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Abstract—Unlike stationary wind turbines, mobile wind tur-
bines (MWTs) can travel along the local transportation system
(TS) via a truck, supplying power to microgrids (MGs), residen-
tial buildings, and critical infrastructure. This spatiotemporal
flexibility can provide significant benefits, including enhancing
system resilience in the aftermath of high-impact low-probability
(HILP) incidents. However, the potential of such resources is
currently untapped, calling for improved utilization. To address
this research gap, this paper proposes an optimal scheme for
strategically pre-positioning MWTs to enhance the resilience of
MGs when facing extreme events. Considering that the MWTs
travel time on the TS and the predicted wind energy have a
significant impact on the duration and magnitude of power out-
ages during the restoration process, a scenario-based stochastic
mixed-integer linear programming (MILP) model is introduced
to incorporate uncertainties related to the road status in the TS,
power line faults in MGs, and wind energy forecasts. Case studies
on an integrated transportation and energy network — a central
Alabama interstate transportation network and two IEEE 33-
node test power systems — demonstrate the effectiveness of the
proposed pre-positioning scheme in boosting MGs resilience.

Index Terms—Mobile wind turbine (MWT), pre-positioning,
resilience, mixed-integer linear programming (MILP), scenarios,
stochastic programming.

NOMENCLATUREA. Sets

M Set of mobile wind turbines (MWTs).
K Set of nodes in the transportation system (TS).
T Set of time periods in the decision-making

horizon.
ΦΦΦ Set of microgrids (MGs).
Iϕ Set of nodes in the MG ϕ.
Icϕ ⊂ Iϕ Set of candidate nodes in the MG ϕ.
Kd ⊂ K Set of TS nodes where depots are located.
S Set of scenarios.
Lϕ Set of power lines in the MG ϕ.
H Set of hydrogen storage systems (HSSs).

B. Parameters

Ck Maximum number of MWTs allowed to be
connected to TS node k.

Λkϕi Indicator denoting whether TS node k is
mapped to candidate node i of MG ϕ.

aϕi Interrupted energy assessment rate for node i
of MG ϕ.

bϕt Price of undelivered energy from the electric
utility of MG ϕ at time t.

PD
ϕit, Q

D
ϕit Real/Reactive power demand in node i of MG

ϕ at time t.
PG
ϕ , Q

G
ϕ Real/Reactive power capacity of substation at

MG ϕ.
θϕi, θϕi Lower/Upper bounds of power factor angle at

node i of MG ϕ.
PF
ϕl, Q

F
ϕl Real/Reactive power flow capacity of line l of

MG ϕ.
U Big M number.
Rϕl, Xϕl Resistance/Reactance of line l of MG ϕ.
V sq

ϕi, V
sq

ϕi Minimum/Maximum squared voltage magni-
tude at node i of MG ϕ.

ρhϕi Indicator denoting whether HSS h is located at
node i of MG ϕ.

Eini
h Initial hydrogen storage level of HSS h.

Eh, Eh Minimum/Maximum hydrogen storage level of
HSS h.

ηp2hh , ηh2ph Power-to-hydrogen (P2H)/Hydrogen-to-power
(H2P) efficiency of HSS h.

P
p2h

h , P
h2p

h Maximum capacity of consumed/generated
power of HSS h in P2H/H2P mode.

WCap
m Wind power capacity of MWT m.

πs Probability of scenario s.
ωkk̂s Realization of random variable denoting travel

time from TS nodes k to k̂ in scenario s.
λϕlt Realization of random variable denoting the

status (on/off) of the power line l of MG ϕ
at time t in scenario s.

ξϕts Realization of random variable denoting the
predicted wind energy at MG ϕ at time t in
scenario s.

C. Decision Variables

xmk Binary variable indicating whether MWT m is
pre-positioned at TS node k.



ymkts Binary variable indicating whether MWT m is
assigned to TS node k at time t in scenario s.

zmϕits Binary variable indicating whether MWT m
is assigned to node i of MG ϕ at time t in
scenarios s.

poutϕits, q
out
ϕits Real/Reactive power outage in node i of MG

ϕ at time t in scenario s.
ψmϕits Power injection from individual MWT m to

node i of MG ϕ at time t in scenario s.
pwϕits Total power injection from all possible MWTs

to node i of MG ϕ at time t in scenario s.
vsqϕits Squared voltage magnitude at node i of MG ϕ

at time t in scenario s.
pgϕits, q

g
ϕits Total real/reactive power injection to node i of

MG ϕ at time t in scenario s.
pfϕlts, q

f
ϕlts Real/Reactive power flow in line l of MG ϕ at

time t in scenario s.
µp2h
hts , µ

h2p
hts Binary variable indicating whether HSS h is in

P2H/H2P mode at time t in scenario s.
pp2hhts , p

h2p
hts Consumed/Generated power of HSS h in

P2H/H2P mode at time t in scenario s.
Ehts Hydrogen storage level of HSS h at time t in

scenario s.
pnethts The net power output of HSS h at time t in

scenario s.

I. INTRODUCTION

Climate change is driving global warming, resulting in a
growing prevalence of high-impact low-probability (HILP)
events on a global scale. Such HILP incidents – e.g., hur-
ricanes, wildfires, winter storms – have led to excessive
equipment damages, prolonged electricity outages, significant
economic losses, and disruptions in our modern society [1].
Figure 1 demonstrates the increasing frequency of billion-
dollar disasters in the United States from 1980 to 2021 [2],
most of which resulted in extensive electricity outages. For
example, in February 2021, an extreme winter storm caused
a massive electricity generation failure in Texas, which led
to more than 4.5 million households without electricity at
its peak for several days and approximately $130 billion
in economic losses [3]. Power outages triggered by climate
change have inflicted substantial economic losses and posed
significant threats to human life, underscoring the critical need
for improving power grid resilience [4].

The development of sustainable energy systems is observed
as imperative to mitigate the impacts of climate change-
driven HILP incidents. In response to these environmental
concerns, renewable and clean energy resources have been
widely adopted and integrated into modern power systems
[5]–[8]. The rapid deployment of distributed energy resources
can significantly reduce carbon emissions and enhance the
resilience of the power grid in the face of extreme events
[9]. For instance, the study [10] develops an adaptive robust
optimization model to facilitate a faster and more reliable
self-healing process by coordinating wind farms and pumped-
storage hydro units. Additionally, study [11] presents an

Fig. 1. United States billion-dollar disaster events from 1980-2021 [2].

effective restoration strategy that incorporates wind energy
participation, aiming to achieve an elevated level of grid
resilience in the face of widespread emergencies.

Compared to stationary renewable energy resources, such
as solar panels, wind turbines, and hydrogen storage systems
(HSSs), the utilization of mobile power sources (MPSs) holds
significant promise for enabling spatiotemporal flexibility ex-
change within MGs and has garnered growing interest due to
its potential to enhance system resilience and improve overall
system efficiency. For instance, a joint post-disaster restoration
scheme applying MPSs and distributed generators tackling the
transportation system (TS) constraints is proposed in [12].
Considering the integration of the MPSs and repair crews’ dis-
patch, the study in [13] proposes a co-optimization approach
formulated as a mixed-integer second-order cone programming
model for distribution system resilience. The study in [14]
proposes a two-stage restoration scheme for distribution sys-
tem restoration capturing the full potential of MPSs dispatch
jointly with the dynamic distribution system reconfiguration
under a suite of seismic force scenarios. The study in [15]
develops a novel restoration mechanism in distribution systems
for deployment of MPSs integrated with stochastic renewable
energy sources, capturing the uncertainty of renewable energy
sources with joint probabilistic constraints. The study in [16]
considers decision-dependent uncertainty in the availability of
MPSs due to travel and waiting times for offering a more
realistic estimation of the MPSs’ contributions to distribution
system resilience enhancement. Achieved by the strategic
deployment of MPSs, the study in [17] proposes a risk-
averse model to generate a public-safety power-shutoff plan
for balancing wildfire risks and power outages.

However, MPSs investigated in the literature [12]–[17]
consume traditional energy to supply power, which have
higher operating costs and yield harmful emissions. Mobile
wind turbines (MWTs) are small-scale wind turbines that
are designed to be easily transportable and commonly used
for off-grid power generation or to power remote locations.
The study [18] incorporates joint utilization of MWTs and
electric thermal storage into the MG energy portfolio, which
can shift the load profile and prevent costs associated with
peak demand. Enabling spatiotemporal flexibility, MWTs can
serve as an exceptional choice for providing emergency power



to damaged power systems in the face of extreme weather.
To the best of our knowledge, the existing literature lacks

analytical models for MWTs allocation (i.e., pre-positioning)
for service restoration in rural locations. To fill in this
knowledge gap, we develop a novel restoration scheme that
integrates the pre-positioning of MWTs and the operation of
HSSs in rural MGs. The proposed model is formulated as
a scenario-based stochastic mixed-integer linear programming
(MILP) model to capture uncertainties in the road status of the
TS, power line faults in MGs, and predicted wind energy. The
model performance is verified on an integrated test system:
a central Alabama interstate transportation network and two
IEEE 33-node test power systems.

The rest of the paper is organized as follows: Section II
introduces the proposed MWTs pre-positioning model. Section
III describes the method for scenario generation. Section IV
discusses numerical results, and Section V summarizes the
research findings.

II. PROBLEM FORMULATION

In this section, we introduce a novel service restoration
model that takes into consideration the pre-positioning of
MWTs in the face of uncertain road status in the TS, power
line faults in MGs, and predicted wind energy. The proposed
model is formulated as a scenario-based MILP problem with
the following objective function:

min
∑
s∈S

πs
∑
ϕ∈ΦΦΦ

∑
i∈Iϕ

∑
t∈T

(aϕi + bϕt)p
out
ϕits (1)

The objective function (1) aims to minimize the expected
costs of power outages including the interruption cost imposed
to customers (i.e., aϕipoutϕits) and the revenue-loss imposed to
the electric utility (i.e., bϕtpoutϕits). The proposed optimization
model has a mixed-integer linear feasible set defined by
the constraints described in the following subsections II-A
–II-E. To ease the notations, we define index sets ΩΩΩ =
{(m, k, ϕ, i, t) : m ∈ M, k ∈ K, ϕ ∈ ΦΦΦ, i ∈ Icϕ, t ∈ T, s ∈ S},
and Ω̃ΩΩ = {(ϕ, t, s) : ϕ ∈ ΦΦΦ, t ∈ T, s ∈ S}.

A. MWTs Pre-positioning and Allocation Constraints

Constraint (2a) enforces a capacity limit on the number of
MWTs that can be pre-positioned at each depot. Constraint
(2b) ensures that each MWT is pre-positioned to exactly one
of the depots. Constraint (2c) ensures the initial location of
MWT m prior to its deployment in scenario s. The routing and
scheduling of MWTs in scenario s are defined by constraint
(2d). Constraint (2e) stipulates that the total number of MWTs
located at TS node k at any time period does not exceed
the maximum number of vehicles that node k can host. Each
MWT m can stay in at most one node at any time period
as enforced by constraint (2f). There exists a correspondence
between MG candidate nodes and TS nodes, hereafter called
coupling points/nodes [1]. Constraint (2g) ensures that MG
candidate node i can be served by MWT m only if it reaches
coupling node k of the TS at time t in scenario s.∑
m∈M

xmk ≤ Ck, ∀k ∈ Kd (2a)

∑
k∈Kd

xmk = 1, ∀m ∈ M (2b)

ymk1s = xmk, ∀m ∈ M, k ∈ Kd, s ∈ S (2c)
ymk(t+τ)s ≤ 1− ymk̂ts,

∀m ∈ M, k, k̂ ∈ K, τ ≤ ωkk̂s, t ≤ |T| − τ, s ∈ S (2d)∑
m∈M

ymkts ≤ Ck, ∀k ∈ K, t ∈ T, s ∈ S (2e)∑
k∈K

ymkts ≤ 1, ∀m ∈ M, t ∈ T, s ∈ S (2f)

ymkts ≥ Λkϕizmϕits, ∀k ∈ K, (m,ϕ, i, t, s) ∈ ΩΩΩ (2g)

B. MWTs Operation Constraints

Constraint (3a) ensures that the power output of MWT m
does not exceed its capacity if it is connected. Constraint
(3b) denotes that the total power output of MWTs cannot be
greater than the predicted wind energy in MG ϕ at time t.
Constraints (3c) and (3d) stipulate the total power injection
from all possible MWTs to each candidate node of MGs.

0 ≤ ψmϕits ≤WCap
m zmϕits, ∀(m,ϕ, i, t, s) ∈ ΩΩΩ (3a)∑

m∈M

ψmϕits ≤ ξϕts, ∀(m,ϕ, i, t, s) ∈ ΩΩΩ (3b)

pwϕits =
∑
m∈M

ψmϕits, ∀(m,ϕ, i, t, s) ∈ ΩΩΩ (3c)

pwϕits = 0, ∀i ∈ Icϕ \ Iϕ, (ϕ, t, s) ∈ Ω̃ΩΩ (3d)

C. MGs Power Balance Constraints

Constraints (4a) and (4b) denote the real and reactive power
balance conditions at each node in each MG. The notations
Θ(l) and Γ(l) represent the source and terminal nodes of
power line l, respectively. Constraints (4c) and (4d) ensure
the limits for real and reactive power outages at each node.
Constraints (4e) and (4f) represent boundaries of real and
reactive power injection at the substation node (i.e., node 1)
of each MG. The real and reactive power injection at non-
substation nodes is set by constraints (4g) and (4h).∑

l∈Lϕ;Θ(l)=i

pfϕlts −
∑

l∈Lϕ;Γ(l)=i

pfϕlts = pgϕits − (PD
ϕit − poutϕits),

∀i ∈ Iϕ, (ϕ, t, s) ∈ Ω̃ΩΩ (4a)∑
l∈Lϕ;Θ(l)=i

qfϕlts −
∑

l∈Lϕ;Γ(l)=i

qfϕlts = qgϕits − (QD
ϕit − qoutϕits),

∀i ∈ Iϕ, (ϕ, t, s) ∈ Ω̃ΩΩ (4b)

0 ≤ poutϕits ≤ PD
ϕit, ∀i ∈ Iϕ, (ϕ, t, s) ∈ Ω̃ΩΩ (4c)

0 ≤ qoutϕits ≤ QD
ϕit, ∀i ∈ Iϕ, (ϕ, t, s) ∈ Ω̃ΩΩ (4d)

0 ≤ pgϕ1ts ≤ PG
ϕ , ∀(ϕ, t, s) ∈ Ω̃ΩΩ (4e)

0 ≤ qgϕ1ts ≤ QG
ϕ , ∀(ϕ, t, s) ∈ Ω̃ΩΩ (4f)

pgϕits =
∑
h∈H

ρhϕip
net
hts + pwϕits,

∀i ∈ Icϕ \ {1}, (ϕ, t, s) ∈ Ω̃ΩΩ (4g)



pgϕits tan θϕi ≤ qgϕits ≤ pgϕits tan θϕi,

∀i ∈ Icϕ \ {1}, (ϕ, t, s) ∈ Ω̃ΩΩ (4h)

D. MGs Power Flow Constraints

Constraints (5a) and (5b) represent the power flow equations
considering the status of power lines where the term U(1 −
λϕlts) or U(λϕlts−1) ensures that the power flow condition is
satisfied for connected lines [19]. The real and reactive power
flow in online lines are limited by their active and reactive
capacities in constraints (5c) and (5d), separately.

vsqϕits − vsqϕjts ≤
2(Rϕlp

f
ϕlts +Xϕlq

f
ϕlts)

1000
+ U(1− λϕlts),

∀i, j ∈ Iϕ, l ∈ Lϕ, (ϕ, t, s) ∈ Ω̃ΩΩ (5a)

vsqϕits − vsqϕjts ≥
2(Rϕlp

f
ϕlts +Xϕlq

f
ϕlts)

1000
+ U(λϕlts − 1),

∀i, j ∈ Iϕ, l ∈ Lϕ, (ϕ, t, s) ∈ Ω̃ΩΩ (5b)

− PF
ϕlλϕlts ≤ pfϕlts ≤ PF

ϕlλϕlts, ∀l ∈ Lϕ, (ϕ, t, s) ∈ Ω̃ΩΩ (5c)

−QF
ϕlλϕlts ≤ qfϕlts ≤ QF

ϕlλϕlts,∀l ∈ Lϕ, (ϕ, t, s) ∈ Ω̃ΩΩ (5d)

E. HSSs Operation Constraints

The variations in the hydrogen storage level of HSS h
over time is determined by their power-to-hydrogen (P2H) and
hydrogen-to-power (H2P) behaviors, as denoted in constraint
(6a). Constraint (6b) defines the initial hydrogen storage level
setting of HSS h. Constraint (6c) specifies the range of the
hydrogen storage level of HSS h. Constraints (6d) and (6e)
represent output boundaries of HSS h in P2H and H2P modes,
respectively. Constraint (6f) indicates that P2H and H2P modes
of HSS h are mutually exclusive. Constraint (6g) restricts the
net real power output of HSS h.

Eh(t+1)s = Ehts +

(
pp2hhts η

p2h
h −

ph2phts

ηh2ph

)
,

∀h ∈ H, t ∈ T \ {|T|}, s ∈ S (6a)

Eh1s = Eini
h , ∀h ∈ H, s ∈ S (6b)

Eh ≤ Ehts ≤ Eh, ∀h ∈ H, t ∈ T, s ∈ S (6c)

0 ≤ pp2hhts ≤ P
p2h

h µp2h
hts , ∀h ∈ H, t ∈ T, s ∈ S (6d)

0 ≤ ph2phts ≤ P
h2p

h µh2p
hts , ∀h ∈ H, t ∈ T, s ∈ S (6e)

µp2h
hts + µh2p

hts ≤ 1, ∀h ∈ H, t ∈ T, s ∈ S (6f)

pnethts = ph2phts − pp2hhts ∀h ∈ H, t ∈ T, s ∈ S (6g)

III. SCENARIO GENERATIONS

Uncertainties arise on the road conditions of the TS, faults in
power lines within MGs, and wind energy predictions. In this
study, we use Monte Carlo simulation to generate a multitude
of scenarios to capture the various realizations of random
variables, such as travel time between nodes in the TS, the
status of power lines in MGs, and the availability of wind
energy around MGs.

Note that the statuses of roads in TS and power lines in MGs
are classified as either survival or failure in the event of a HILP
event. By employing the binomial distribution, we derive the

initial statuses of roads and power lines in different scenarios.
To determine the travel time between nodes in the TS (ωkk̂s),
we coordinate the initial status of roads with a shortest-path
algorithm [20]. Additionally, assuming that broken power lines
in MGs are repaired within a fixed timeframe, we establish
the status of power lines during each time period (λϕls). The
accurate prediction of wind energy production relies heavily on
modeling wind speed. In this context, the Weibull distribution
is commonly employed because of its capability to capture
uncorrelated wind speeds [21], [22]. By utilizing the Weibull
distribution, one can derive the potential wind power outputs
in different scenarios (ξϕts).

Monte Carlo simulation generates a large number of sce-
narios to capture the realizations of random variables. To
mitigate computational complexity, we employ the Backward
Scenario Reduction algorithm [23], which allows us to reduce
the number of scenarios to a tractable size.

IV. NUMERICAL RESULTS

A. Test System Description

In this section, the effectiveness of the proposed model is
verified by application to a test case that integrates a TS and
multiple MGs — a central Alabama interstate transportation
network [24] and two IEEE 33-node test power systems [19].
The configuration of the test system is illustrated in Fig. 2,
where MGs and TS networks are integrated through several
coupling nodes defined in Table I. Detailed information on
HSSs can be found in [25]. Six MWTs are considered in the
test system, each with 300 kW capacity, while 3 depots —
which are located in nodes 10, 13, and 19, respectively —
are taken into account. The entire restoration time horizon
in all conducted tests is assumed to be 24 periods of 30-
minute duration (i.e. 12 hours). We investigated the impact
of jointly implementing MWTs and HSSs on power system
resilience by studying three different cases on the introduced
test system: Case I includes neither MWTs nor HSSs; Case
II considers MWTs dispatch without the presence of HSSs;
Case III involves the participation of both MWTs and HSSs
in service restoration. Numerical tests are conducted on a
machine with an Intel i7-8700 processor and 32 GB RAM. The
optimization problem is formulated with AMPL and solved
with the optimization solver Gurobi 10.0.0.

TABLE I
COUPLING POINTS IN THE INTEGRATED TEST SYSTEM OF A TS AND

MULTIPLE MGS

TS MG1 TS MG2
1 n16 14 n2
2 n13 18 n3
3 n30 20 n25
4 n8 21 n20
5 n5 22 n6
6 n2 23 n28
7 n24 24 n18
8 n21 25 n12
9 n27 26 n9

27 n32



Fig. 2. An integrated test system with a central Alabama interstate transportation network and four MGs.

Fig. 3. Percentage of the total restored demand over time under different studied cases.

B. Analysis and Discussions

Figure 3 illustrates the percentage of restored demand across
multiple MGs under different cases. When comparing the
values found in Case I and Case II, it is evident that the
utilization of MWTs results in a higher percentage of restored
demand during the early time periods of the restoration process
(i.e., 26% versus 32% within 3 hours). Furthermore, in Case
III, where HSSs are introduced, a greater amount of the power
outage can be restored within the first hour of the restoration
process compared to Case I and Case II (i.e., 26% in Case
I and Case II, 32% in Case III). Throughout the duration of
1 hour to 11 hours, Case III consistently exhibits a higher
percentage of total restored demand compared to Case I in
each time period, highlighting that the integration of MWTs
and HSSs into the restoration process enables a quicker and
more efficient recovery from power outages.

Table II provides an overview of the results for all inves-
tigated cases. Analyzing the findings presented in Table II,
several key insights can be highlighted: (i) The transition from
Case I to Case II demonstrates a reduction in the total power
outage costs, showcasing the potential of MWTs and HSSs to
lower outage-related expenses and enhance the resilience of
MGs; (ii) Introducing HSSs into the scenarios where MWTs
are deployed leads to a reduction in wind curtailment, with the
percentage dropping from 42.52% to 36.16%. This outcome
highlights the positive impact of coordinating MWTs with the
operation of HSSs on boosting the resilience of communities
and critical infrastructures while minimizing wind curtailment
as much as possible.

Table III provides an overview of the decisions made
regarding the pre-positioning and allocation of MWTs in the
TS. Upon reviewing Table III, the following observations can

TABLE II
SUMMARY OF THE RESULTS IN ALL STUDIED CASES

Case Outage Costs ($) Wind Curtailment
Percentage (%)

I 21,853k 100
II 20,163k 42.52
III 19,272k 34.16

be made: (i) Two MWTs are pre-positioned at the depot
located at node 10 and subsequently assigned to nodes 6
and 7, respectively; (ii) One MWT is pre-positioned at the
depot situated at node 13 and deployed to node 14; (iii) Three
MWTs are pre-positioned at the depot located at node 19 and
subsequently allocated to nodes 21, 27, and 25, separately.

TABLE III
OPTIMAL MWTS PRE-POSITIONING AND ALLOCATION DECISIONS IN

THE TEST SYSTEM

Depot Pre-positioning Allocation Decisions
Location Decisions

node 10 MWT1 →→ Allocated to node 6
MWT2 →→ Allocated to node 7

node 13 MWT3 →→ Allocated to node 14

node 19
MWT4 →→ Allocated to node 21
MWT5 →→ Allocated to node 27
MWT6 →→ Allocated to node 25

Next, we assess the effectiveness of decarbonization through
the utilization of MWTs by comparing it to the conventional
approach of using mobile emergency generators (MEGs).
Specifically, we investigate the performance of six MEGs
with a capacity of 300 kW [1], using the same settings as
in all studied cases. We estimate the carbon dioxide (CO2)



emissions resulting from the use of MEGs during the restora-
tion process based on the report by the U.S. Environmental
Protection Agency [26]. Table IV presents a comparison of
the CO2 emissions and power outage costs resulting from the
utilization of MWTs and MEGs. Our analysis reveals that,
when compared to MEGs, MWTs can achieve a similar effort
of reducing power outage costs, while offering the additional
benefit of zero CO2 emissions. This finding demonstrates the
potential of MWTs in promoting sustainable power restoration
processes, which are crucial in mitigating the negative impact
of power outages on both environment and the society.

TABLE IV
PERFORMANCE COMPARISON OF THE PROPOSED MWTS VS.

CONVENTIONAL MEGS

Types Outage Costs ($) CO2 Emissions (ton)
MWTs 19,272k 0
MEGs 19,236k 3.04

V. CONCLUSION

In this paper, we developed a novel restoration scheme to
enhance the resilience of MGs through optimal decisions on
the pre-positioning of MWTs and their joint operation with
HSSs. The proposed scheme was formulated as a scenario-
based stochastic MILP model to capture uncertainties in the
status of roads in the TS, power line faults in MGs, and
wind energy predictions. Numerical results on an integrated
transportation and energy network — a central Alabama
interstate transportation network and two IEEE 33-node test
power systems — highlighted the benefit and efficacy of the
proposed approach in boosting MGs resilience against HILP
extremes while achieving improved decarbonization goals.
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