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Analyzing
Extreme Events
in Power Systems

OVER THE PAST SEVERAL YEARS THE ELECTRIC POWER SEC-
tor has been challenged by a number of extreme events around the globe.
Cr 0OSS- Significant societal and economic shocks were due to the rapid spread of
COVID-19 around the world. In addition to the pandemic, there have been
D om al n several extreme weather and societal disruptions to the electricity sector,
such as the February 2021 Texas power outage and the 9 p.m. nine-minute
Data-Driven

blackout event in India.
Approach

An Open,

These major societal-level shocks interrupted the operation of the elec-
tric power system in significant manners that would have otherwise been
difficult to predict. While their full impact on the electricity sector have
yet to be fully realized, this article attempts to provide a summary of ongo-
ing activities that aim at better understanding and analyzing the short-run
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impact of such extreme events. In particular, this article doc-
uments several open, cross-domain, data-driven approaches
to modeling and analyzing the changes in electricity con-
sumption and related electrical variables due to these shocks.
These projects collectively serve as examples of what could
be done to better prepare for extreme events in future power
systems.

This article summarizes several ongoing projects that
are aimed at understanding the short-term impact of
COVID-19 as well as other extreme events on the electric
power sector. An open, cross-domain data-driven approach
is shown to be effective in providing science-based deci-
sion support for operators and planners in the electricity
sector. Key challenges in data collection, processing, and
interpretation are illustrated through case studies. With
more extreme events coming, the electric power sector
would benefit from having a more systematic cross-domain
data-hub approach to analyzing and predicting the impact
of extreme events.

A Cross-Domain Data-Driven Approach
to Analyzing the Short-Term Impact of
COVID-19 on the U.S. Electricity Sector
The rapid spread of COVID-19 across the United States
caused unprecedented significant impacts on the electric-

ity sector in 2020. It is imperative to understand such an
extreme event comprehensively in a scientific manner. Fig-
ure 1 shows the architecture of this cross-domain study,
including steps of

v integration of cross-domain data

v backcast model training

v quantification of the impact of COVID 19 on the US

power sector

v/ comprehension of the change in electricity consumption.

Aiming to provide insights through a data-driven
approach, we first develop a cross-domain open-access
data hub by integrating heterogeneous data, including
region-wide electricity consumption, weather, mobile
device location record, and satellite imaging data. Lever-
aging the data hub, we analyze the intensity and dynam-
ics of impacts of COVID-19 on the electricity sector.
Quantified changes in electricity consumption reveal that
the electricity sector in the United States experienced
rapid changes in 2020. Note that this study only focuses
on the early stages of the pandemic in 2020. Creating a
cross-domain data set that includes factors, such as the
number of COVID-19 cases, the degree of social dis-
tancing, and the level of commercial activity offers fresh
insights which power system operators might draw upon
for impact analysis.
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figure 1. The architecture of developing a cross-domain open-access data hub and analyzing the impact of COVID 19

on the U.S. power sector.
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Developing a Cross-Domain
Open-Source Data Hub
We aggregate electricity load and generation data from seven
electricity markets, including California (CAISO), Midconti-
nent (MISO), New England (ISO-NE), New York (NYISO),
Pennsylvania—New—Jersey—Maryland (PJM), Southwest
Power Pool (SPP), and Texas (ERCOT). To get cross-domain
insights to understand how such an extreme event affected
electricity consumption, we integrate weather data, satellite
imaging data, public health data, and mobile device location
data in the territory of these markets. Particularly, we define
several indicators by processing the mobile device location
data, including “stay-at-home population,” “numbers of on-
site workers,” and “mobility in the retail sector,” which are
considered as the key influencing factors in the analysis.
Here, to provide an intuitive representation of the signifi-
cation reduction in electricity consumption, we visualize the
night-time light intensity in Figure 2 using night-time light data
from satellite imagery. It provides a preview of one subsequent
analysis result that the shut-down rate of commercial activity is
a key factor for the change of electricity consumption.

Quantifying Changes in Electricity

Consumption in the United States

Using the aggregated historical data, we quantify the
impacts of COVID-19 on the electricity sector by design-
ing a backcast model to estimate counterfactual electricity
consumption. Specifically, the goal of developing a backcast
model is to provide a statistically robust baseline of elec-
tricity consumption in the absence of COVID-19 against
from which the reduction in electricity consumption can be
quantified. The backcast model is an ensemble of multiple

neural networks, each of which is a function mapping sev-
eral potential factors, including weather variables, date, and
economy, to the estimated electricity consumption. The final
output of the backcast model is calculated by averaging over
the outputs of multiple neural networks.

We first analyze the reduction in electricity consump-
tion in New York State. We present the comparison between
the estimated counterfactual baseline for 2020, actual daily
electricity consumption profiles in 2020, and historical data
in 2019 in Figure 3. The strong match between the counter-
factual and actual curves in 2020 before COVID-19, along
with similar patterns of the counterfactual curves during
COVID-19 and historical curves in 2019, demonstrates that
the backcast model can reliably estimate electricity con-
sumption in the absence of COVID-19. Furthermore, Table 1
shows the estimated change in electricity consumption in
seven electricity markets and four illustrated cities to com-
pare the impact of COVID-19 across markets and cities.

All markets experienced a reduction in electricity con-
sumption in both April and May 2020, but with diverse mag-
nitudes of the reductions: MISO and NYISO suffered the
most significant reduction, while SPP and ERCOT experi-
enced the least. Finally, all markets exhibited a rebound in
June 2020 that may be credited to the economy reopening.
The impact of COVID-19 on demand reduction is more obvi-
ous in urban areas with higher population density and larger
share from the business and commercial sector, such as New
York City and Boston, where the electricity consumption
reduced 14.1% and 11.3%, respectively, in April 2020. On
the other hand, cities like Houston, where the population
and commercial activities are more dispersed, did not show
a significant demand reduction.

Average Intensity
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figure 2. A comparison of night-time electricity consumption before and during the COVID-19 pandemic in New York
City by satellite image data. (a) Night-time light intensity at 1 a.m. on 8 February 2020. (b) Night-time light intensity

at T a.m. on 25 April 2020.
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figure 3. A comparison between the estimated counterfactual baseline for 2020, actual daily electricity consumption
in 2020, and historical daily electricity consumption profiles in 2019 in NYISO. (Source: Ruan et al., 2020; used
with permission.)

Analyzing Influencing Factors of the

table 1. A comparison of changes in electricity

consumption across major electricity markets Change in Electricity Consumption

in the United States To comprehend the changes in electricity consumption
Alesrfeis across the United States during COVID-19, we investi-
Consumption gated three influencing factors, including public health
Reduction (%) February March April May June (the number of COVID-19 cases), social distancing (the
CAISO 13 27 992 6.5 03 size of the stay-at-home population and the population of
MISO 01 18 102 107 35 on—s.it.e worker.s), and (.:ommercial activ.ity (the .frequency
of visits to retail establishments). These influencing factors
RO-NE =2 = 2k e 1 need to be considered because they reflect social activities
NYISO 0.8 45 10.2 105 57 closely related with electricity consumption from different
PIM 0.5 2.7 94 7.4 0.1 perspectives. We leverage a restricted vector autoregression
Spp ~09 25 27 92 27 (VAR) model to analyze the complex multidimensional
corelationship between multiple variables, including the
ERCOT -1 13 o4 a4 24 number of COVID-19 cases, population of on-site work-
Boston 0.4 71 M3 94 04 ers, stay-at-home population, mobility in the retail sector,
New York City 0.4 5.3 141 148 111 and electricity consumption. A restricted VAR model
Heusien 06 ~05 5.3 3G 4.4 is essentially a linear regression model, which is a func-
. tion that maps the historical values of multiple variables

Kansas City 0.1 0.2 9.0 7.0 0.2 .
to their current values. The model parameters can be used
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Texas, among all affected states, was hit particularly hard mainly
from a state-wide power outage that lasted more than three days,
which affected more than 4.5 million customers.

to understand the linear correlation between time series
of these variables. Note that while the restricted VAR
model can explain how multiple variables interact, we
only focus on the part of the model parameters related to
how other influencing factors impact the dynamic process
of electricity consumption. We use variance decomposi-
tion analysis [Figure 4(a), (c), and (e)] that leverages the
corresponding parameters of current/historical influenc-
ing factors to quantify the contribution of influencing fac-
tors to the changes in electricity consumption. We also
use impulse response analysis [Figure 4(b), (d), and (f)] to
reflect how electricity consumption evolves in response to
a unit change of one influencing factor.

Based on the analysis results, we have several key findings:

v/ The mobility in the retail sector is the most signifi-
cant factor that accounts for a major proportion of the
change in electricity consumption, which is supported
by a consistently leading proportion across different
cities in both the variance decomposition analysis
[Figure 4(a), (c), and (e)] and impulse response analy-
sis [Figure 4(b), (d), and (f)].

v/ The number of COVID-19 cases is not a key factor,
which is supported by a low sensitivity in the impulse
response analysis [Figure 4(b), (d), and (f)].

v/ Electricity consumption in cities with a mild reduc-
tion, such as Houston, may be highly sensitive to some
influencing factors such as the level of commercial
activity [Figure 4(f)].

Cross-Domain Data-Driven Approach

to Analyzing the Impact of the Extreme
2021 Winter Storm in Texas

The severe Winter Storm Uri in February 2021 hit the south-
ern states of the United States and caused record levels of low
temperature, snow, and freezing, which caused widespread
disruption of many public services including electricity sup-
ply. Texas, among all affected states, was hit particularly hard
mainly from a state-wide power outage that lasted more than
three days, which affected more than 4.5 million customers,
caused supply shortage of food, water, heating, and medical
care, and in turn led to the death of more than 246 people.

Assessing Possible Corrective Measures

for the 2021 Texas Power Outage

Figure 5 presents how load shedding and generation outage
evolved in the Texas grid from 14-18 February 2021. On the
night of 14 February 2021, the temperature throughout Texas
dropped below subfreezing temperatures and caused a spike in
residential energy consumption, because most Texas residences
had poor heat insulation and used resistive electric heaters with
relatively low efficiency. The total demand in Texas surged to
a historical 69,692 MW that was roughly 3,200 MW higher
than the previous winter record in 2018. The sudden drop in
load capacity around 2 a.m. on 15 February marked the begin-
ning of an about 70-h forced load shedding that once reached
a maximum of about 20,000 MW. The total electricity cost
for ERCOT in a single day (16 February) alone exceeded
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figure 5. The actual online generation capacity and load in Texas interconnection between 14-18 February 2021.

EEA: Energy Emergency Alert.
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figure 6. The architecture of data collection, Texas grid model calibration, power outage event replay, and assessment

of possible corrective measures.

10 billion dollars, which was more than the total ERCOT
electricity cost of the entire year 2020 at 9.8 billion dollars,
due to the exorbitant wholesale market price. The total eco-
nomic damage caused by this power outage was estimated to
be US$200 billion dollars.

In the aftermath of this widespread blackout, it is
imperative for the broader energy community to investigate
the following:

v/ why and how such a disastrous blackout occurred in

the Texas power grid

v/ what could potentially be done to reduce and eventu-

ally eliminate the extent of the outage.

Therefore, as shown in Figure 6, we developed a data-
driven approach for replaying the outage event and assessing
possible corrective measures.

To assist researchers and policy makers with different
backgrounds of expertise, we developed an open-access
data hub using only nonrestrictive publicly available data
about the Texas power grid and the 2021 power outage
event. This data hub consists of a calibrated 2,000-bus
synthetic grid model and a collection of cross-domain
data related to the power outage from various sources that
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are prepared to be used with the synthetic model directly.
Specifically, the topology, generation capacity, and loads
of the grid model are calibrated so that the simulation
results through direct current optimal power flow closely

25

= Simulated
= = Actual

N
o
1

EEN
a1
1

Load Shedding (GW)
=

02/18

figure 7. The loading shedding curves of blackout event
reproduction via simulation on the synthetic grid.
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representing the state of the Texas grid around February
2021. In our study, we first used this synthetic model and
data set to perform a simulated reproduction of the 2021
Texas power outage event, and then quantitatively evalu-
ated the effectiveness of possible technical solutions that
could potentially mitigate the electricity scarcity under
similar extreme weather conditions.

The fidelity of our synthetic model, data, and the associ-
ated simulation method is validated by reproducing the event
timeline in simulation and comparing with real ERCOT and
Energy Information Administration records. We mimic the
forced load shedding and restoration process based on the
operation principles from ERCOT operation protocols and
use our model to compute the minimally necessary load
shedding that is necessary for safe operation of the grid.
We use energy-not-served (ENS), a widely used power sys-
tem reliability index, as a metric to quantitatively assess the
extent of forced load shedding in the event reproduction and
hypothetic scenarios. The simulated blackout reproduction
in Figure 7 shows the following:

v the total ENS of the simulated load shedding is
999 GWh, having a 4.3% difference in comparison
with the actual 956 GWh

v the correlation coefficient between the simulated and
actual load shedding curves is 0.88

v the largest gap between the simulated and actual load
shedding is 6.7 GW

The unavoidable mismatch can be attributed to errors in
the modeling of synthetic network and uncertainty in sys-
tem operation under such emergency conditions. Further
research could be devoted to estimate the error range in a
more systematic manner.

We then used the data hub as a platform to model, simu-
late, and evaluate various potential corrective methods that
could strengthen the Texas grid under extreme weather. Spe-
cifically, the simulation results of generator winterization
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figure 8. The load shedding curves for different degrees
of winterization.
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are illustrated in Figure 8. These simulation results captured
some key characteristics of the outage event that would oth-
erwise be difficult to obtain directly from data, such as the
regional and fuel-type disparity of generator winterization
effectiveness and the interdependency of performance across
different corrective measures. Such open-source simulation
allows scholars to develop and propose optimal investment
allotment on Texas grid enhancement and efficiently inform
policy makers about their importance and impact.

Analyzing the Interdependency Between

the Natural Gas and Electricity Sectors

We have also created another simulation using the existing
work and data from the Texas 2021 power outage event and
adapting it to visually recreate the natural gas and electricity
generation infrastructure present in the ERCOT grid. This
simulation seeks to understand and visualize the interdepen-
dencies of the natural gas and electricity generation sectors
during Winter Storm Uri using available natural gas data
over 14-19 February 2021.

The scope of the simulation is the ERCOT service area
inside Texas. The project focused strictly on the natural gas
and electricity generation infrastructure, so only that side
of the energy mix is plotted as represented in the simula-
tion. Geographic data for all sites was collected from the
U.S. Energy Information Administration, which contained
shapefile layers for many components of the U.S. energy
mapping system. Geographic information for Texas and
ERCOT shapefiles came from the ERCOT website.

Data surrounding the 2021 Texas power outages were
derived from several different sources. Natural gas elec-
tricity generator derate data initially came from a ERCOT
report, but the data frame was downloaded from the “2021
Texas Power Outage” project. Data regarding specific natu-
ral gas storage units was unobtainable, but general trends of
this resource allocation were made available through Wood
Mackenzie reports as seen in the University of Texas’ paper.
Likewise, data trends for natural gas processing plants were
obtained the same way and extrapolated to fit the scope of
this simulation.

Next, these two types of data were combined to create a
geospatial representation of capacity and flowrate values for
individual plants. In total, three types of polygon elements
were added: Texas and county borders (black), ERCOT ser-
vice area (blue), and natural gas shale plays (pink). Three
node elements were added: natural gas processing facilities
(red), natural gas powerplants (light blue), and natural gas
storage facilities (green). Finally, one polyline or line-string
element was added: natural gas intrastate pipelines (pink) to
indicate flows between the nodes.

The radius of each node corresponds to its generating
capacity, throughput, or storage capacity depending on each
type of unit. These nodes grow larger and smaller as the
simulation runs to mimic the derating or processing fail-
ures of powerplants or natural gas processing plants over the
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(b)

figure 9. A visualization of the synthetic ERCOT natural gas grid with the simulation. (a) Natural gas at 12:00 a.m. on
14 February 2021. (b) Natural gas at 2:00 a.m. on 16 February 2021.

five-day period. The simulation is visually scalable, so it can
be viewed zoomed out, looking at holistically at ERCOT, or
zoomed in to specifically analyze one node or area of inter-
est. In addition, hovering the mouse over a node or pipeline
will provide the user with descriptive data for that element
of the simulation at that given time (Figure 9). Finally, the
simulation can be paused, run back, and slowed down to
allow for ease of analysis.

This model can be utilized for other data sets and can
incorporate transmission or pipeline flows if available. All
these functions allow the user to retroactively study specific
sites after an extreme weather event. For example, a close
look can be taken at the generators that maintained optimal
functionality during the event to understand which factors
contributed to their success (e.g., more interconnections to
natural gas processing facilities, winterization packages,
backup generation, and so on).

Concluding Remarks

This article presented several studies that aim at understand-
ing the short-term impacts of extreme events, such as the
COVID-19 pandemic and unprecedented winter storm, on the
electric power sector by cross-domain data-driven approaches.
The data-driven approach for COVID 19 helped to understand
the change in electricity consumption in 2020 and pointed to
population mobility as a key driver. The approaches for the
2021 Texas winter outage provided quantified corrective mea-
sure assessments and interdependency between infrastructure
systems, which can be used as a reference for policy mak-
ing. Besides, the open-source data set is expected to provide
a common basis for potentially fostering transparent and effi-
cient intra- and interdisciplinary collaboration.
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