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Abstract: Experimental results reveal that rocking shallow foundations reduce earthquake-induced
force and flexural displacement demands transmitted to structures and can be used as an effective
geotechnical seismic isolation mechanism. This paper presents data-driven predictive models for
maximum acceleration transmitted to structures founded on rocking shallow foundations during
earthquake loading. Results from base-shaking experiments on rocking foundations have been
utilized for the development of artificial neural network regression (ANN), k-nearest neighbors
regression, support vector regression, random forest regression, adaptive boosting regression, and
gradient boosting regression models. Acceleration amplification ratio, defined as the maximum
acceleration at the center of gravity of a structure divided by the peak ground acceleration of the
earthquake, is considered as the prediction parameter. For five out of six models developed in this
study, the overall mean absolute percentage error in predictions in repeated k-fold cross validation
tests vary between 0.128 and 0.145, with the ANN model being the most accurate and most consistent.
The cross validation mean absolute error in predictions of all six models vary between 0.08 and 0.1,
indicating that the maximum acceleration of structures supported by rocking foundations can be
predicted within an average error limit of 8% to 10% of the peak ground acceleration of the earthquake.

Keywords: geotechnical engineering; rocking foundations; earthquake engineering; soil-structure
interaction; artificial neural network; machine learning

1. Introduction

Dynamic soil-structure interaction in shallow foundations has generally been modeled
using mechanics-based models such as simple spring-dashpot models, beam on nonlinear
Winkler foundation models, plasticity-based macro-element models, and continuum-based
models. A recent review article summarizes the computational methods generally used to
model dynamic soil–foundation–structure interactions during earthquake loading, particularly
in the context of geotechnical engineering [1]. As the development of large experimental
databases becomes increasingly common, the application of machine learning techniques
in geotechnical engineering has been improving and becoming more effective [2]. Machine
learning models generalize observed experimental behavior, capture the salient features that
may not be captured by mechanics-based models, and can be used with mechanics-based
models as complementary measures in engineering applications or can be combined with
engineering mechanics using the emerging framework of theory-guided machine learning [3].

Machine learning algorithms such as logistic regression, decision trees, decision tree-
based ensemble models, and artificial neural networks have been used in a variety of
geotechnical engineering applications that include mechanical properties of soils, strength
of soils, soil slope stability, bearing capacity of foundations, and dynamic response of
soils during earthquake loading [4–9]. Recently, in dynamic soil–foundation–structure
interactions, machine learning algorithms have been used to develop data-driven models
for rocking-induced seismic energy dissipation in soil, peak rotation of foundation, and
factor of safety for tipping-over failure of rocking shallow foundations [10,11].
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The earthquake-induced peak acceleration of structures is one of the key seismic
design parameters of buildings and bridges, as the seismic performance of these structures
depends heavily on the inertial forces experienced by the structural members and non-
structural components induced by the acceleration of structures [12,13]. For instance, base
shear force (and bending moment) of structures during earthquake loading, a commonly
used seismic design parameter for structures, is directly proportional to the horizontal
acceleration at the effective height of the structure [14]. There have been several studies
related to floor acceleration demands on structures during seismic loading for structures
supported by traditional, fixed-base foundations [15–17].

Rocking shallow foundations is a recent research phenomenon that has been investi-
gated to some extent, particularly using centrifuge and shaking table experiments [18–23].
Research on rocking foundations reveals that they dissipate seismic energy in soil, reduce
acceleration, force and flexural drift demands transferred to the structures, and effectively
perform as a geotechnical seismic isolation mechanism [24–26]. Numerical modeling
methods and empirical methods are available to quantify the moment-rotation response,
rotational stiffness, damping ratio and settlement-rotation relationships of rocking founda-
tions [27,28]. This paper presents the development of models to predict the rocking induced,
reduced peak acceleration demands on structures using machine learning algorithms that
are trained and tested on experimental results from a rocking foundation database that
covers a wide range of soil properties, foundation geometry, and structural configurations.
Whereas the previously published research on the application of machine learning algo-
rithms to rocking foundations focused on rocking induced seismic energy dissipation, peak
rotation, and tipping-over stability of rocking foundations, the current work focuses on
the acceleration amplification ratio (AAR) of rocking foundations. The motivation for the
current work stems from the importance of reduced acceleration demands transmitted to
structures supported by rocking foundations (one of the major, potential beneficial effects
of rocking foundations, if adopted in civil engineering practice).

The objective of this study is to develop data-driven models for the prediction of
maximum acceleration transmitted to the effective height (center of gravity) of relatively
rigid, single degree of freedom type structures founded on rocking shallow foundations
during earthquake loading using multiple machine learning and deep learning algorithms.
The machine learning algorithms utilized in this study include artificial neural network
regression, k-nearest neighbors regression, support vector regression, random forest re-
gression, adaptive boosting regression, and gradient boosting regression. The results of
these machine learning model predictions are compared with those of a multivariate linear
regression machine learning model (used as the baseline model) and a statistics-based
simple linear regression model. A brief background to the problem considered is presented
first, along with the experimental data used in this study and input features to machine
learning models. It is followed by brief descriptions of the machine learning algorithms
utilized and how they are applied to the problem considered. Finally, the results, discussion
and conclusions of the study are presented.

2. Rocking Foundations for Seismic Loading
2.1. Rocking Mechanism and Acceleration Amplification Ratio

Figure 1 shows the schematic of a simplified, relatively rigid, shear wall-type rocking
structure supported by a shallow foundation, the major forces acting on the structure, and
the forces and displacements acting at the soil-footing interface. The key parameters that
govern the behavior of a rocking system include the critical contact area ratio of the rocking
foundation (A/Ac), slenderness ratio of the rocking structure (h/B), and rocking coefficient
of the soil–foundation–structure system (Cr) [26]. Cr is essentially a non-dimensional,
normalized form of the ultimate moment capacity of rocking foundations and can be
expressed by [29]:

Cr =
B

2·h ·
[

1 − Ac

A

]
(1)
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where B is the width of the foundation in the direction of shaking and h is the effective
height of the structure. The A/Ac is essentially a factor of safety for rocking foundations
and defined as the ratio of total base area of the foundation (A) to minimum foundation
area required to be in contact with the soil (Ac) to support the applied vertical load [18].
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Figure 1. Simplified schematic of a rigid structure-foundation system rocking on soil and the major
forces acting on it during earthquake loading.

The output parameter of machine learning models developed in this study is accelera-
tion amplification ratio (AAR) of the rocking foundation and it is defined as:

AAR =
amax,str

amax
(2)

where amax,str is the peak horizontal acceleration at the effective height of the structure and
amax is the peak horizontal ground acceleration of earthquake shaking. By comparing the
maximum moment experienced by the soil–foundation system due to the inertial forces
from the structure with the moment capacity of the rocking foundation, the following
approximate relationship can be obtained for a theoretical upper bound for the AAR of a
rocking foundation supporting a relatively rigid, SDOF-type structure [26].

AAR ≤ Cr

amax
(3)

Equation (3) implies that the foundation moment capacity limits the maximum seismic
force demands transferred to the structure because of nonlinear soil–foundation–structure
interaction. Though the relationship given in Equation (3) is approximate, it can be used to
obtain simple, statistics-based empirical relationships for AAR.

2.2. Experimental Results

The experimental results utilized in this study are obtained from a total of nine series
of centrifuge and shaking table experiments on rocking shallow foundations conducted
at the University of California at Davis, the University of California at San Diego, and the
National Technical University of Athens in Greece [30]. The details and major results of
these individual test series are available in separate publications [18,29,31–36]. A summary
of these experimental results and the effects of key rocking system capacity parameters
(e.g., A/Ac and Cr) and earthquake demand parameters (e.g., amax) on the performance
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parameters of rocking foundations (e.g., AAR), derived from the data obtained from these
experiments, are available in Gajan et al. (2021) [26].

Altogether, results obtained from 140 experiments on rocking foundations from the
abovementioned series of experiments are utilized in this study. Figure 2 presents the
variation of AAR with amax (experimental results) for rocking structure-foundation systems
with three different clusters of Cr, of which two clusters are for sandy soil foundations and
one cluster is for clayey soil foundations. The AAR of rocking foundations are smaller
than 1.0 for more than 82% of the experiments considered (for 116 out of 140 experiments),
indicating that rocking foundations reduce the accelerations transferred to the structures
they support (de-amplifying effect). This effect increases as Cr decreases, indicating that
the foundations that have more tendency to rock (smaller Cr) de-amplify the acceleration
more. The reduced acceleration demand on the structure during foundation rocking is a
consequence of mobilization of bearing capacity and yielding of soil beneath the foundation
during rocking. This de-amplifying effect is more pronounced for large amplitude shaking
events (greater amax) than for small shaking events, as soil yielding is even more significant
during large amplitude shaking (a beneficial consequence of nonlinear soil-foundation
interaction). Note that, for the experiments considered in this study, there is no noticeable
difference between the AAR values of sandy and clayey soil foundations as long as the amax
and the range of Cr remain the same.
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Figure 2. Results obtained from 140 centrifuge and shaking table experiments: Variation of AAR with
amax for rocking structure–foundation system with three clusters of rocking coefficient (Cr).

It should be noted that simplified procedures for estimating the peak acceleration
demands on traditional fixed-base structures use a trapezoidal distribution, where peak
acceleration at roof level could be about 3.0 to 4.0 times the peak ground acceleration of
the earthquake [12]. For example, the American Society of Civil Engineers’ document
Minimum Design Loads for Buildings and Other Structures (ASCE 7-16) indicates that
the floor acceleration amplification factor can be as high as 3.0 at roof level [37], while the
National Earthquake Hazards Reductions Program’s (NEHRP) Building Seismic Safety
Council (BSSC) indicates that the floor acceleration amplification factor can be as high as 4.0
at roof level [38]. For the purpose of comparison, the abovementioned values correspond to
an equivalent AAR of 3.0 to 4.0. This clearly shows that rocking foundations are much more
efficient in de-amplifying the accelerations transferred to the structures during seismic
loading (AAR < 1.5 for the vast majority of the experiments plotted in Figure 2).

Figure 3 plots the experimental results of AAR against Cr/amax for all 140 rocking
foundation experiments considered in this study (the same data plotted in Figure 2). Also,



Appl. Sci. 2023, 13, 12791 5 of 21

included in Figure 3 are a 1:1 line and a best fit line obtained from statistics-based simple
linear regression (SLR) using log (Cr/amax) and log (AAR) as the independent variable and
the dependent variable, respectively. Though Cr/amax is an approximate theoretical upper
bound for AAR (Equation (3)), some of the experimental data show AAR values greater
than Cr/amax. This could possibly be because of the approximate nature of the upper bound
relationship and the assumptions and simplifications involved in the derivations. The
best fit SLR relationship yields a coefficient of determination (R2) value of 0.75 (in log–log
scale), indicating that there is room for improvement and better predictive relationships
can be obtained by machine learning algorithms. In summary, the experimental results of
AAR indicate that rocking foundations reduce the seismic force demands imposed on the
structures by decreasing the acceleration transferred to structures, and that this beneficial
de-amplifying effect increases as Cr decreases (for foundations that are more prone to
rocking) and as amax increases (for relatively larger magnitude earthquakes).
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Figure 3. Experimental results for AAR as a function of Cr/amax along with a 1:1 line and a statistics-
based simple linear regression (SLR) best fit line in log–log space.

2.3. Input Features for Machine Learning Models

The input features for machine learning models have been selected based on their
theoretical and experimentally observed close relationships with AAR, presented in Gajan
et al. (2021) [26]. In addition, in order to predict other performance parameters of rocking
foundations (namely, seismic energy dissipation, maximum rotation of rocking foundation
and factor of safety for tipping over failure), the same set of input features have been
found to be appropriate and successful [10,11]. The input features include three non-
dimensional rocking system capacity parameters (A/Ac, h/B and Cr), and two earthquake
loading demand parameters (amax and Arias intensity of earthquake (Ia)). The amax is
the most commonly used ground motion intensity parameter in geotechnical earthquake
engineering that characterizes the magnitude of shaking. Arias intensity of earthquake
ground motion combines multiple key features of earthquake ground motion through
numerical integration of acceleration time history in the time domain. These key features
of ground motion include amplitude, duration, frequency content and number of cycles
of earthquake loading. All the input feature parameters have been calculated for 140
individual experiments from the abovementioned series of experiments. Figure 4 presents
the frequency plots, mean values, and standard deviations of all five input features. For
ease of presentation, the frequency plots lump each input feature into five groups; the exact
values of each input feature are used in training and testing of machine learning models.
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As shown in Figure 4, the input features used in this study cover a wide range of
rocking structure–foundation–soil system parameters (A/Ac, h/B and Cr) and earthquake
demand parameters (amax and Ia). As the variation of Ia is relatively high, it is transformed to
a log scale (feature transformation). In addition, all the input feature values are normalized
to vary between 0.0 and 1.0 (feature scaling). Figure 5 summarizes the research methodology
in the form of a flow chart listing the experimental variables, input features, and the machine
learning models developed to predict AAR.
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3. Machine Learning Algorithms
3.1. Distance-Weighted K-Nearest Neighbors Regression (KNN)

The KNN algorithm considers data instances as multi-dimensional vectors, with the
number of dimensions being equal to the number of input features. The algorithm calculates
the distances between data points in this multi-dimensional space and assumes that the
data points share similar properties with their close neighbors (and hence similar output
values). The Euclidean distance measure is used to calculate the distance between any two
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data points in 5-D space in this study. During the training phase, the KNN algorithm simply
stores the entire training dataset as vectors. During the testing phase, the KNN algorithm
goes through the entire training dataset and finds k number of training data points that
are closer to the test data point (k nearest neighbors, where k is a hyperparameter of KNN
model). The distance weighted KNN model used in this study predicts a weighted average
output based on the outputs of the nearest neighbors of the test data and the inverse of the
distances between the test data and its nearest neighbors.

3.2. Support Vector Regression (SVR)

Unlike commonly used regression machine learning algorithms (e.g., linear regression)
that minimize the error between the predicted values and actual observations, the SVR
algorithm fits a hyperplane to represent the training data within a threshold value. This
threshold value (called the margin, ε) is a hyperparameter of the model. The SVR algorithm
uses a kernel function to transform the data instances into multi-dimensional input feature
space; the radial basis function (RBF) kernel is used in this study. As highly nonlinear
data with multiple input features cannot be completely represented by a hyperplane and a
margin, a tolerance is used for the margin. Another hyperparameter (called the penalty
parameter, C) of the SVR algorithm controls the magnitude of this tolerance across all
dimensions in input feature space. When making a prediction on test data, the SVR model
simply uses the hyperplane to make the prediction.

3.3. Decision Tree Regression (DTR)

The DTR algorithm builds an inverted tree-type data structure by going through the
training dataset and assigning data instances to branches of the tree using information
gain as a measure of reduction in uncertainty in data. While building the tree, the DTR
algorithm chooses the best input feature (k) and a threshold value (tk) for that input feature
to decide on the optimum split by minimizing a cost function. The cost function (J(k, tk))
that the DTR algorithm minimizes is given by [39]:

J(k, tk) =
ml
m

·El +
mr

m
·Er (4)

where E and m represent the mean absolute error and the number of data instances,
respectively, and the subscripts l and r represent the left and right subsets of that node,
respectively (m = ml + mr). The maximum depth of the tree is the major hyperparameter
of the DTR model. When making a prediction on test data, the DTR model finds the
appropriate leaf node and makes the prediction using the average value of the prediction
parameter (AAR) in that leaf node.

3.4. Random Forest Regression (RFR)

The RFR is a bagging (bootstrap aggregation) ensemble machine learning algorithm
that builds multiple DTR models of different depths using random subsets of training
dataset (random sampling with replacement). To train individual (and independent) DTR
models, the RFR model uses a random number of input features each time (i.e., the maxi-
mum number of features to be considered when building a DTR model is a hyperparameter
of the RFR model). The idea is that by intentionally introducing randomness in the construc-
tion of the RFR model, the accuracy of predictions and the variance in prediction error will
be reduced. The number of base DTR models in an RFR model is another hyperparameter
of the model. When making a prediction on test data, the RFR model simply outputs the
average of predictions of each individual DTR model in the ensemble.

3.5. Adaptive Boosting Regression (ABR)

The ABR algorithm uses a boosting technique, where multiple individual base DTR
models are trained sequentially on the entire training dataset. Each successive DTR model
attempts to focus more on the “difficult” data instances (i.e., the data instances for which
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the prediction error of the preceding DTR model is high). Two sets of weights are used by
the ABR algorithm: predictor weight for each individual DTR model and instance weight
for each training data instance. During the training phase, these weights are adjusted in
such a way that, when combined, the final prediction error will be minimum. When making
a prediction on test data, the ABR model combines the predictions of all DTR models in the
ensemble and weighs them using predictor weights.

3.6. Gradient Boosting Regression (GBR)

The GBR algorithm is similar to the ABR algorithm in that it builds multiple base
DTR models in sequence on the entire training dataset with the successive DTR model
attempting to correct the error made by its predecessor. The difference between ABR and
GBR is that the GBR algorithm trains the successive base DTR models on the residual errors
made by its predecessor. When making a prediction on test data, the GBR model simply
adds the predictions made by all base DTR models in the ensemble. The optimum value
for the learning rate, a hyperparameter of DTR-based boosting ensemble models, is found
to be 0.1 for both ABR and GBR models using a trial and error procedure.

3.7. Artificial Neural Network Regression (ANN)

Figure 6 schematically illustrates the architecture of the multi-layer perceptron, deep
learning ANN regression models considered in this study. The number of input neurons
is equal to the number of input features (five), and the number of hidden layers and the
number of neurons in each hidden layer are varied systematically using hyperparameter
tuning, grid search and random search techniques. The commonly used feed-forward,
back-propagation algorithm is used to propagate the input features and correct the errors
during training of ANN models using the stochastic gradient descent (SGD) algorithm.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 22 
 

𝑦௜ =  𝑔 ቆ෍ ൫𝑊௝,௜𝑋௝൯௞௝ୀଵ + 𝑏௜ቇ (5) 

where yi is the output of the ith neuron in any hidden layer, j goes from 1 to the number 
of neurons (k) in the previous layer, X are the outputs of neurons from the previous layer, 
W are the connection weights between neurons in the current layer and previous layer, b 
is the bias value, and g() is an activation function. The rectified linear unit (ReLU) function 
is the activation function used in this study. For each training instance, the backpropaga-
tion algorithm first makes a prediction using the above relationship and measures the 
error using the mean squared error loss function. It then goes through each layer in reverse 
to measure the error contribution from each connection and adjusts the connection 
weights to reduce the error using the SGD algorithm. During testing, the ANN model 
simply propagates the input features through the network and calculates the prediction 
using the optimum connection weights determined in the training phase. 

 
Figure 6. Schematic of the architecture of the multi-layer perceptron artificial neural network (ANN) 
regression model developed in this study. 

4. Results and Discussion 
The performance of machine learning (ML) models developed in this study are eval-

uated mainly using mean absolute percentage error (MAPE) and mean absolute error 
(MAE) in predictions. MAPE is defined as: 

MAPE =  1𝑛 .෍൬ฬỹ௜ − 𝑦௜𝑦௜ ฬ൰௡
௜ୀଵ  (6) 

where y is the actual (experimental) value of AAR, ỹ is the output value (AAR predicted 
by a particular model), and “i” goes from 1 up to the number of predictions (n). Note that 
MAE is a similar error measure that calculates the error in terms of the absolute difference 
between the predicted and experimental values of AAR (i.e., MAE does not normalize the 
difference between experimental and predicted values). A multivariate linear regression 
(MLR) ML model is also developed using the same dataset, the same input features, and 
supervised learning technique. It is used as the baseline model for comparison of perfor-
mances of the nonlinear ML models developed in this study. All the ML models and deep 

 

 

 

 

 

 

 

 

Neurons 

෍. 

෍. . . 

෍. . . 
෍. . . 

෍. . . 

෍. . . Output
AAR 

Input features 
A/A_c 

෍. . . 

Hidden layers… Input layer Output layer 

h/B 

I_a 

Weights 

a_max 

C_r 

Figure 6. Schematic of the architecture of the multi-layer perceptron artificial neural network (ANN)
regression model developed in this study.

In general, the relationship between the inputs and outputs of a neuron in the ANN
model can be expressed by [39]:

yi = g
(
∑k

j=1

(
Wj,iXj

)
+ bi

)
(5)
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where yi is the output of the ith neuron in any hidden layer, j goes from 1 to the number of
neurons (k) in the previous layer, X are the outputs of neurons from the previous layer, W
are the connection weights between neurons in the current layer and previous layer, b is
the bias value, and g() is an activation function. The rectified linear unit (ReLU) function is
the activation function used in this study. For each training instance, the backpropagation
algorithm first makes a prediction using the above relationship and measures the error
using the mean squared error loss function. It then goes through each layer in reverse to
measure the error contribution from each connection and adjusts the connection weights
to reduce the error using the SGD algorithm. During testing, the ANN model simply
propagates the input features through the network and calculates the prediction using the
optimum connection weights determined in the training phase.

4. Results and Discussion

The performance of machine learning (ML) models developed in this study are evalu-
ated mainly using mean absolute percentage error (MAPE) and mean absolute error (MAE)
in predictions. MAPE is defined as:

MAPE =
1
n
·

n

∑
i=1

(∣∣∣∣ ỹi − yi

yi

∣∣∣∣) (6)

where y is the actual (experimental) value of AAR, ỹ is the output value (AAR predicted
by a particular model), and “i” goes from 1 up to the number of predictions (n). Note
that MAE is a similar error measure that calculates the error in terms of the absolute
difference between the predicted and experimental values of AAR (i.e., MAE does not
normalize the difference between experimental and predicted values). A multivariate
linear regression (MLR) ML model is also developed using the same dataset, the same
input features, and supervised learning technique. It is used as the baseline model for
comparison of performances of the nonlinear ML models developed in this study. All the
ML models and deep learning ANN models in this study are developed in the Python
programming platform using the implementations of the standard classes available in
Scikit-Learn (https://scikit-learn.org/stable/, accessed on 1 June 2023) and TensorFlow
and Keras (https://keras.io/, accessed on 1 June 2023) libraries of modules.

4.1. Initial Evaluation (Training and Testing) of Machine Learning Models

The experimental data and results obtained from the abovementioned series of exper-
iments (140 tests) are split into two groups for initial training and testing of ML models
using a 70–30% random split of data: training dataset (98 tests) and testing dataset (42 tests).
After the initial training of ML models on the training dataset, the models are tested on
previously unseen test dataset. Figure 7 presents the comparisons of ML model predictions
with experimental results for AAR during the initial testing phase of the models for the
KNN and SVR models along with the baseline MLR model. Note that the hyperparameters
of the ML models are kept constant at their optimum values (described in Section 4.4): k = 3
in the KNN model, C = 1.0 and ε = 0.1 in the SVR model. As seen in Figure 7, both the KNN
and SVR models (MAPE = 0.17 and 0.16, respectively) outperform the baseline MLR model
(MAPE = 0.21) in terms of accuracy of predictions.

Figure 8 presents the initial testing results of three DTR-based ensemble ML models
(RFR, ABR and GBR) along with their MAPE values. As with the previous three models, the
hyperparameters for all of these models are also kept at their optimum values: maximum
depth of tree = 6 and number of trees in the ensemble = 100 for all three ensemble models.
A single DTR model results in a MAPE of 0.17 during the initial testing phase (not shown in
the figure). However, as can be seen from Figure 8, when 100 trees are combined together,
all three DTR-based ensemble models (MAPE = 0.14 to 0.15) outperform other models
presented in Figure 7 in terms of accuracy of predictions. In terms of consistency among
different models, the MAPE of all five nonlinear, nonparametric ML models vary between
0.14 and 0.17 and the MAE values vary between 0.08 and 0.11. This shows excellent
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consistency among the ML models developed for the problem considered in this study. For
comparison, the MAPE and MAE resulting from the statistics-based simple liner regression
model (SLR) presented in Figure 3 are 0.23 and 0.15, respectively. It should be noted that
the SLR model uses the entire dataset for fitting a linear relationship and uses the same
dataset for calculating the MAPE and MAE values. Despite that, it is interesting to note
that the testing errors of the MLR model (MAPE = 0.21 and MAE = 0.12) are still slightly
better than those of the statistics-based (non-ML) SLR model.
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acceleration amplification ratio (AAR) during the initial testing phase of the models: (a) RFR, (b) ABR
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4.2. Significance of Input Features

The significance of input features for the problem considered is quantified using the
feature importance scores obtained from the RFR, ABR and GBR models. The feature im-
portance scores are calculated based on how much the base decision-tree nodes that use an
input feature reduce uncertainty in the data. The normalized feature importance scores of
each input feature are presented in Figure 9 for three DTR-based ensemble ML models after
the initial training phase. Figure 9 clearly shows that amax has the highest normalized feature
importance score (about 40% to 50%) in the predictions of AAR, followed by Cr (about 20%).
This is consistent with the close relationship of AAR with amax and Cr presented in Figure 3
and indicates that the AAR is more sensitive to amax and Cr than the other parameters. The
other three input features (A/Ac, h/B and Ia) have approximately 10% of feature importance
scores each. These observations are consistent for all three DTR-based ensemble models and
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confirm that none of the input features considered in this study are redundant. It should be
noted that when the type of soil is included as an input feature to ML models, it results in
feature importance scores of less than 5%, consistently for all three DTR-based models. In
addition, it does not make any significant difference in ML model predictions when the type
of soil is included as an input feature, and hence the type of soil is not included as an input
feature in this study. However, the effect of soil type on rocking response of foundations is
indirectly included in A/Ac and Cr through shear strength and the bearing capacity of the soil.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 22 
 

 
Figure 8. Comparisons of three DTR-based ML model predictions with experimental results for the 
acceleration amplification ratio (AAR) during the initial testing phase of the models: (a) RFR, (b) 
ABR and (c) GBR. Note: the dashed lines represent 1:1 lines.  

4.2. Significance of Input Features 
The significance of input features for the problem considered is quantified using the 

feature importance scores obtained from the RFR, ABR and GBR models. The feature im-
portance scores are calculated based on how much the base decision-tree nodes that use 
an input feature reduce uncertainty in the data. The normalized feature importance scores 
of each input feature are presented in Figure 9 for three DTR-based ensemble ML models 
after the initial training phase. Figure 9 clearly shows that amax has the highest normalized 
feature importance score (about 40% to 50%) in the predictions of AAR, followed by Cr 
(about 20%). This is consistent with the close relationship of AAR with amax and Cr pre-
sented in Figure 3 and indicates that the AAR is more sensitive to amax and Cr than the other 
parameters. The other three input features (A/Ac, h/B and Ia) have approximately 10% of 
feature importance scores each. These observations are consistent for all three DTR-based 
ensemble models and confirm that none of the input features considered in this study are 
redundant. It should be noted that when the type of soil is included as an input feature to 
ML models, it results in feature importance scores of less than 5%, consistently for all three 
DTR-based models. In addition, it does not make any significant difference in ML model 
predictions when the type of soil is included as an input feature, and hence the type of 
soil is not included as an input feature in this study. However, the effect of soil type on 
rocking response of foundations is indirectly included in A/Ac and Cr through shear 
strength and the bearing capacity of the soil. 

 
Figure 9. Results of feature importance scores based on the prediction of AAR obtained from three 
DTR-based ML models (RFR, ABR and GBR). 

Experimental AAR

0.1 1.0

Pr
ed

ic
te

d 
A

A
R 

(te
st

in
g)

0.1

1.0

(a) RFR
MAPE = 0.14

Experimental AAR

0.1 1.0
0.1

1.0

Experimental AAR

0.1 1.0
0.1

1.0

(b) ABR
MAPE = 0.15

(c) GBR
MAPE = 0.15

Input features to machine learning models

A/A_c h/B C_r a_max I_a

Fe
at

ur
e 

im
po

rt
an

ce
 s

co
re

(n
or

m
al

iz
ed

)

0.0

0.1

0.2

0.3

0.4

0.5
RFR
ABR
GBR

Figure 9. Results of feature importance scores based on the prediction of AAR obtained from three
DTR-based ML models (RFR, ABR and GBR).

4.3. K-Fold Cross Validation Tests

In order to evaluate the performance of ML models on multiple, random pairs of
training–testing datasets, the k-fold cross validation test is used. In a k-fold cross validation
test, one fold of data is used for testing of ML models that are trained on (k − 1) folds
of data, and the process is repeated k times using every single fold as the test dataset
once. In this study, five-fold cross validation tests with three repetitions (with different
randomization of the data in each repetition) are carried out. This repeated cross validation
yields 15 different sets of results for AAR and the corresponding MAPE and MAE values.
Two types of repeated five-fold cross validations are carried out: (i) considering only the
training dataset for hyperparameter turning of each ML model and (ii) considering the
entire dataset for final evaluation and comparison of all the ML models developed in this
study (in terms of accuracy of predictions and variance in prediction errors).

4.4. Hyperparameter Tuning of Machine Learning Models

The purpose of hyperparameter tuning is two-fold: (i) to determine the optimum
values of hyperparameters of ML models for the problem considered and (ii) to ensure
that the ML models do not overfit or underfit the training data. The key hyperparameters
of ML models are optimized by minimizing the testing MAPE obtained using repeated
five-fold cross validation tests on the training dataset. Figure 10 presents the results of
hyperparameter tuning of ML models in the form of average testing of MAPE versus the
variation of corresponding major hyperparameters of the models. Note that each MAPE
value in Figure 10 is the average of 15 different MAPE values resulting from repeated
five-fold cross validation tests.

Results presented in Figure 10a show that the average testing MAPE of the KNN model
first decreases as the number of nearest neighbors (k) increases, indicating an increase in
accuracy. However, when k increases further (k > 3), the accuracy of the model decreases. This
indicates that the critical value of k is 3, in order to avoid overfitting (k < 3) or underfitting
(k > 3) the training data. Based on this observation, the optimum value for k in the KNN
algorithm is chosen to be 3. Similar to the KNN model, the average testing MAPE of the SVR
model decreases as the penalty parameter C increases (Figure 10b), indicating that relatively
smaller values of C would underfit the training data. Though it is not very apparent from
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Figure 10c, relatively larger values of C would overfit the training data. Based on the results
obtained and to be consistent with the previously developed ML models related to this topic
(performance prediction of rocking foundations), the optimum value for C is chosen to be 1.0.
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It is well known that deep DTR models tend to overfit the training data, while shallow
DTR models tend to underfit the training data [39]. Based on the results shown in Figure 10c
and to be consistent with the previously developed DTR-based models related to this topic,
the optimum value for the maximum depth is set at 6 for base DTR models in the ensembles.
Figure 10d shows that, for all three DTR-based ensemble models (RFR, ABR and GBR), the
accuracy of the models increases as the number of trees increases (this is more apparent
for the GBR model). The number of random features (maximum) to be considered is
kept at 4 for the RFR model, and the learning rate is kept at 0.1 for both boosting models
(ABR and GBR). When the number of trees in the ensembles increases beyond 100, the
average testing MAPE of the models does not decrease any further. This indicates that
the minimum number of trees required in DTR-based ensemble models is 100. This is
remarkably consistent for all three DTR-based ensemble models. Table 1 summarizes the
key hyperparameters chosen for five nonlinear ML models developed in this study.

Table 1. Optimum values chosen for major hyperparameters of machine learning models.

Machine Learning Model Hyperparameter

k-nearest neighbors regression (KNN) k = 3
weight = inverse distance

Support vector regression (SVR) C = 1.0
epsilon = 0.1

mapping function = RBF 1

Random forest regression (RFR) max. depth = 6
max. features = 4

number of trees = 100
Boosting models (ABR and GBR) max. depth = 6

learning rate = 0.1
number of trees = 100

1 Radial basis function.
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4.5. Initial Evaluation of ANN Models

Multiple, multi-layer perceptron, sequential ANN models, with different architectures
(varying number of hidden layers and number of neurons in hidden layers) and hyperpa-
rameters, are developed and evaluated. The same training dataset and testing dataset are
also used for the initial evaluation of ANN models, and the MAPE values of ANN models
are calculated using the same procedure (same as described in Section 4.1). In addition to
the testing error, the ANN models are also tested with the training data after the models are
trained to compute the training error. The purpose of this exercise is to quantify how well
the ANN models learn from the training data and their ability to generalize the patterns
present in training data. The variation of predicted AAR with experimental results for AAR
are presented in Figure 11a,b for the training phase and testing phase, respectively, for one
particular ANN model.
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Figure 11. Comparisons of ANN model predictions with experimental results for AAR during initial
evaluation of the model: (a) training phase and (b) testing phase.

The architecture of this particular ANN model consists of four hidden layers (L = 4)
with forty neurons (N = 40) in each hidden layer. This is in addition to five neurons in
the input layer (one for each input feature) and one neuron in the output layer (for output
parameter, AAR). This particular set of hyperparameters turns out to be the optimum for
the ANN model architecture for the problem considered (described in Section 4.6). Based
on the comparison of predicted versus experimental AAR, with a MAPE of 0.08 and MAE
of 0.053 during the training phase (Figure 11a), it is fair to say the ANN model extracts
adequate information from data to build a reasonably good neural network structure
during the training phase. The ANN model predictions during the initial testing phase are
shown in Figure 11b and the resulting MAPE and MAE on test data are 0.127 and 0.082,
respectively. This prediction accuracy places the ANN model superior to all other ML
models developed in this study during the initial evaluation and testing phase.

4.6. Hyperparameter Tuning of the ANN Model

Similar to the other ML models, the key hyperparameters of the ANN model are
optimized by minimizing the average MAPE values obtained from repeated five-fold cross
validation tests (number of repeats = 3) carried out on the initial training dataset. The
average values of testing MAPE of many different ANN models resulting from the cross
validation tests are presented in Figure 12 (each data point represents the average of 15
different MAPE values). Multiple ANN models (with different architecture) are developed
to find the optimum number of hidden layers (L) and number of neurons (N) in each
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hidden layer (Figure 12a,b), while a fixed network architecture is used to tune number of
epochs and the learning rate (LR) of the SGD algorithm (Figure 12c,d).
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Figure 12. Results of hyperparameter tuning of the ANN model: Variation of average MAPE with
(a) number of hidden layers, (b) number of neurons in each hidden layer, (c) number of iterations for
each batch of training data, and (d) learning rate of SGD algorithm.

Results presented in Figure 12a show that as L increases, the error (average MAPE) in
predictions decreases up to when L = 4. When L increases further, the ANN model seems to
overfit the training data slightly (increase in testing error). A similar trend is observed for the
number of neurons (N) used in each hidden layer (Figure 12b). Based on these observations,
the combination of L = 4 and N = 40 is chosen as the optimum combination for the architecture
of the ANN model for the problem considered. These observations are confirmed and verified
independently by using grid search and random search algorithms going through multiple
ANN model architectures with several possible combinations of L and N. As the number
of iterations (epochs) increases, as expected, the average MAPE in predictions decreases
(Figure 12c); however, once the number of iterations reaches around 200 to 300, no further
significant improvement in MAPE is observed with the number of iterations. As for the
learning rate (LR) of the SGD algorithm, the optimum learning rate is found to be between
0.01 and 0.1 (Figure 12d). The optimum values chosen for the number of iterations and the
learning rate are 300 and 0.01, respectively. Table 2 summarizes the optimum values chosen
for the key hyperparameters of the ANN model developed in this study.

Table 2. Optimum values chosen for major hyperparameters of the ANN model.

Hyperparameter of the ANN Model Value

Number of hidden layers (L) 4
Number of neurons in each hidden layer (N) 40

Activation function ReLU 1

Optimizer SGD 2

Learning rate 0.01
Batch size for training 2

Number of epochs 300
1 Rectified linear unit function. 2 Stochastic gradient descent.
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4.7. Comparison of Overall Accuracy of Model Predictions and Variance in Prediction Error

Multiple k-fold cross validation tests (k = 5 and number of repeats = 3) are carried out
considering the entire dataset to evaluate the overall performance (average testing MAPE
and MAE, and the variance in testing MAPE and MAE) of all ML models. Note that for
hyperparameter training, the k-fold cross validation tests are performed using the training
dataset only, while this final k-fold cross validation test uses the entire dataset. Figure 13
presents the results of the MAPE of predictions of AAR obtained using six nonlinear
machine learning and deep learning models (KNN, SVR, RFR, ABR, GBR, and ANN) along
with the baseline MLR model. The hyperparameters of all models are kept constant as
obtained from the hyperparameter tuning phase of each model. For each model, the testing
MAPE results are plotted in the form of boxplots, showing the average MAPE, median
MAPE, and the 10th, 25th, 75th and 90th percentile values of MAPE (obtained from 15
values of MAPE for each model).
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Figure 13. Boxplots of MAPE in the predictions of AAR of machine leaning models during final
five-fold cross validation tests of models.

The first observation from Figure 13 is that the average testing MAPE of all six non-
linear models are better (smaller) than that of the baseline MLR model. Among the six
nonlinear models, except for the SVR model, the average testing MAPE of the models are
smaller than 0.15, and the results for the average MAPE are remarkably consistent across
different ML models. The ANN model has the smallest average MAPE value (0.128) and
relatively lower variance in MAPE (0.05), indicating that the ANN model outperforms all
other models developed in this study for the problem considered. Based on the overall
average MAPE in predictions, the ANN model improves the prediction accuracy by 43%
compared to the MLR model (MAPE of 0.128 versus 0.225). As the difference in overall
model performance in terms of average accuracy among five nonlinear models is relatively
small (average MAPE varies from 0.13 to 0.15), and if one prefers simpler ML models, KNN
and all three DTR-based ensemble models are almost equally effective for the prediction of
AAR. Figure 14 presents the results obtained from the same k-fold cross validation tests
(same as the one presented in Figure 13), in the form of MAE in predictions of AAR. As
can be observed from Figure 14, the results for testing MAE show a very similar trend that
is observed for testing MAPE (Figure 13). Except for the SVR model, the overall average
MAE of the other five nonlinear ML models varies between 0.083 and 0.092, once again
indicating a remarkable consistency across different ML models. The overall average MAE
in predictions of all six nonlinear ML models varies between 0.08 and 0.1, indicating that
the maximum acceleration transmitted to structures supported by rocking foundations can
be predicted within an average error limit of 8% to 10% of peak ground acceleration of
the earthquake.
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Figure 14. Boxplots of MAE in the predictions of AAR of machine leaning models during final
five-fold cross validation tests of models.

Table 3 summarizes the average MAPE and MAE of predictions of all seven ML
models in repeated five-fold cross validation tests. Also included in Table 3 is the MAPE
and MAE of the statistics-based simple linear regression (SLR) best fit model presented
in Figure 3 (using the relationship between log (Cr/amax) and log (AAR)). As can be seen
from Table 3, from the statistics based SLR model to MLR machine learning model, the
results do not seem to vary much. However, the six nonlinear ML models developed in
this study for the prediction of AAR show a significant difference in accuracy. In order to
compare the performance of the models using a different error criterion, which is not used
in the training phase of models nor in the hyperparameter tuning, a third error measure
is also considered. For this purpose, root mean squared error (RMSE), a commonly used
error measure in machine learning, is selected. The last column of Table 3 presents the
results obtained for average RMSE of predictions of all the models in repeated five-fold
cross validation tests. As can be seen from Table 3, the trend in RMSE values is consistent
with the trends observed in MAPE and MAE, and it leads to the same conclusion: among
the six nonlinear ML models, the ANN model turns out to be the most accurate, the second
most accurate model is the RFR, and it is followed by the ABR, GBR, and KNN models.

Table 3. Summary of average MAPE, MAE and RMSE (testing errors) of models in final five-fold
cross validation tests.

Model Ave. MAPE Ave. MAE Ave. RMSE

Simple linear regression (SLR) * 0.228 0.148 0.232
Multivariate linear regression (MLR) 0.225 0.139 0.185

Support vector regression (SVR) 0.162 0.103 0.145
k-nearest neighbors regression (KNN) 0.145 0.092 0.137

Random forest regression (RFR) 0.144 0.090 0.124
Adaptive boosting regression (ABR) 0.144 0.090 0.125
Gradient boosting regression (GBR) 0.143 0.092 0.133

Artificial neural network regression (ANN) 0.128 0.083 0.113
* Statistics-based (non-ML) model.

4.8. Parametric Sensitivity Analysis of Models

In order to study the sensitivity of ML model predictions to variations in input feature
values, a parametric sensitivity analysis is carried out. For this exercise, the input feature
values are systematically varied and are fed into the ML models. As a baseline case, all
input feature values are kept at their mean values and the predicted AAR corresponding to
this scenario is the most likely value (MLV) of prediction for a particular model. In addition,
each input feature is varied to include two other values: mean minus standard deviation
and mean plus standard deviation. The predictions of the ML models are obtained by this



Appl. Sci. 2023, 13, 12791 17 of 21

method using these two extreme values for a certain input feature, while all other input
feature values are kept at their mean value. As there are five input features, this method
results in eleven combinations of input features. The results of this parametric sensitivity
analysis are presented in Figure 15 for four models in the form of “tornado diagrams”.
In the tornado diagrams presented in Figure 15, the x-axis represents the predicted AAR
values by that particular model when the input feature values are varied (mean ± standard
deviation). Note that in a tornado diagram, the absolute difference between the prediction
values corresponding to the two extreme values of an input feature is called the “swing”,
and the input feature that has greatest swing is plotted at the top of the plot (the input
features are plotted on the y-axis in descending order of their swing values). Also included
in these figures are the most likely value (MLV) of predicted AAR (vertical dashed lines),
when all the input features are kept at their mean values. Table 4 presents summary results
of predicted AAR in parametric sensitive analysis (MLV, minimum and maximum) for all
seven ML models.
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Figure 15. Results of parametric sensitivity analysis of ML models in the form of tornado diagrams
when the input feature values are varied one at a time: (a) MLR, (b) RFR, (c) GBR and (d) ANN. Note:
the dashed vertical lines correspond to the predicted AAR (most likely value) when all input features
are at their mean values.

As the results presented in Figure 15 and Table 4 indicate, the predicted AAR is more
sensitive to peak ground acceleration (amax) than any other input feature for all the models
(i.e., amax produces the maximum swing in predicted AAR). Only the MLR model shows an
almost symmetric response around the MLV in tornado diagrams, mostly because it is a
linear ML model. The unsymmetric nature of the tornado diagrams of all nonlinear ML
models indicates that the relationship between AAR and input features are highly nonlinear.
For all six nonlinear ML models, about 45% to 75% of the variance in the prediction of AAR
results from the variation in amax (variance in this context is defined as half-swing divided
by the most likely value of predicted AAR). Next to amax, Cr and A/Ac have more effect on
model predictions in general when compared to h/B and Ia. This trend is consistent with
the experimental results plotted in Figure 3, where amax and Cr are identified as the key
variables that dictate AAR. This is also consistent with the results presented in Figure 9,
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where two DTR-based ensemble models (RFR and ABR) identify amax and Cr as the features
with the highest and the second highest, respectively, feature important scores to predict
AAR. It should also be noted that none of the ML model predictions are extremely high or
extremely low when the input feature values are varied. This indicates that the ML models
developed in this study do not tend to extrapolate the data beyond a reasonable range of
AAR values.

Table 4. Summary results of predicted AAR in parametric sensitivity analysis of ML models when
the input feature values are varied one at a time.

Model MLV * Minimum Maximum

Multivariate linear regression (MLR) 0.530 0.389 0.723
Support vector regression (SVR) 0.586 0.332 1.046

k-nearest neighbors regression (KNN) 0.435 0.349 0.634
Random forest regression (RFR) 0.480 0.357 0.804

Adaptive boosting regression (ABR) 0.541 0.341 1.150
Gradient boosting regression (GBR) 0.523 0.316 1.065

Artificial neural network regression (ANN) 0.469 0.295 1.018
* Most likely value.

The interpretability of ML models is often thought to be challenging, as they are agnos-
tic to the underlying scientific principles driving the physical mechanisms of the problem
considered. However, apart from the ANN model, all other ML models developed in this
study are based on simple, straight forward logic, and they are relatively easy to interpret (i.e.,
why the model predicts a certain value for AAR given the input feature values). The new
data science paradigm of theory-guided machine learning combines the beneficial features of
both mechanics-based models and ML models while minimizing or eliminating their adverse
effects [3]. This concept forms the basis for future research on this topic.

5. Conclusions

Multiple machine learning (ML) models are developed to predict the maximum ac-
celeration transferred to the center of gravity of structures founded on rocking shallow
foundations during earthquake loading. Based on this study, the following major conclu-
sions are drawn.

• Given the five input features representing the key properties of the rocking foundation
and earthquake loading (A/Ac, h/B, Cr, amax and Ia), the ML models presented in
this paper can be used to predict the maximum acceleration transmitted to structures
supported by rocking foundations with reasonable accuracy.

• Based on k-fold cross validation tests, the overall average MAPE in predictions of the
KNN, RFR, ABR, GBR, and ANN models are all smaller than 0.145, with ANN being
the most accurate and most consistent (MAPE = 0.128). For comparison, the MAPE
of the MLR model and statistics based SLR model are around 0.23. This corresponds
to an improvement in prediction accuracy of about 43%. Next to the ANN model,
the second most accurate model is RFR, and it is followed by ABR, GBR, and KNN.
This finding is also supported by another error measure criterion, namely, root mean
squared error (RMSE) of model predictions.

• The overall average MAE in predictions of all six nonlinear ML models vary between
0.08 and 0.1, indicating that the maximum acceleration transferred to structures sup-
ported by rocking foundations can be predicted within an average error limit of 8% to
10% of the peak ground acceleration of the earthquake.

• Hyperparameter tuning is carried out to obtain the optimum values for hyperpa-
rameters and to ensure that the ML models presented in this paper do not overfit or
underfit the training data. In terms of the architecture of the ANN model, a relatively
simple network (only four hidden layers with 40 neurons in each layer) is found to be
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the optimum and most efficient for the problem considered in terms of accuracy of
predictions without overfitting the training data.

• Feature importance analysis using the RFR, ABR and GBR models reveals that the
chosen five input features capture the maximum acceleration of structures (through
AAR) supported by rocking foundations satisfactorily. Parametric sensitivity analysis
of all ML models reveals that AAR is more sensitive to peak ground acceleration of
the earthquake motion than to other input features.

• The ML models presented in this paper can be used with numerical simulation results
as complementary measures in modeling of rocking foundations or can be combined
with mechanics-based models using the emerging framework of theory-guided ma-
chine learning. This forms the basis for future research on this topic.
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Nomenclature

AAR Acceleration amplification ratio
ABR Adaptive boosting regression model
amax Peak ground acceleration of earthquake
ANN Artificial neural network regression model
A/Ac Critical contact area ratio of rocking foundation
Cr Rocking coefficient of rocking system
GBR Gradient boosting regression model
h/B Slenderness ratio of rocking system
Ia Arias intensity of earthquake
KNN k-nearest neighbors regression model
MAE Mean absolute error
MAPE Mean absolute percentage error
MLR Multivariate linear regression model
R2 Coefficient of determination
RFR Random forest regression model
RMSE Root mean squared error
SLR Simple linear regression (non-ML) model
SVR Support vector regression model
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