 (-5555)) s
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Denote Hpy1 the natural filtration of the process {(t+
1)b=9=<0}, and note that V' (¢) is adapted to this filtration. Then,
by the independence condition,

E(V(t+1) | Het)
= E ((t + 2)b7a7€02t+1 | Ht+1)

S|t ) )

C4
(t + 1)a+€0

€3 b—a—e
< 1-— t+1 Oz +
(23) [ (t+1)“]( ) '

- zt: KHE‘—Hl(l G fl)“) (i+%a+eo]

- - ve
< V().

Thus, {V(t)} is a supermartingale. By (24), V() is bounded
from below. It follows that there exists a finite random variable
Vi suchthat P(lim¢ . V' (¢) = Vi) = 1. Thus, with (24) we have

]P) (hm (t + 1)177(17502)5 = K) = 1
t—o0
Then, by Fatou’s lemma and (22), we have
0<E (lim (t+ 1)“*%)
t—00
< liminf(t + 1)’ “E(z,) = 0.
t—oc

Therefore, we have P(limy o (t + 1)0797 02, =0) = 1. [
Lemma 3: Take 7, = 2(7o + 7)/3 and 0 < 27, < 7 < L.
For any i ¢ \V, for any 0 < ¢ < 7,/2, almost surely, there
exists some constant ¢, such that ||[vi — V f;(x})|| < ¢, (t +
1)*(0.57'77*6).
Proof: First, we bound the one step difference ||x
By Jensen’s inequality,

i ™ — x5

P2,

)

2

n
¢ tot t
g wij (x5 — kjv;) — x;
Jj=1

n
< 23 wiy (Ixt - <t + a2 |kivi?).
j=1

By Lemma 1, for any i, 5 € [n] and i # j,
I = x[|* < 2f|x} — x'[|* + 2(}x; — X'[|* < 2nc*ain?.
Together with (12), we obtain
;™ = x{? < (4nc® + 2)ain?.

Next, we establish the recursion for gradient estimation errors.
From (3), we have

ViR S V)

K2

1811

= (1=m)(vi = Vfi(x}))

+ (L=m)(Vfi(x)) = VAT + it (29)

Note that F;41 is generated from {{&]};cn0<s<t}. Define
p! = vl — Vfi(x!). By (25) and the assumptions on the gradi-
ent noises on good agents, we have, for ¢t > 1,

]E(HPEHH2 | Fit1)
< (1 =n)? U1 + mPEIET P | Frgn)
+ (1= m)’B(IVfi(x}) = VLEETHI? | Fign)
+2(1 —n)*(p}, Vilx)) = Vf(x)
(1 —=n)?pil* + nfo®
+ (1 —m)? L*(4nc® + 2)ai~i + (1 —m)?

N

IN

n 2
BBt + ZE (I9A6) - VAP | )

IN

n
(L =m)? (1+5) Pt +nio?

2
+ (1 —n)? L2 (1 + —) (4nc® + 2)aiq;}
Ur
3L
(1 =no)llpgll* +nfo® + n—(4n02 +2)ai7
¢

IN

where in the last inequality we used 0 < 7; < 1 and thus

1 1
O<(1_77t)2(1+%):1_77t+_77?__

<1-—mn.
B 277t_ un

We take 7,, = 2(7,, + 7,)/3. Then, we obtain
E (i | Fisr)

< (1=no)pi?
2

3L
+ {07270'2 +

n

(4nc* + 2)0303} (t + )72,

Then, since 0 < 27, < 7o < 1, we have 0 <7, < 1. Using
Lemma 2, we obtain that for any 0 < 2¢ < 7,

: Ty —2€ 2 _
P (Jim (¢ + 1)™2|pl][> = 0) = 1,

and thus the lemma follows. Note that the choice of ¢, does not
change the asymptotic rate of ||p!||, and 7, is determined by
Tos Ty O

To show that the network average X almost surely converges
to the minimum x*, we discuss two exclusive cases. We first
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show the existence of a local convergence region. Before that,
we present a standard result in convex optimization.

Lemma 4: Suppose function h : R? — R is p-strongly con-
vex and L-smooth with minimizer x*. Then, the iterates gener-
ated by gradient descent x' = x — aVh(x) with stepsize 0 <
a < 2/(L + p) satisfy that ||x" — x*|| < (1 — ap)||x — x*||.

Proof: We prove this lemma for completeness and defer the
proof to the Appendix. (]

Lemma 5: Take 7, = 2(7 + 7)/3 and 0 < 27, < 7 < L.
Define the auxiliary threshold

Ve = % - % — Vo,
where p; = ¢, (t 4+ 1)~ (0-57=) for some c,, and arbitrary small
0 < e < 0.57,;. Almost surely, there exist some constant ¢,
finite Ty such that if for some ¢ > Tp we have ||x! — x*|| < 7,,
then ||x! — x*|| <7, for allt > Tp.

Proof: Consider the sample path w € €2 such that for some
Cpw We have for alli € NV,

t, t, t,
i Il = [lvi™ = V£i(x )

(26)

S Dtw = pr(t + 1)*(0.57'77*6).

By Lemma 3, such sample paths have probability measure 1.
Since 74 > 27, we have

Ty < (Ta +7y)/3 — € =0.57, — €,

for arbitrarily small e. Then, in (26), ; decays slower than p;
and a7y, and thus there exists some finite ¢; such that V¢ > ¢; ,
Vi > 0. We decompose the update of network average xbe,

n
_ _ Q¢ Z tw t
xt+1,w — xt,w _ -t ki,wvi,w
n
i=1

Stw O t,w tw t,w
X = — E k7 (Vi(x™) +py
ZEN 1 ( f( 1 ) p'L )

Qg tw_ tw
- — E kv
n

icA

27

By Assumption 4, we have for any i € A/, V f;(x*) = 0. Since
fi is L-smooth and by the lemma hypothesis,

Ivi“ll = IV fi(x) + |
<IVFi(xp®) = VA + pr |
< L% = x| + prw
< L (%

(11)
< 7.

— it,wH + H)—(Lw _ X*H) +pt,w

(28)

Thus, kf"“ =1 for all ¢ € NV. Then, we take 3, as the least
t > t1,, such that oy, < 2/[(1 — p)(x + L)]. By Lemma 4, for

t > to ., from (27) we have
I x|

<

7t,w7% (gtw) _ *
X nZVfl(x )—x

ieN
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Qi —t,w )
+1 =D (VRN )—Vfi(xﬁw))H
ieN
TR i R S
" ieN n icA

< a1 = p)] g —x*
(i)

+ cL\/1 = paiy + (1 — p)auprw + pouye

< [ =ap(l = p)Pe
(26)

+ cL\/1 = pa?y, + (1 — p)aupre
+ poy (LY, o, + Prw + cLyv/noyy,)

= [1—au(p(l = p) = pL)Vtw
+eL(V/1—p+Vnp)aiy + .

We next show that, for large enough t, (29) implies that

%11 — X*|| <7, - Define

(29)

At =t+9) " T
Cy Cpw C\/NCaCy
(t+ )’

L L(t+¢)(‘r(ﬁ2r.y)/3fe o

(30)

Since 7o > 27, and € is arbitrarily small, A, is increasing in
t, and

Ai&+1,w
(t+eo+1)™
> At,w
T (tte+1)™

7t+1,w =

ot \T
- t—|—(,9—|—1 ’thw'

By (29), to show ||x**1 — x*|| <7, it suffices to have
(1 —a(p(1 = p) = pL) 7,
+cL(y/1 = p+ Vnp)aiy + auprw

t+o \7_
t+o+1 R

By the choice of ¢5 ,, the left hand side of the above inequality is
positive. Thus, we can divide 7, ,, = A (¢ + ¢) ™ from both
sides and it leads to that

cL(v/1—p+ /np)cacy
Arw(t + @)

Cpw < t+ ™ 31)
Aot +@)Te2mic ] =\t +p+1)

By Assumption 7 we have u(1 — p) — pL > 0, together with
(Ta — 274)/3 — € > 0, there exists some finite ¢3 ,, > t2,, such
that for ¢ > 3, the left side of (31) is strictly less than 1. Using
1—x < e *forx >0, toshow (31) it suffices to have

1— oy [u(l—p)—pL—

« cL(y/1—p+\/np)cac
Zu(l = p) = pL — ( \/_T)av
Ty Aru(t+ @)
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Cpw t+p+1

) 2 32
Beolt+ )| 2T G2

Since A, ,, monotonically increases to ¢, /L, we can find a finite
t4 as the least t > t3,, such that A, ,, > ¢, /(2 L). Then, for
t > ta,using In(1 + x) < zforx > 0, to show (32) it suffices
to have

c 2cL?(VT=p++/np)c
= | u(1—p) — pL — ( T\/_)a
Ty (t+ @)

2¢p L 1

)

>
y(t+ ) (Ta=2m)/3=€ | = (t 4 )1 =Te

which holds true for some finite ¢5 ., > t4,, since 0 < 7 <
1, and thus for all ¢ > ¢5 ,. Taking T ,, = 5, concludes the
proof. O

Lemma 6: Choose 7, 7,7, as in Lemma 5, and in addition
To + Ty < 1. Suppose that for all ¢ > 0, we have || X" — x*|| >
7. Then, we have for any 0 < 7 < (7, — 27)/3,

: T %t — «*|| — _
P(tlLrilo(t+1) Ix* — x| O) 1.

Proof: Consider the sample path w € €2 such that Lemma 5
holds, and since such set of w has probability measure 1, results
holds on such path w will hold almost surely. Similar to (28),
we have for any i € N,

VeI < NIV £ )| + e

< LIx" = x| + cLvnayy + pro. (33)
Step 1. Setup recursion: Define
7 Tt
kb = . 34
L||xtw — x*|| + cLy/nayy; + Diw 4
Then, by (33) we have
RS <l (35)

Recall that by the definition of 7, , in (26),

Yt = Lﬁt,w + CL\/ﬁatrYt + Ptw-

By the lemma hypothesis that ||x"“ —x*|| >7, ., we have
Je»~ < 1. Thus,

R <k = min (Ll (36)

By Assumption 3, for i € N, f; is twice differentiable and
convex, by the mean value theorem, there exists some matrix
Mfw > 0 such that

Vfi(x") = M;*“(x'

- V/fi(x")

W x).

Define
Mt W
IN | 2

ieEN

By Assumption 3 and 2, we have

0 <My < LI, uIl < M* < L1

1813
From (27), we have the relation
e — x|
t,w Z kt wvf St w —x*
zEJ\f
+ || K (V) - vm@%ﬂ
icN
Qg Z tw Qi tw_ tw
kb 3 kv (37)
zEN n i€A
We have that
Stw % tw (gtw) ¥
& =SS kTR — x|
€N
S }_( —X __Zkthtw *)|
icN
< Jr- Ty omem| sl G
n “
ieN 2

Let A1(-) denote the largest eigenvalue. Take 77 as the least
t such that oy < 1/[L(1 — p)], then for ¢ > T, the symmetric
matrix I — (o /n) >, pr ki M is positive definite, and thus

[e7%3 t,w t,w
R gy Vi
1( n ¢ ¢ )’

ieN
Oéti{t’w
=\ - .
2 ieN

Next, we use the fact that for any pair of symmetric matrices
A, B,

I__Zkthtw
ieN

wz t,w
MY

ieN

AM(A+ B) <A (4) + M (B).
It follows that

At (I - % Zkf‘“Mﬁ"“)
ieN
> i)

At,w
-\ (I _ aik
n €N

g t,w t,w t,w
+ M\ (n D (R — k)M )

iEN

Since foralli € N, kb —
definite, we have

Oétz twn gtsw

I_ k_» D]y

n - ¢ ¢
icN

t t . .y .
k;“ < 0and M, is positive semi-

I _ Oétfft"w

BVE

ieN

(39)

2 2

Combing relations (38) and (39) we obtain

t,w Zktwvf tw —x*

zEN
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IN

T — (1 = p)k" M |5 — x|

IN

[1— apu(1 = p)k"][|x" = x7||.
Combing the above with (36) (37) leads to the recursion

5 x|

IN

[ — aup(1 — )R] — x|
+ecly/1— POé?’Yt + (1 — p)oupsw + pouye
[1 = aulu(1 = p) = pLJE ] [ = x|

+cL(y/1—p+ pﬁ)ﬁé?% + QP w-

Step II. Lower bound for k" : We next show that there exists
some positive constant cy, ., such that

(40)

B> ot + @) (41)

By the definition of kb in (34), to show (41) it suffices to show
that

sup |4 — x| < oc, 42)
>0

which is equivalent to show that sup,.p, [X*“ —x*[| < oc.
Define the system

~ (p(Q = p) = pL) oy
Lmt,w + CLﬁOzt’}/t + Diw

+cL(\/1T= p+ pvn)aiy + aupr o,

Mi41,0 = Max (mt+l,w7 mtfw) )

mt+1,w —

t,w

with initial condition my, ,, = ||x71* — x*||. Note that since
274 + 7y > 474 /3 + 7, /3, for some constant ¢, ., we have

cL(\/1 = p+ pvn)aZy: + b
= Couo(t + ) (BTt IO,

Then, since 7, > 27, the dynamics of {m, , }+>, fallsinto the
pursuit of Lemma 9 in Appendix and leads to sup;>r, Mo <
00. By (40) and the definition of my ,, Vt > T, ||x* — x*|| <
my ,, and thus (42) follows.

Step II1. Convergence rate: Combing (40) and (41), we have

&t x|

< [1= crwcaln(l = p) = pLI(E + )~ o] x5 - x°

+emu(t+g) Ererin,

Then, with 7, + 7., < 1, we can apply Lemma 7 in Appendix
to obtain the desired convergence rate. O

Proof of Theorem 1: From Lemma 5 and Lemma 6, we have
for every 0 < 7 < min(7,, (7o — 27)/3),

P (lim(t+ 1)7|xt — x| = o) = 1.
t—o0
By the triangle inequality and (11), for every i € [n]
i — x| < [|x" = x| + [l — x|

< %" = x| + evnowys.
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Since 7 < T4 + 7, We have

P (lim(t+ 1)7||xt — x| = 0) -1
t—0o0

VI. CONCLUSION

In this article, we have studied a relatively unexplored threat
model in distributed optimization, namely that of arbitrary gra-
dient attacks, and we have proposed a distributed stochastic
gradient method CLIP-VRG that combines local variance re-
duced gradient estimation and clipping to achieve resilience
in the presence of such threats. We have identified a readily
computable upper bound, determined by the condition number
of the aggregate (strongly convex) objective function, on the
fraction of attacked agents that may be tolerated by the proposed
CLIP-VRG scheme. Under some similarity conditions among
local objective functions and the above mentioned attack thresh-
old condition, we have established the almost sure convergence
of CLIP-VRG to the exact minimum, which is empirically
supported by experiments on both synthetic and real-world im-
age classification datasets. Future directions include extending
CLIP-VRG to nonconvex or finite sum objective functions where
different upper tolerance bounds on the fraction of attacked
agents and new similarity conditions may be needed, involving
techniques to further mitigate the impact of data heterogeneity
such as gradient tracking, and understanding the convergence
with respect to other notions.

APPENDIX

Proof of Lemma 4: Define p(x) = h(x) — (1/2)||x — x*||?,
then p is convex and (L — p)-smooth. If L > pu, we have (The-
orem 2.1.5in [67])

(Vp(x),x —=x7) > IVp(x)]1*. (43)

L—p
Since

!

X - x = (1 - ap)(x— ')~ aVplx), (@)

we obtain
" — x>
= (1-ap?x - x°|* — 2a(1 - ap)(x - x°, Vp(x))
+0?|| Vp(x)||?

(43)

< (1—ap)?x —x|? - o2 —a(p+ L))

Tl A/

Since o < 2/(pn + L), the second term of the above display is
nonnegative, so the desired relation is obtained. If L = p, then
h is a quadratic function and it turns out

* M *
hx) = h(x) + x|,
and Vp(x) =0, so (44) reduces to X' —x = (1 — ap)(x —

x*), and taking Euclidean norms on both sides completes the
proof. |
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Lemma 7 (Lemma 5 in [68]): Consider the scalar positive
sequences 0 < u; < 1 that

uy = uo(t + 1), and w; = wo(t +1)7°,
with 0 < a < 1 and a < b. Then for
Y1 = (1 — ue)ye + wy,

forevery 0 < € < b — a, limy_, (t + 1)°7% ¢y, = 0.
Lemma 8 (Lemma 25 in [2]): Let the sequences {u;}, {w;}
be given by

wy = uo(t 4+ 1)7% wy = wo(t +1)7°

where ug, wg,a > 0, and b > a. The for arbitrary fixed j,

t—1
lim
t—00

k=3

(I 2h s (1= u(t))) we] =0.

Lemma 9: Consider a scalar dynamical system {m;} of the
form

N Ut
Mey1 = (1 — ——— )| my + wy,
my + vt

M1 = max (|11, [my)

where mo > 0 and v, is a positive decaying sequence, and

Uo
Ut = ————

(t+1)e’

Wo
IR
for some positive constants b > a, ug, wy. Then, it satisfies that
SUpP;~. My < 0.

Proof: We prove the lemma by showing that there exists
some finite 7" such that for all £ > T", m;1 = m;. Notice that
a sufficient condition for myy; = my is |my1| < |my| and
my > 0.

By definition, {m:} is a nondecreasing positive se-
quence, so my + vy > myg. By the definition of w,, take ¢y =
[(ug/mg)Y/® — 17, then all t > ¢, we have u;/(m; +v;) < 1.
Then, for t > tg, we have my; > 0,70, > 0 and M1 < |y
reduces to my41 < my.

ULt

me — Miy1 = — Wt.

me + U
Since m; is nondecreasing and v, is decaying, we have

my - 1
mye +Ut - 1 + (vt/mt)

mg,

[ =cp > 0.
My, + Vg,
Then, by the definitions of u;, w, for

1
wo

b-a
t > t, := max t0,< ) -11 ],
CoUo

we have
my — mt_;,_l Z CoUr — Wy > 0.

Therefore, taking T' = t;, we have for all t > T, m;41 = my,
and thus sup;>o m; = mr < co. O
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