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Abstract—KNX is one popular communication protocol for a
building automation system (BAS). However, its lack of security
makes it subject to a variety of attacks. We are the first to study
the false data injection attack against a KNX based BAS. We
design a man-in-the-middle (MITM) attack to change the data
from a temperature sensor and inject false data into the BAS. We
model a BAS and analyze the impact of the false data injection
attack on the system in terms of energy cost. Since the MITM
attack may disturb the KNX traffic, we design a machine learning
(ML) based detection strategy to detect the false data injection
attack using a novel feature based on the Jensen Shannon Di-
vergence (JSD), which measures the similarity of KNX telegram
inter-arrival time distributions with attack and with no attack. We
perform real-world experiments and validate the presented false
data injection attack and the ML based detection strategy. We
also simulate a BAS, and show that the false data injection attack
has a huge impact on the BAS in terms of power consumption.
Our results show an increase in overall energy cost during a
false data injection attack. Other the examined ML models,
the Support Vector Machine (SVM) classifier achieved the best
results with a 100% detection rate with our proposed similarity
features compared to mean and variance related features.

I. INTRODUCTION

A building automation system (BAS) is one type of cyber-
physical system (CPS), which manages and automates a
building’s mechanical and electrical systems such as heating,
ventilation, and air conditioning (HVAC), sensors and actuators.
Devices in a BAS follow a specific communication protocol,
can be linked to a local area network (LAN) and may
be reachable from the Internet. KNX is one popular BAS
communication protocol with products market size of $4.381
billion in 2019 and projected to reach $10.15 billion by 2026
[1]. In this paper, we focus on the KNX based BAS.

A BAS may be subject to both cyber attacks and physical
attacks. A cyber attack may be used to break the networks,
pollute, and steal data, while a physical attack may be used to
manipulate and damage physical components [2].

We are the first to study the false data injection attack
against a KNX based BAS. Our major contributions can be
summarized as follows. We explore physical attacks and cyber
attacks to craft a man-in-the-middle (MITM) attack and inject
false data to a KNX based BAS. In particular, two Raspberry
Pis with KNX adaptors perform as the man in the middle, and
relay and change data in KNX telegrams such as temperature

sensor data. We also model a HVAC system and analyze the
impact of the fake data injection attack against the BAS in
terms of energy cost.

We design a machine learning based detection strategy to
detect the false data injection attack based on statistic features
of the traffic, which is disturbed by the MITM attack. The
MITM attack cannot be detected by injected false data, which
is changed in a minor way. We design a novel feature which
can measure the similarity of the probability distributions of
the KNX telegram inter-arrival times with attack and with
no attack based on Jensen Shannon Divergence (JSD). A ML
model is trained with the JSD feature to detect the MITM
attack and thus the false data injection attack.

We perform simulation and real-world experiments to
validate the false data injection attack and the ML-based
intrusion detection strategy. We simulate the HVAC system
under two types of false data injection attacks, and show that
the attacks have severe impacts on power consumption. Our
experiments show that the proposed JSD feature works better
than common statistics such as mean and variance which
are sensitive to outliers inherently. With the SVM-based ML
model with the JSD feature, the detection rate reaches 100%
with short KNX telegram segments such as 5 minutes of data.

Responsible disclosure: We have reported all our findings
to Siemens and its development teams. We hope the BAS
industry puts more efforts on BAS security.

II. RELATED WORK

No existing work focuses on the false data injection attack
against a KNX based BAS and analyses its impact with
regards to energy costs while there are attacks against the
BAS. Attackers can launch a replay attack against actuators
by sniffing traffic messages, so as to manipulate actuators
[3]. An adversary may use a hotel room’s iPad to access the
room’s KNX network and identify addresses of KNX devices
in hotel rooms. Then attackers can control the KNX devices
remotely without the need of the hotel iPad [4]. Rios presents
several password retrieval attacks to exploit and gain access to
facility management systems [5]. A fuzzing tool is designed
to discover vulnerabilities in the KNX protocol [6].



III. BACKGROUND

In this section, we introduce the communication mediums,
address types and telegrams in the KNX protocol.

A. Communication Medium

The KNX protocol supports multiple physical communica-
tion mediums such as twisted pair (TP1), KNXnet/IP, radio
frequency (RF), and powerline (PL) for connected devices to
exchange information via a KNX network. The KNX network
can be configured in either a tree, star, or line (daisy-chained)
topology. With the TP1 backbone communication medium, the
KNX network is a bus network. Any message that is sent
onto the bus network will be received by every device on the
network.

B. Address Type

The KNX protocol supports two general types of 16-bit
addresses: individual addresses and group addresses, which
can be used to access devices and data in a KNX network.

Individual Address. An individual address uniquely identi-
fies a KNX device on a KNX network. It has three parts in the
notation "area.line.deviceAddress". The individual
address whose deviceAddress is 0 is reserved for a line
coupler. If deviceAddress is not 0, the address represents
a regular KNX device. Individual addresses allow devices to
access other devices on the network. For example, when a
device sends a read request, the source address in the request
data frame contains the individual address of the device. In
the response of the request, the destination address will be
the individual address of the device which initially sent the
request.

Group Address: A group address is a logical entity that is
linked to a specific piece of data, called a KNX object, which
a KNX device has to provide. A group address can be either
2 levels "main/sub", or 3 levels "main/middle/sub".
Please note that the addresses “0/0” and “0/0/0” are reserved
for the broadcast addresses. The linking of a KNX object to
a group address allows the object to be read from or written
to through the address. For example, when a device reads a
KNX object, the destination address of the read request will
be the group address which is linked to the KNX object.

C. Telegram

The data frames that are sent throughout a KNX network
are known as felegrams. The structure of these telegrams will
change dependent on both the communication medium and the
programming mode in which the KNX network is configured
in. A KNX network with the TP1 communication medium
supports several types of programming modes such as standard
mode (S-mode) and easy mode (E-mode). S-mode is the most
common mode, in which devices and objects are manually
added and configured. A variation of E-mode called logical
tag extended mode (LTE-mode) is specifically developed for
HVAC applications. In LTE-mode, the configuration of a device
is automatically performed by a pre-programmed controller.
Figure 1 shows the structures of standard telegrams in S-mode

and extended telegrams in LTE-mode. A specific bit in the
control field of a telegram indicates the telegram type.

Standard Telegrams in S-mode. Standard telegrams in S-
mode are the most common telegrams. The control field in a
standard telegram as shown in Figure 1 contains a plethora
of information such as the repetition status, priority level and
telegram type, which will be used in the interpretation of
the telegram. The source address details the origin of the
telegram while the destination address specifies the desired
recipient. The data link layer service data unit (LSDU) contains
the information about the purpose of the telegram such as
groupRead or groupWrite, which will read from or write to a
group address respectively. In the case of a groupWrite, the
LSDU will also contain the data that is to be written. The last
field checksum is used to verify the integrity of the telegram.

Extended Telegrams in LTE-mode. Extended telegrams
in LTE-mode are larger than standard telegrams due to the
inclusion of the extended control field and a larger LSDU as
shown in Figure 1.

The extended control field in an extended telegram can
be divided into three parts: the address type, hop count, and
extended frame format (EFF). The address type indicates the
type of the destination address, which may be an individual
address or a group address. The hop count limits the telegram
distance to ensure that the telegram does not infinitely traverse
the network. If the address type is a group address, then the EFF
will describe how to interpret the group address. Otherwise,
it will interpret the destination address as a normal individual
address.

A LTE device is presumed to have multiple objects that can
be of the same type. As a result, a larger LSDU is needed to
access a specific object of the LTE device. When reading a
KNX object of a LTE device, the object type (OT), object index
(OI), and a property ID (PID) all must be provided. These
are additional fields located in the LSDU field of an extended
telegram. These three fields indicate a particular object and
describe a property that a device desires to read. A tag address
is also needed to read a KNX object of a LTE device. The tag
address can be interpreted from a group address based on the
EFF described previously.

IV. FALSE DATA INJECTION ATTACK

In this section, we first introduce physical attacks against
KNX that will allow an attacker to gain access into a KNX
network. We then present an eavesdropping attack, which can
be used to learn detailed protocols of the KNX based BAS.
Next, we present the false data injection attack via a man-in-
the-middle (MITM) attack. Finally, we model a KNX based
BAS, i.e. a HVAC system, and formally analyze the impact of
false data injection attacks on the HVAC system in terms of
energy cost.

A. Physical Attack

A KNX device such as a temperature sensor is often placed
in publically accessible locations and thus is subject to a
physical attack. For a KNX device utilizing the communication
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ports is available, a complete disconnect of the TP1 cables is
not required. A malicious device can utilize the available port
to connect and access to the KNX network. Then the malicious
device can see any telegrams being transmitted in the network,
or send its own telegrams to the network.

B. Eavesdropping Attack

In the eavesdropping attack, the attacker attaches their own
device to the KNX network through the described physical
attack above, and then passively listens on the bus for any
telegrams that are sent. It provides a means of understanding
how the KNX telegrams of a device are formed and the detailed
communication protocol between devices. After performing
a data dump, the attacker is presented with a plethora of
information such as: source and destination addresses and
individual/group addresses. In the case of extended telegrams,
tag addresses, OTs, Ols and PIDs are also presented. With this
gained information, the attacker can craft their own telegrams
with respect to the victim device.

C. False Data Injection via MITM Attack

With the information gained from eavesdropping and prop-
erly crafted telegrams, attackers can deploy MITM attacks
as shown in Figure 2 against a KNX based BAS with the
goal of false data injection. Without loss of generality, we
use the temperature sensor as a victim device in the MITM
attack example. Two Raspberry Pis are used to perform the
MITM attack. The left Pi is connected to the KNX network
that the temperature sensor is connected to via a KNX adaptor,
KNX Pi Hat. It then changes the data within the LSDU of
received telegrams from the sensor, and forwards these changed
telegrams to the right Pi via Ethernet or wirelessly. The right Pi
is connected to the KNX network that the DXR?2 controller is
on, and sends the changed telegrams to the DXR2. The two Pis
also forward telegrams generated by the DXR2 to the victim
temperature sensor and other types of telegrams, excluding the
temperature readings generated by the victim sensor, to the
DXR2 without modification.

Fig. 2. MITM Attack against Sensors

Using two Raspberry Pis is necessary for stealthy data
injection. One Pi can use only one KNX adaptor in out setup.
If one Pi and one KNX adaptor are used in the MITM attack,
the victim temperature sensor will be connected to the DXR2
directly through the KNX adaptor. Although the Pi can still
gather the temperature sensor’s telegrams, change them, and
forward them to the DXR2, the DXR2 will receive both the
original and changed telegrams; This would lead a defender
monitoring the DXR2’s KNX network to easily detect the
attack. Using two Pis and two KNX adaptors separates the
temperature sensor and the DRX2 into two different KNX
networks and addresses the issue above.

D. Impact of False Data Injection

We can utilize the MITM attack to control various KNX
devices such as a temperature sensor, and to inject fake data
into a HVAC system. In this paper, we focus on injecting
false room temperature values by manipulating a temperature
sensor, which may incur severe energy costs. Next, we model
a HVAC system. Then, we formalize the power consumption
incurred by room temperature changes in terms of cooling
in hot weather, so as to quantify the energy cost incurred by
injecting false room temperature values.

We model a HVAC system as shown in Figure 3, which
consists of a chiller that removes heat from water—the
coolant, the chilled water pump, air handling unit (AHU) with
three dampers and two fans which circulate the air, and the
constant boundary conditions which represent a typical cooling
tower system. The AHU serves one thermal zone such as
a room. These components work together to maintain the
room temperature at a predefined setpoint. Assume the room
temperature increases. Then components in the HVAC system
will work together to cool down the room temperature to
maintain it at the setpoint, which incurs power consumption
of fans, the pump and the chiller.
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Fig. 3. HVAC system model

The total power consumption of the HVAC system is the
summation of the power consumed by fans, the chilled water
pump, and the chiller as follows [7]-[9].

Ptotal (t) - Pfan(TT(t))
+ Ppump(Tsa(t))
+ Pchiller(mchw (t))

T,.(t) is the room temperature and may change with time. The
power consumption of fans Py, (.) increases with the room
temperature. 7T, (t) is the supply air temperature and increases
with T.(¢). The power consumption of the pump Ppymp(.)
increases with T, (¢) and thus the room temperature. 77qp, (t)
is the chilled water mass flow rate and increases with T, ().
So the power consumption of the chiller P.pijer (Mehw (1))
increases with the room temperature.

It can be observed from Equation (1) and discussion
above that when the room temperature increases, the power
consumption by fans, the chilled water pump, and the chiller
increases and thus the total cooling power consumption
increases. Therefore, when an attacker uses the false data
injection attack to change the room temperature reading, the
cooling system may be activated and the attack may incur
energy waste and cost.

(1

V. DEFENSE

In this section, we first present the detection problem
definition, and show the traffic patterns with atfack and with
no attack are different. We then discuss selection of features
and classifier for machine learning. At last, we introduce the
attack detection with trained machine learning models.

A. Problem Definition for False Data Injection Attack Detection

The false data injection attack presented in Section IV utilizes
the MITM attack. We carefully code the MITM attack to reduce
potential delays in forwarding KNX telegrams by Pis. However,
the attack may still change the KNX network traffic pattern due
to network delays and jitters. In order to detect the false data
injection, we can detect the MITM attack. For the detection,
we train a machine learning (ML) model utilizing traffic pattern
features. We assume that a defender collects telegram data and

performs detection at the DXR?2 controller as shown in Figure
2.

The raw data we collect is telegrams with timestamps, from
which we derive the telegram arrival time data series. From two
consecutive telegrams arriving at ¢; and t;;, we can derive
the telegram inter-arrival time I; = ¢, — t;. Therefore, from
a telegram arrival time data series, we can derive a telegram
inter-arrival data series.

We use a machine learning model to detect the false data
injection attack. For training purposes, the defender collects
two labeled telegram inter-arrival time training data sets :
A={I4,; | 0 < ¢ < I}, which is the telegram inter-arrival
time data set when there is an attack; B={Ig,; | 0 <i < m},
which is the telegram inter-arrival time data set when there
is no attack. We define the detection time window t as the
time duration of the telegram inter-arrival time data segment,
which the defender collects for attack detection.

Problem Definition: Given training data A and B and a
collected test telegram inter-arrival time segment 7 of a time
duration of ¢, does T belong to attack or no attack?
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B. Intuition of Attack Detection

We want to observe the patterns of telegram inter-arrival
times with attack and with no attack, and see if there is any
difference. We draw the histograms of telegram inter-arrival
time segments of a detection time window in training data
sets A and B, and observe the distribution of the inter-arrival
time. For a detection time window of 20 minutes, Figures 4

and 5 show the histograms of two segments in A with attack.

Figures 6 and 7 show the histograms of two segments in B
with no attack. It can be observed that the histograms from
the same data set are similar while the histograms from A and
B look different. For example, there are more small telegram
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70



inter-arrival times in A than in B. Therefore, the telegram
inter-arrival time with attack has different patterns from the
telegram inter-arrival time with no attack.

C. Feature Selection

We divide the telegram inter-arrival time training data sets
A and B into segments of a time duration of ¢. For A, assume
we obtain u segments {S4; | 0 <4 < u}. For B, we derive
v segments, {Sp; | 0 < j < v}

1) Mean and Variance as Features: Since Figures 4-7 show
telegram inter-arrival times with attack and with no attack have
different patterns, the first features we consider are the mean,
variance of the telegram inter-arrival time segment and the
vector (mean,variance). For our telegram inter-arrival time
data, we derive the feature mean as follows. For each telegram
inter-arrival time segment in A and B, we can derive its mean.
Therefore, we derive the training data sets of the feature mean
as follows, {Ma,; | 0 < i < u} and {Mp,; | 0 < j <
v}. We also derive the mean for the test data 7 as M.
Similarly, we can derive the training data sets of the feature
variance as {Va,; | 0 < i < u} and {Vp,; | 0 < j < v}
and the variance for the test data 7 as V. For the feature
(mean, variance), we then have {(My;,Va,) | 0 <i < u},
{(Mp,3,Ve;) | 0<j < v} and (M, V).

2) Probability Distribution Similarity as Feature: Since
mean and variance are inherently sensitive to outliers and not
robust as features, we want to find a feature based on the
probability distribution given that the outliers have a small
probability to occur and features considering probabilities
are more robust. We propose to use the Jensen Shannon
Divergence (JSD) to measure the similarity between probability
distributions of telegram inter-arrival time segments.

We derive the JSD similarity of two telegram inter-arrival
time segments as follows. From the two segments, we can
derive their corresponding telegram inter-arrival time distribu-
tions P and ). X is the range of the telegram inter-arrival
time.

KLPIQ) = 3 Plallong @
TSD(PIIQ) = SKL(PIM) + JKL@QIM), G

where M = (P + Q), and JSD € [0,1]. The closer to 0
JSD is, the more similar these two segments are.

We can now derive JSD features for our training data sets
A and B, and the test data 7.

« For each segment Sy ; (0 <i < wu ) of A, we measure
its JSD similarity with all segments of B and derive a
feature vector of v elements as follows

(JSD(Pa;llPBo)s- -+ JSD(Pail|PBy-1). (4)

Therefore, we have u feature vectors as training data.
Those feature vectors are the artack feature vectors, which
measure the similarity between attack data and no attack
data.

« We now derive the no attack feature vectors for training.
For each segment Sp ; (0 < j <v ) of B, we measure
its JSD similarity with all segments of B and derive a
feature vector of v elements as follows

(JSD(Pg,;||PBo), - ,JSD(Pg,;l|PBwv-1). (5)

Therefore, we have v no attack feature vectors.
o We derive the feature vector for test data 7 as follows

(JSD(Pr||PBo), -, JSD(Pr||Ppy-1). (6)
D. Classifier

For each candidate feature including mean, variance,
(mean,variance) and JSD similarity, we have derived two
training data sets of feature vectors and the test data feature
vector. For simplicity, we denote mean and variance as single-
element vectors. Therefore, for each type of feature vector,
we can train a classification model to classify the test data as
attack or no attack. In our experiments, we use 70% of the
data we collect for the training purpose and the other 30% as
test data. We label both the training data and the test data with
a class based on the ground truth.

Two classic ML algorithms, i.e. decision tree and support
vector machine (SVM), are used to train binary classification
models. The decision tree classifier is a tree-like model of
decisions. Each internal node is a test on a feature in a feature
vector, and each branch of this internal node is an output of
the test. A leaf node is a no attack class or an attack class.
Given an input feature vector, the decision tree model finds a
path from the root to a leaf node based on the value of each
feature, and uses the class of the leaf node as the output. The
SVM based classifier is a function which splits a space into
parts with different classes. Given an input feature vector, the
function maps the feature vector to a subspace and outputs the
class of the subspace.

E. Attack Detection

We use a trained ML model to detect the MITM attack,
thus the false data injection attack. For real-time detection,
we can just collect a telegram arrival time series in a period
of ¢ that the ML model uses, calculate its inter-arrival time
segment 7T, derive the feature vector for 7 per the features
that the ML model uses, and then input the feature vector to
the trained ML model which will output a class for 7. We
use the feature vectors of segments in the testing data set
to evaluate the detection rate. By comparing the output class
with the true class label of a testing feature vector, we can
know if the classification, i.e. attack detection, is correct, and
obtain the detection rate. In our experiments, we set different
detection time windows ¢ and evaluate the detection rate of
different ML models with different features versus t.

VI. EVALUATION

In this section, we first present the experiment setup. Then
we show the impact of the false data injection attack on the
HVAC system. Finally, we demonstrate the effectiveness of
the proposed ML-based defense scheme.



A. Experiment Setup

Figure 8 shows the experiment setup using a Siemens BAC-
net Field Panel located at the University of Central Florida. We
use the Siemens DXR2.E12P-102B (DXR2) BAS controller and
the Siemens QMX3.P74B-1WSB Room Operator Unit, which
can work as a KNX temperature sensor in our experiments. The
KNX device data from the DXR2 can be viewed and monitored
in real time by the Siemens Desigo CC building management
software platform. We use two Raspberry Pi 3s with 16 GB
of flash memory running Raspbian OS version 10-Buster. We
use two KNX Raspberry Pi HATs (PiHAT), each of which is
connected to a Pi’s universal asynchronous receiver/transmitter
(UART) on-board pins using 4 Dupont wires.
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Fig. 8. Experiment setup for MITM attack against a temperature sensor

We use twisted pair (TP1) cables to connect one Pi HAT
to the DRX2, forming one KNX network, and connect the
second Pi HAT to the temperature sensor to form another
KNX network. An Ethernet switch is used to connect the two
Pis together so that the two Pis may communicate with each
other to perform the MITM attack. We use the Calimero Java
library for KNX to construct telegrams, perform eavesdropping
and forward telegrams.

We validate the MITM attack against the temperature sensor
as shown in Figure 8. Please note that the MITM attack against
the damper is also performed but not presented in this paper.

B. Attack Impact on HVAC System

We use a simulation tool named Dymola and the Modelica
buildings library [10] to simulate the HVAC system model
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2000
1500
1000

500

Energy Cost (kWh)
o

22 22.05 22.1
Fix Temperature (°C)

22.15

—o—total —=—fan -s=—pump chiller

Fig. 10. Additional energy cost incurred by Attack-ii

as introduced in Section IV-D and mimic the real-time attacks
to evaluate the impact of the false data injection attack.

Simulation Settings. In the simulation, a built-in solar
radiation module of Dymola is used to simulate solar radiation
(i.e., sun) influence to the building. We use the TMY3 weather
data of Orlando, FL on July 29, 2005 to obtain a realistic
ambient (i.e., surrounding) air temperature, humidity and
wind speed. The room temperature setpoint, the supply air
temperature setpoint and the supply water temperature setpoint
are 22°C, 14°C and 6°C respectively. The damper opening
level is set as 30%. The room size is 29,750 cubic meters.
In the simulation, the outside temperature changes along
with time, which affects the room temperature and incurs
energy cost. Without attack, the energy cost incurred by the
outside temperature changes is 1,303.70 kWh from 7:00 am
to 7:00 pm. We use the 1,303.70 kWh as the energy cost
benchmark. We evaluate two types of false data injection attacks
as follows. (Attack-i) Constantly adding a fixed bias such as
1°C to the original room temperature sensor reading. (Attack-ii)
Overwriting the original room temperature sensor reading to
a constant false value such as 22.005°C which is higher than
the setpoint. We launch each attack at 7:00 am and cease the
attack after 12 hours.

Energy Cost. Figures 9 and 10 show the additional energy
cost incurred by the two false data injection attacks in
comparison to the energy cost benchmark 1,303.70 kWh
without attack. For each attack strategy, we measure the total
additional energy cost and the additional energy cost of the
fans, the chilled water pump and the chiller. It can be seen
that the total power consumption has risen significantly. Our
proposed attack strategies can have a huge impact on HVAC
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system power consumption.

C. Defense Effectiveness

We use a popular ML tool Weka V3.8.6 to train the
ML model and evaluate the effectiveness of the proposed
defense scheme on the false data injection attack against the
temperature sensor. Two classic ML algorithms, Weka J48
decision tree and Weka SMO support vector machines (SVM),
are used. We gathered the attack dataset A and baseline dataset
B over a 24-hour period each from our real-world testbed.
We set the detection time window ¢ as bmin, 10min, 20min,
30min, 40min, 50min, and 60min, respectively. The detection
rate is defined as the overall accuracy of recognizing feature
vectors labeled as attack and no attack in the testing dataset.

Figure 11 shows the detection rate for each detection
time window with the J48 decision tree based model. The
proposed probability distribution similarity feature works better
than mean, variance and (mean, variance) features when the
detection time window is less than or equals to 20 min. The
defender who detects the attack would prefer a small detection
time window so as to discover the attack quickly. An attack
may not last long either. In the case of the SVM-based ML
model, the probability distribution similarity feature always
outperforms other features, and its corresponding detection
rate reaches 100% with each detection time window as shown
in Figure 12. It can be observed that our defense scheme is
effective, and the proposed probability distribution similarity

feature works better than the mean and variance related features.

VII. CONCLUSION

In this paper we demonstrate the feasibility and impact
of a false data injection attack against KNX based building
automation systems. In such an attack, an attacker may
physically remove a KNX sensor, and launch a Man-In-the-
Middle attack with the intent to inject false data into the
BAS. We carefully analyze the impact of false data injection
attacks on HVAC systems, and quantify the additional energy
cost incurred by the false data injection attack by simulating
two attack strategies. We are the first to study the false data
injection attack against a BAS and its impact. Machine learning-
based strategies are presented to detect the false data injection
attack based on features of the telegram inter-arrival time. The
SVM classifier can achieve a detection rate of 100% using the
proposed probability distribution similarity feature as compared
to the mean and variance related features with small detection
time windows.
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