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A Benchmark Comparison of Imitation Learning-based Control Policies
for Autonomous Racing
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Abstract— Autonomous racing with scaled race cars has
gained increasing attention as an effective approach for devel-
oping perception, planning and control algorithms for safe au-
tonomous driving at the limits of the vehicle’s handling. To train
agile control policies for autonomous racing, learning-based
approaches largely utilize reinforcement learning, albeit with
mixed results. In this study, we benchmark a variety of imitation
learning policies for racing vehicles that are applied directly or
for bootstrapping reinforcement learning both in simulation and
on scaled real-world environments. We show that interactive
imitation learning techniques outperform traditional imitation
learning methods and can greatly improve the performance of
reinforcement learning policies by bootstrapping thanks to its
better sample efficiency. Our benchmarks provide a foundation
for future research on autonomous racing using Imitation
Learning and Reinforcement Learning.

I. INTRODUCTION
A. Motivation

In motorsport racing, it all boils down to the ability of
the driver to operate the racecar at its limits. Expert race
drivers are extremely proficient in pushing the racecar to its
dynamical limits of handling, while accounting for changes
in the vehicle’s interaction with the environment to overtake
competitors at speeds exceeding 300 km/h. Autonomous
racing emphasizes driving vehicles autonomously with high
performance in racing conditions, which usually involves
high speeds, low reaction times, operating at the limits
of vehicle dynamics, and constantly balancing safety and
performance [1]. While the goal of autonomous racing is
to outperform human drivers through the development of
perception, planning and control algorithms, the performance
with learning-based approaches is still far from parity. The
goal of this paper is to benchmark a variety of imitation
learning (IL) approaches that are used directly and for
bootstrapping reinforcement learning (RL).

In the past few years, autonomous racing cars at different
scales such as Roborace [2], Indy Autonomous Challenge
[3], and Formula Student Driverless [4], reduced-scale plat-
forms like FITENTH [5] have been developed. Reduced-
scale platforms with on-board computation and assisted with
algorithm development in simulation enable rapid develop-
ment with lower cost for research and educational purposes.

Autonomous racing has traditionally followed the percep-
tion—planning—control modular pipeline. A recent shift to-
wards the end-to-end learning paradigm for autonomous ve-
hicles is showing promise in terms of scaling across common
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Fig. 1: (a) The training map for evaluations and comparisons in
simulation. (b) The unseen map for testing the generalizability of
learned policies. (c¢) The training map for the real-world comparison
is generated using LiDAR scans of the real environment. (d)
FITENTH vehicle is controlled by the learned policy.

driving scenarios and navigating rare operation contexts [6].
Autonomous racing provides a perfect setting for evaluating
end-to-end testing approaches as it clearly specifies the trade-
off between safety and performance. However, the difficulties
in sim-to-real transfer and ensuring safety remain open for
further study [1].

Among the emerging end-to-end approaches, IL and RL
are the most promising. IL essentially trains policies to
mimic the given expert demonstration [7]. It is shown to
outperform supervised machine learning algorithms since
those methods suffer from problems including distribution
mismatch among datasets and long-term sequential plan-
ning [8]. Based on the innovative algorithm Data Aggre-
gation (DAGGER) [8], some interactive IL methods, such
as human-gated DAGGER (HG-DAGGER) [9] and expert
intervention learning (EIL) [10], use interactive querying to
improve the training process and overall performance.

However, imitation learning-based autonomous racing ve-
hicles is only just getting started [6]. Several recent efforts
[11, 12] implemented IL on autonomous racing cars, but only
for bootstrapping and simplified tests. This work implements
and provides a comprehensive comparison among several
IL methods in simulation and on the FlTenth physical
racing platform (https://fltenth.org). By making
this available as open-source software, we hope to encour-
age researchers to further the exploration in learning-based
controllers for autonomous driving.
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B. Contributions

In this paper, we tackle the problem of IL-based control
for autonomous ground robots that will drive with high-
speed and high acceleration. This work has three main
contributions:

1) We implement 4 different IL algorithms that learn from
expert demonstrations;

2) We display results from both simulation and real-world
experiments on a small-scale autonomous racing car;

3) We benchmark different algorithms for both direct
learning and bootstrapping.

II. RELATED WORK

A. Autonomous Racing

End-to-end approaches for autonomous driving in gen-
eral, and autonomous racing in specific, replace partial or
whole modules of the modular perception-planning-control
autonomous software pipeline with data-driven approaches
[1]. For instance, [13] combined non-linear model predictive
control (NMPC) and deep neural network (DNN) for the
trajectory planning, while [14] utilize model-based RL to
test their vision-based planning.

Few studies have explored IL for autonomous racing.
Deep imitation learning (DIL) [11] trained the DNN policy
with an MPC expert using DAGGER and tested it on
AutoRally. Additionally, few studies took IL and RL together
into account. Controllable imitative reinforcement learning
(CIRL) [15], and deep imitative RL (DIRL) [12] initialized
the RL policy network with IL before starting exploration.
Still, IL was implemented in basic behavioral cloning (BC)
rather than interactive IL methods. [16] and [17] loaded the
transitions of demonstration into the replay buffer to lead
the RL process [12]. Nonetheless, they still use IL as simple
demonstrations, and the methods have not been verified in
real-world scenarios.

B. Imitation Learning

BC is the most straightforward IL method. Supervised
machine learning is used in BC to train the novice policy with
the demonstrated expert policy. One of its first applications
in autonomous driving from 1988 is ALVINN [18], which
could achieve the vehicle-following task on the road with
a vehicle equipped with sensors. BC is easy to understand
and simple to implement. However, it suffers from the risk of
distribution mismatch, covariate shift [19], and compounding
errors [8], making it brittle for autonomous racing.

Studies in imitation learning after BC usually could be
categorized into direct policy learning (DPL) and inverse
reinforcement learning (IRL). DPL primarily emphasizes
learning the policy directly [7], while IRL pays more at-
tention to learning the intrinsic reward function [20]. In this
paper, we will mainly discuss DPL.

Data Aggregation (DAGGER) allows the novice to influ-
ence the sampling distribution by aggregating the expert-
labeled data extensively and updating the policy iteratively,

which mitigates BC’s drawbacks [8]. However, the data-
gathering rollouts are under the complete control of the in-
completely trained novice rather than interactively querying
the expert, which degrades the quality of the sampling and
efficiency of data labeling; this even potentially destabilizes
the autonomous system [9].

To deal with the drawbacks of DAGGER, recent devel-
opments in interactive IL involved the human-gated method
and robot-gated method. The human-gated techniques, e.g.,
[9, 21], allow the human supervisor to decide the instants to
correct the actions, but continuously monitoring the robot
will burden the supervisor. The robot-gated method [22]
enables the robot to query the human expert for interventions
actively but balancing the burden and providing sufficient
information is still difficult [23]. In this paper, we only con-
sider the human-gated method since the robot-gated method
is unsuitable for our racing conditions with low reaction
time. Using the robot-gated method will probably cause the
crashing due to high-speed racing and inertia.

By introducing the gating function, human-gated DAG-
GER [9] allows the human expert to take control when
the condition is beyond the safety threshold and to return
the control to novice policy under tolerated circumstances.
The interactive property reduces the burden of the expert
rather than querying the expert all the time and ensures the
efficiency of the training process. Expert intervention learn-
ing (EIL) [10] proposed further exploration with implicit
and explicit feedback beyond HG-DAGGER. It addresses
that any amount of expert feedback needs to be considered,
whether intervened or not. EIL records the data into three
state-actions datasets and added the implicit loss inferred
when the expert decides to intervene.

III. METHODOLOGY

The IL algorithms we implement and compare in this work
include BC [24], DAGGER [8], HG-DAGGER [9], and EIL
[10]. We use a multi-layer perceptron (MLP) as the learner
and a pure pursuit algorithm as the expert for all implemented
IL algorithms. We are using a 2D simulation environment
(FITENTH gym) developed for the small-scale autonomous
race car [25]. The learner takes the LiDAR scan array oy,
as input, whereas the pure pursuit expert takes the x and y
coordinates and angular direction of the agent 6 as input.
Both the learner and expert output steering angle and speed
as actions to control the vehicle.

For human-gated IL algorithms that require expert inter-
vention, which are HG-DAGGER and EIL, we define two
intervention thresholds ~, and +, for speed v and steering
angle w, respectively. To mimic the expert intervention using
the pure pursuit algorithm, both the learner policy and the
pure pursuit output their action based on their observation
separately at every step. The pure pursuit will take over
the control and provides expert demonstrations whenever the
difference of action between the learner policy and the pure
pursuit exceeds either of ~, or .

Considering the prominence of RL in learning-based meth-
ods for autonomous racing and the potential of IL as a
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TABLE I: Evaluations of different learned policies in an unseen simulation environment.

Method BC DAGGER HG-DAGGER EIL PPO BC+PPO DAGGER+PPO HG-DAGGER+PPO EIL+PPO
Distance Traveled (m) 7.84 8.90 12.34 15.89 12.69 151.23 86.49 155.88 150.15
Complete 1 Lap No No No No No Yes No Yes Yes
Bhattacharyya Distance 0.77 0.60 0.12 024 1.09 0.59 0.59 0.47 0.43

bootstrapping method for RL, we also implement proximal
policy optimization (PPO) [26] to train policies with or
without IL bootstrapping to compare the efficiency of various
combinations of PPO and different IL algorithms. Before
training, the PPO policy can be initialized randomly or
bootstrapped using a pre-trained network by IL algorithms
with n expert-labeled samples. The pre-trained IL network
has the same architecture with the PPO policy. To reduce
warbling, avoid crashing and encourage staying close to the
center-line of the track, we design a reward function r that
incorporates the reward for survival, the penalty for lateral
error from the center-line Fj, and penalty for the deviation
of steering angle w as

—-0.5 if crashed
r = —0.02-min(1.0, max(0,w))+¢ —0.02- E; if E; > 0.1
0.02 otherwise

To transfer the learned policy from simulation to the real
world, we add an array of random noise op to the LiDAR
scan array or. or and oy, have the same dimension. Each
element in og is randomly sampled from [cv, 8], where « and
[ are the lower and upper bounds of the random noise.
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Fig. 2: The distance traveled by each agent with respect to
the number of expert-labeled samples.

TABLE II: Elapsed time of IL policies trained with different
experts

Expert Type Expert BC DAGGER HG-DAGGER EIL

Slow 33.07 s Failed 34.34s 33.78 s 33.50 s
Normal 25.04 s 2535s 2585 s 25.06 s 2522's
Fast 19.69 s Failed Failed Failed 2040 s

IV. EXPERIMENTS
A. Implementation Details

We implement the IL algorithms using the FITENTH, a
1/10-scale autonomous racing research platform, for both
simulation and real-world scenarios [25]. The maps for
training and evaluation in simulation and the real world are
shown in Fig. 1. Due to safety considerations, all policies
in this work are trained in the FITENTH gym. We use the
same two-layer MLP with 256 hidden units as the learner
for all IL algorithms in the comparison. The learning rate
is set to 0.001 during training. When training policies using
DAGGER, HG-DAGGER, and EIL, the first 500 samples
are collected for training initial policies using BC. For HG-
DAGGER and EIL, we set the intervention threshold ~, and
Yw to 1 and 0.1, respectively. All IL policies are trained
using 20k expert-labeled samples. To test the efficiency of
bootstrapping, we train different PPO policies for 20k steps.
We use IL policies with 3000 expert-labeled samples as
the starting point for bootstrapped PPO policies. We let
a = —0.2 and 8 = 0.2 for transferring policies to real world.

B. Evaluations in Simulations

During the training of the four IL algorithms, the learned
policies are evaluated in terms of distance traveled in the
training map after the training of each iteration. We use the
number of expert-labeled samples as the independent variable
to assess and compare the sample efficiency of different IL
algorithms for three reasons. First, the major downside of IL,
in general, is its requirement of expert effort with labeling.
Moreover, the number of steps in each iteration is not fixed
and is uncontrollable for all algorithms except BC. Lastly,
implicit samples in EIL are collected at no cost, which makes
it unfair to compare with other algorithms in terms of the
total number of samples.

As shown in Fig. 2, to further test the ability to imitate
the expert’s behavior for each IL algorithm, we train different
policies using the demonstration of the pure pursuit expert
with different speeds. The slow, normal, and fast experts are
with an average speed of 4.79 m/s, 6.39 m/s, and 8.24
m/s respectively. Overall, those IL algorithms with expert
intervention, i.e., HG-DAGGER and EIL, have better sample
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TABLE III: Evaluations of different learned policies in the real-world environment.

Method

Expert BC DAGGER HG-DAGGER EIL PPO BC+PPO DAGGER+PPO HG-DAGGER+PPO EIL+PPO

Distance Traveled (m) 61.44 644  8.49 37.74 38.04 527 6.44 6.29 64.08 39.5
Complete 1 Lap Yes No No No No No No No Yes No
Expert BC DAGGER HG-DAGGER PPO BC+PPO DAGGER+PPO HG-DAGGER+PPO EIL+PPO
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Fig. 3: The movement trajectories of the FITENTH vehicle on the map under the control of each policy.

160 — ppo -
= 140 BC + PPO J
120 DAGGER + PPO / \
E —— HG-DAGGER + PPO g
o 100

EIL + PPO

Cumulative

7500 10000 12500
Number of Steps

15000 17500 20000
Fig. 4: The cumulative reward with respect to the number
of steps during training PPO policies with or without IL

bootstrapping.

efficiency since their learned policies travel significantly
longer distances than BC and DAGGER.

Although all IL algorithms struggle to learn when using
the demonstrations from the fast expert, as shown in Table II,
EIL is the only one that can complete one lap. Table II also
indicates that the upper limit of the performance of policies
learned using IL is from the expert.

Since IL can be combined with RL, we test the bootstrap-
ping efficiency of different IL algorithms for PPO at normal
speed. As Fig. 4 suggests, using any IL algorithms can help
PPO converge to a better policy as it no longer needs to
start from a random policy. DAGGER, HG-DAGGER, and
EIL demonstrate considerably better bootstrapping efficiency
than BC, thanks to their better sample efficiency.

To evaluate how well the policies generalize, we generate
a new (unseen) map, as shown in Fig. 1(b), and perform
inference using the policies at normal speed. For each policy,
we record the distance traveled and whether it completes one
lap or not to evaluate its performance. We also calculate the
Bhattacharyya distance [27] for the decision of an expert at
every step to evaluate the similarity between learned behav-
iors and expert behavior. As Table I shows, the combinations
of IL and PPO significantly outperform policies only using
IL or PPO, with the PPO trained with EIL bootstrapping
having the best performance. This indicates that combining
IL and RL can efficiently converge to a more generalized

policy. Additionally, interactive IL can train policies that are
more similar to expert behavior than non-interactive IL and
PPO.

C. Evaluations in Real-World Environments

All policies for real-world experiments are at 3 m/s. Fig. 3
shows the results of real-world experiments. For both direct
training and bootstrapping, interactive IL methods, which
are HG-DAGGER and EIL, can train policies that travel
considerably further distances compared with policies from
non-interactive methods, which are BC and DAGGER. BC
and DAGGER barely help when bootstrapping PPO in real-
world experiments. The combination of HG-DAGGER and
PPO has the best performance and is the only policy that
completes one lap in the real world. Despite incorporating
the penalty on steering angle in the reward function, PPO
policies have more warbling in their trajectories compared
with IL policies, which might result from the difference
in floor friction between the gym environment and the
real world. The real-world experiments further validate that
combining IL and RL yields the best result.

V. CONCLUSION

In this work, we implement four different IL algorithms
on the FITENTH platform to benchmark their performance
in the context of autonomous racing. Our experiments show
that IL algorithms can train or bootstrap high-performance
policies for autonomous racing scenarios. Recent develop-
ment in interactive IL significantly improves the sample ef-
ficiency of policies for autonomous racing. The combination
of RL and interactive IL can get the best of both worlds:
fast convergence and better generalizability. The interac-
tive imitation learning methods outperform non-interactive
methods for both learning directly and bootstrapping due to
their improved sample efficiency. Our IL implementations
provide a foundation for future research on autonomous
racing using IL and RL. Future work will focus on safe
human-gated methods for multi-agent autonomous racing,
utilization of new network architecture, and better simulation
environments to further reduce the sim-to-real gap.
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