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DeepManeuver: Adversarial Test Generation for
Trajectory Manipulation of Autonomous Vehicles

Meriel von Stein ¥, David Shriver

Abstract—Adversarial test generation techniques aim to pro-
duce input perturbations that cause a DNN to compute incorrect
outputs. For autonomous vehicles driven by a DNN, however,
the effect of such perturbations are attenuated by other parts
of the system and are less effective as vehicle state evolves. In
this work we argue that for adversarial testing perturbations to
be effective on autonomous vehicles, they must account for the
subtle interplay between the DNN and vehicle states. Building on
that insight, we develop DeepManeuver, an automated framework
that interleaves adversarial test generation with vehicle trajectory
physics simulation. Thus, as the vehicle moves along a trajectory,
DeepManeuver enables the refinement of candidate perturbations
to: (1) account for changes in the state of the vehicle that
may affect how the perturbation is perceived by the system;
(2) retain the effect of the perturbation on previous states so
that the current state is still reachable and past trajectory is
preserved; and (3) result in multi-target maneuvers that require
fulfillment of vehicle state sequences (e.g. reaching locations in
a road to navigate a tight turn). Our assessment reveals that
DeepManeuver can generate perturbations to force maneuvers
more effectively and consistently than state-of-the-art techniques
by 20.7 percentage points on average. We also show DeepMa-
neuver’s effectiveness at disrupting vehicle behavior to achieve
multi-target maneuvers with a minimum 52% rate of success.

Index Terms—Test generation, adversarial testing, autonomous
systems.

1. INTRODUCTION

S vehicles with varying levels of autonomy take to the

road, their failures become more noticeable and impact-
ful [1], [2], [3], [4]. Recent failures caused by environmental
features such as Burger King signs, lit-up emergency vehicles,
and the full moon have garnered significant attention. Among
the subsequent efforts to identify underlying faults of these sys-
tems, adversarial testing approaches targeting learned compo-
nents have emerged as fundamental to assess system robustness.
These approaches generate input perturbations for deep neural
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Fig. 1.
tion generated by a patch attack.

Autonomous vehicle driving by a roadside billboard with perturba-

networks (DNN) that force the network to compute erroneous
outputs. Though effective at uncovering inputs that may lead to
problematic DNN behavior, translating the successes of adver-
sarial testing into system-level failures in autonomous vehicles
remains challenging.

Consider a DNN that consumes an image and produces a
steering angle for the vehicle in Fig. 1. White-box adversarial
testing approaches for DNNs [5], [6], [7] analyze that vehi-
cle’s DNN and an input image to generate a realistic image
perturbation that causes the DNN to produce an erroneous
steering angle. Such perturbations are termed patch attacks
when performed on physical attack surfaces (see Section IV).
Fig. 1 illustrates such an attack surface as the leftmost billboard
on the right-hand side of the road. A single erroneous DNN
output caused by an input image, however, is unlikely to cause a
sustained steering deviation of the vehicle for two reasons. First,
the system will have constraints on maximum changes in steer-
ing angle, bounding the impact of DNN output. Second, error
caused by a single perturbed image will be quickly overwritten
as dozens of images are processed per second [8], [9], [10].
To address these weaknesses, more sophisticated DNN analyses
[11], [12], [13] consume multiple images from across a vehi-
cle’s trajectory. This produces a more general perturbation that
can be effective under the multiple vehicle states from which
those images were captured. Paradoxically, as we demonstrate
in Section III, the more the perturbation pushes the vehicle away
from the original trajectory on which images were collected, the
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less effective the perturbation becomes, as it was not generated
on images derived from those new vehicle states.

Black box testing approaches typically take the scenario
configuration as the attack surface (e.g., [14], [15], [16], [17],
[18]), operating at a higher level of abstraction by manipulat-
ing simulated entities (e.g., traffic vehicles, pedestrians, road
topology, weather) rather than individual pixels. After a new
test scenario configuration is executed, these techniques analyze
the state or series of states of the ego vehicle to judge the test
outcome and guide the generation of future tests. While the
analysis of vehicle state ensures that the tests are consequential
to system performance, by abstracting the DNN as a black box
these approaches are ineffective in exploring the large input
space to generate adversarial tests.

Underlying the limitations of both white and black box
testing approaches is the idea that errors have compounding,
unanticipated effects on subsequent system states. The white
box, DNN-driven adversarial perturbation generation process
is decoupled from changes in vehicle state, whereas the black
box, system-driven testing process fails to analyze vulnerable
learned system components and their connection to system
state. This decoupling of test generation and secondary effects
of perturbed inputs on system state precludes the necessary
refinement of the perturbation as the features of the inputs to
the vehicle change during its trajectory.

Building on that insight, we develop DeepManeuver, the first
state-adaptive adversarial testing approach for autonomous
vehicles. DeepManeuver is an automated framework that inter-
leaves adversarial test generation with vehicle simulation. To
enable state-adaptive test generation, DeepManeuver embeds a
simulator into the adversarial generation cycle such that, instead
of collecting states then generating a perturbation, state collec-
tion and perturbation generation are interleaved. Thus, as the
vehicle travels a trajectory, DeepManeuver generates candidate
perturbations to: (1) account for changes in the vehicle’s state
that may affect how the perturbation is perceived (i.e., position
and heading of the vehicle in the road), (2) retain the effect of
the perturbation on previous states so the current state is still
valid, and (3) result in maneuvers — sequences of target system
states — that require complex evolution of state and disrupt the
trajectory of the vehicle in a predetermined, specifiable way.
This paper explores a range of maneuvers, such as a tight turn,
running off the road, or crashing into an obstacle.

State-adaptive adversarial testing allows for the goals of per-
turbation generation to adapt with changes in the current state
and state-dependent capabilities of the target system to better
induce future state changes. In this way, we are able to generate
test cases that are feasible within the constraints of the system
and environment, while still concentrating on the weaknesses
inherent in the DNN.

As we shall show, by accounting for system state during
perturbation generation, DeepManeuver can induce complex
maneuvers more effectively than state of the art techniques.
Fig. 2(a) illustrates an original vehicle trajectory in blue, and
three trajectories caused by perturbations aiming to achieve a
single-target maneuver of steering left off the road. The red
segment next to the road is the billboard where perturbations are
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Fig. 2. Billboard shown in red, unperturbed trajectory in thick blue, per-
turbed trajectories as thin multicolored lines.

injected, the green and yellow lines depict trajectories caused by
perturbations generated with existing techniques that do not
fully account for state, and the dotted red line depicts the
trajectory influenced by DeepManeuver. Note how existing
techniques can generate a perturbation that causes a tempo-
rary deviation but eventual recover, whereas DeepManeuver
generates a perturbation that causes the vehicle to leave the
road. Equally significant, DeepManeuver extends the capabil-
ities of adversarial perturbations to enact multi-target maneu-
vers. Fig. 2(b) illustrates a multi-target perturbation forcing the
vehicle to hit waypoints for a tighter turn. The contributions of
the paper are:

o An adversarial testing framework for autonomous vehi-
cles, DeepManeuver, that generates perturbations while
accounting for vehicle state changes and capabilities.

o A study showing that DeepManeuver can generate pertur-
bations that are more effective than state-of-the-art tech-
niques by 20.7 percentage points. It also demonstrates
DeepManeuver’s effectiveness at achieving multi-target
maneuvers with at minimum 52% success.

o An open-source experiment and tool repository that in-
cludes a modularized implementation of the approach,
pretrained model, and extended results.!

II. APPROACH

The goal of DeepManeuver is to generate realistic environ-
ment perturbations via a patch attack strategy that forces an
autonomous vehicle relying on a DNN to follow a trajectory
that fulfills an intended adversarial objective.

A. Problem Definition

Given (1) a vehicle V with actuation controlled by a DNN NV
that consumes a sensed image ¢mg; and predicts an actuation
command 1/;t such as steering at timestep ¢, (2) a physical
environment £ in which V operates and which contains an
attack surface O visible to the vehicle’s perception subsystem;
and (3) a target maneuver M defined by a sequence of states
mo,n €S, where S is the set of states inhabitable by V from
timesteps 0 to n. 1, characterizes a system-level maneuver
that is defined through spatio-temporal relationships between
vehicle and environment, such as turning, running off the road,

Tool, data, and supplementary material are available at https:/github.com/
MissMeriel/DeepManeuver and https://zenodo.org/record/8284708.
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(b) DeepManeuver’s Perturbation Generator (expanded
view of blue box in Figure 3a).

Fig. 3. Overview of DeepManeuver approach.

or crashing into an obstacle. Over the timesteps 0 to n, V will
inhabit a sequence of states j,, under the control of N as it
navigates £ within view of O. In the context of V), a state s;
at timestep ¢ includes the vehicle’s pose, the image it perceives
through its camera img;, and its steering angle ;. N output
Qﬁt is attenuated by s; to produce 1), the control signal that the
vehicle can actuate given its current state and the time to actuate
such a change.

With these givens, the problem is to generate a perturbation
7 that when applied to O induces V to satisfy M, that is,
whether 5, ,, =19, In this work, we argue and empirically
show that to satisfy M, the generation of 77 must: 1) account for
compounding effects of 7 on each state in 5 ,,, as 7 may force
a new trajectory with a distinct sequence of states s 0,n, and
2) ensure past states 5 ;; are preserved under the effect of 7
to maintain the validity of the current state s, thus ensuring 7
has a similar effect under test.

B. Overview

Fig. 3(a) provides a conceptual overview of DeepManeu-
ver applied to the motivating example in Section I. The main
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Algorithm 1: DeepManeuver

1 Given V, N, €, M, init_condit, stop_condit, pert_params
2 simulator = initialize(V, &, init_condit);

3 pg = PerturbationGenerator(pert_params);

4 sa = StateAggregator(simulator);

5 inj = PerturbationInjector(simulator);

6 cm = CompletionMonitor(simulator, stop_condit);

7 image_seq, control_seq = [], [] ;

8 s¢ = sa.capture(simulator.).state);

9 img_seq = sa.add(s¢.img);

10 while — cm.stop_condit do

1 target,, ; = pg.determine_target(M, s¢);
12 1 = pg.optimize_n(N, img_seq, control_seq, targety ¢);
13 On,¢ = inj.inject(&, n, pert_params.O);
14 simulator.step();

15 st4+1 = sa.capture(simulator.) .state);

16 img_seq = sa.add(s¢41.img);

17 control_seq = sa.add(s¢+1.9);

18 St = St+1

19 end

20 return 7);

components DeepManeuver and the Simulator iteratively up-
date a perturbation alongside the vehicle system state, enabling
a state-adaptive approach. DeepManeuver takes four sets of
inputs: the initial conditions for the simulation and the vehicle,
the perturbation parameters such as the location and size of the
perturbation surface, the target maneuver, and the stopping con-
ditions for the perturbation generation loop. Once the stopping
conditions are met, the perturbation is passed to the test wrapper
component to assess its effectiveness.

Algorithm 1 presents the approach key steps. An initializa-
tion procedure (lines 2-9) starts the simulator with V in &,
connects DeepManeuver to the simulator, and initializes each
of its components. In line 11, the Perturbation Generator takes
in M and s; to determine the next target, ; (target steering
at time t) for V to attempt to actuate. Note that M may be
specified in terms of one or more state variables but target,, ;
can only be specified in terms of the actuation controlled by
N. In line 12, the Perturbation Generator uses the image and
control sequences provided by the State Aggregator (see line
15, next paragraph), N\, and target, ; to optimize the pertur-
bation 7 over the updated state sequence. Line 12 relies on
pert_params to parameterize the objective functions used for
optimization in the Perturbation Generator. The Perturbation
Generator jointly optimizes two objective functions: one for
maximizing the likelihood of satisfying M in the next step, and
one for minimizing the effect of the optimization of 7 on the
already-traversed trajectory (see Section II-C).

Line 13 injects the updated 7 into the environment through
O. In line 14 the simulator steps forward by one timestep; V
perceives the updated O,, ; and advances in its trajectory, with
7 affecting the new sy, 1. The State Aggregator then captures
S¢+1 (line 15) and adds the image and control output into the
sequences utilized by the optimization process (lines 16—17)
to preserve previous effects of 7 in future optimizations. At
each loop iteration, the Completion Monitor checks whether
stopping conditions are met (line 10), such as driving off the
road, crashing, or passing O, ; so it is no longer in view. Once
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a stopping condition has been met, the final perturbation has
been generated and is ready for deployment to the test wrapper.

We highlight here how DeepManeuver differs from existing
adversarial test generation approaches. Typically, existing tech-
niques [5], [11], [13] consist of two phases: a collection phase
to gather a set of inputs to the DNN, and a generation phase to
perturb these inputs. DeepManeuver instead interleaves collec-
tion and generation phases to ensure that effects of the pertur-
bation are reflected in future states and perturbation updates are
tailored to trajectory changes. Also worth highlighting is Deep-
Maneuver’s ability to generate perturbations for multiple target
states, where the target state is updated with vehicle state and
the fulfillment of previous target states. As a vehicle progresses
along a trajectory, DeepManeuver will update target, ; state-
adaptively based on s; and g, to redirect the perturbation
optimization as ) satisfies M.

C. Perturbation Generation

The Perturbation Generation component performs the critical
operations of DeepManeuver to optimize the perturbation at
each timestep. Fig. 3(b) depicts it in detail. This component con-
sumes img_seq and control_seq gathered from the simulator
to generate a perturbation that maximizes the likelihood that
the vehicle states satisfy a target maneuver M. The workflow
of this component is as follows.

The Target Manager produces target steering angle target, ;
by assessing s; against the specification of M. Recall from
Section II-A that M is specified through a sequence of target
states 1M ,, that can be compared to the vehicle state for sim-
ilarity, and which characterize system-level behaviors. If M
is single-target, target, , remains constant for all s; € 50 5,.
For example, the maneuver “drive off the left side of the road”
can set targety ; = 1 (constant maximum left steering) at every
step. Whereas, the maneuver “gradually drift into the left lane”
might set target,, ; = 0.25 at every step, until the entire vehicle
is within the left lane.

If M is multi-target (e.g., swerving between specified way-
points), targety ; is recalculated at every step based on s;
in relation to the environment, as defined by the maneuver.
When a target state m € M is reached, the Target Manager
moves to the next target state, or it indicates that the pertur-
bation has reached the final target state and fulfilled M. A
maneuver like “swerve back and forth” requires the vehicle to
swerve left for some distance. Once that distance is travelled,
the target,, ; switches to swerve in the other direction. For the
maneuver “hit the billboard” at location (x,y), the targety ;
is calculated according to the turning radius of the vehicle at
its current speed and the relative angle between the current
heading of the vehicle and the billboard. At each execution
of line 11, the Target Manager uses the current m to de-
termine the next control signal for the vehicle to attempt to
actuate, targety ;.

Once an image sequence is received, the Generalizer uses
the noise variance parameter to create a function to produce
variants of that sequence, increasing the adversarial strength
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[19] of the perturbation.? This component applies random noise
to the collected images, a well-known data augmentation and
regularization technique [20] to prevent models from overfitting
to a small number of pixels in favor of the more general features
of the image. The Optimizer then consumes the N, img_seq
and control_seq, and targety ;, and generates a perturbation
using projected gradient descent [21], accounting for the fol-
lowing two properties.

First, the perturbation must maximize the vehicle state
change toward the current m. This is accomplished by
minimizing the error between a control signal (target,, ;) deter-
mined by the Target Manager and N output (1&). Unlike existing
work, the effect of the perturbation is not measured in terms of
N output (z/;), but rather in terms of the vehicle actuation (v)).
This improves the likelihood for the perturbation to affect the
system because optimization for previous steps is performed
on actuation values that have been attenuated by the system
according to s; (¢)) rather than the control input (1&), which does
not necessarily represent vehicle actuation.

Second, perturbation effects over s, ; must be consistent
over time and space. The current state of the vehicle s,
depends on the effects of early perturbations. Subsequent opti-
mization must result in a perturbation that consistently causes
the sequence of previous states, thus preserving the validity of
the trajectory up to s;. Moreover, we do not want to sacrifice the
effect of perturbations achieved in previous steps for the sake
of maximizing the current perturbation.

These two properties are enforced jointly at each iteration of
DeepManeuver by finding an 7 minimizing the loss functions
L1 and Lo derived from the two error terms in:

argmin(Ly (N (img, + ), targety )
U

n—1
+ > Lo(N(img: +n), 1)) (1
t=0

where ¢ is a timestep, (img; + 1) is the image perceived by V at
t that includes the perturbation 7, and ¢ is the actuation taken
by V conditioned on its state. The first term of this objective
function corresponds to the first property seeking to cause N
to maximize the latest vehicle change at timestep N towards
target state m. The second term enforces that the perturbation
maintains the attributes that caused the previous states of the
sequence. Joint optimization allows for perturbations to induce
single- or multi-target maneuvers and uses gradient descent
to balance the actuation error across the image sequence. The
perturbation is used to adjust the input according to the gradient
during gradient descent. The objective function’s parameteriza-
tion is further detailed in Section II.F.4.

D. Injection

Line 13 in Algorithm 1 specifies that the perturbation is
injected onto the attack surface. There are at least two generic

2Note that strength refers to the ability of the perturbation to fool DNNs.
This stands in contrast to robustness, which refers to a DNN’s ability to handle
small changes to inputs.
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approaches to injecting the perturbation: 1) superimposing a
warped perturbation onto the sensed image, or 2) creating a
new “skin” for the attack surface object and re-rendering the ob-
ject in simulation for the vehicle perception system to capture.
These two options offer different tradeoffs in terms of quality
and overhead. Superimposition only requires changing captured
images and has no bearing on the simulated representations of
environment objects, but its approximations may not have the
quality of high-end simulations. This simpler approach may be
sufficient to render a perturbation on a billboard, but it will
struggle with more complex multiplanar attack surfaces such as
the surface of a car or other environment features like lighting
and weather conditions. Conversely, changing the appearance
of an object in simulation maintains the rendering quality, but
requires re-rendering the current and previous images during
optimization to change the appearance of the attack surface,
which can require significant overhead. Given the complexity of
the target surfaces, our study implements perturbation injection
using superimposition.

E. Simulator-in-the-Loop

DeepManeuver relies on a simulator that models V in £ to
incorporate 7 in the simulated £ in a targeted and realistic
manner and to observe the effects of 7 on the vehicle state s;. In
turn, acting on those observations is what makes DeepManeuver
state-adaptive. The simulator’s modeling of the vehicle behav-
ior also means that DeepManeuver can optimize the 1 based on
their effects on the vehicle. This is important because A/ outputs
may be dampened by the state-dependent capabilities of V at the
time the control signal is given. For example, a steering angle
can only change so much in a given number of timesteps, and a
value greater than the max steering angle will be truncated to the
max value. So, even a perturbation that is dramatically effective
on N may only have a small effect on V. More formally, at any
timestep ¢:

Y = V.actuate(iby | s¢), where oy = N(img, + 1) (2)

DeepManeuver requires that a simulator meets three basic
requirements. First, it must step forward incrementally such
that DeepManeuver can run between steps to optimize 7 for
new s;. Second, the attack surface @ must be modifiable such
that 7 can be injected. Third, s; must be queryable and contain
features relevant to 1, such as the vehicle’s pose, onboard
camera sensor images, and the steering angle. Our current im-
plementation uses BeamNG [22], an open-source high-fidelity
driving simulator that meets these requirements. Fig. 1 shows an
instance of an autonomous vehicle in BeamNG. We interface
between DeepManeuver and the simulator using BeamNGpy
[23], a Python API for BeamNG.

F. Parameterization

Our technique is parameterized across a range of variables
that contribute to high configurability, briefly discussed here.

1) Noise Variance: A scalar parameter of a Gaussian distri-
bution to control variance around a zero-centered mean. At each
iteration of gradient descent, noise is independently sampled
and applied to each image in the sequence.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 10, OCTOBER 2023

2) Iterations of Gradient Descent: The number of steps
taken to explore the input gradient when generating a pertur-
bation. Rather than executing until convergence, bounding the
iterations can mitigate the cost to run and facilitate comparison
across techniques.

3) Sequence Collection: The cut-on is the vehicle state at
which to begin generating the perturbation. Cut-on is specified
through a state predicate such as distance from the vehicle
to the attack surface, or by a set of state variables such as
wheel speed or whether the vehicle is centered on the road.
Similarly, the cut-off is a state predicate that determines the
end of the perturbation generation run. For example, when the
vehicle has deviated from the original trajectory by a specified
value may trigger the cut-off. In our study, we compute the
vehicle’s reachable set [24] to determine when the vehicle is
reaching unrecoverable conditions. Sequence collection occurs
in two stages: driving by the attack surface normally, produc-
ing the original trajectory, and driving by while undergoing
perturbation generation, producing the state-adaptive trajectory.
Perturbation generation can be parameterized to include the
original trajectory as part of the image and control sequences.

4) Maneuvers, Target States, and Objective Functions: The
Target Manager retrieves the current target state m from M
based on the vehicle state s; and uses it to calculate targety, ;.
For a single-target maneuver, target,, ; remains constant across
a trajectory irrespective of ¢. Our first study illustrates a single-
target maneuver by aiming to steer as hard as possible in one
direction (targety, =V.maxLeft|V.maxRight) to run the
car off the road. For a multi-target maneuver, target, ; may
vary at each step depending on the current vehicle state in
relation to m. For example, if m is defined by a particular road
location but the vehicle has drifted to the left of the target state
at timestep ¢, then targety, = V.right, at t + 1, towards the
direction of the target location specified by m. Section III-D in
the study provides further examples of multi-target maneuvers.

DeepManeuver supports some common objective functions
such as mean squared error (MSE) and mean absolute error.
The choice of objective function depends on several contextual
factors like variability in the image and control sequences or
the precision of the specification of M. For single-target ma-
neuvers, one might tailor the objective function to be directly
proportional to the steering angle, so that its minimization steers
as far as possible in the desired direction at each timestep. For
a more complex maneuver, however, where small differences
in the preceding sequence may have a large effect on later
behavior, an objective function such as MSE may be preferable
to penalize the largest deviations from the control sequence.
These functions are minimized when two vectors are equal, so
minimizing them will reduce the difference between N’s pre-
dicted outputs and the previously seen actuations. Additionally,
the objective function can encode heuristics, such as weighting
error terms at different timesteps. Our motivating example may
require states towards the end of M to have a lower loss, as V
gets close to satisfying M, so we can design the loss functions
with a decay factor for each term.

5) Perturbation Surface Attributes: These parameters ac-
count for three aspects of the perturbation surface: position and
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(a) 3x3

(b) 5x5 (c) 2020

Fig. 4. Billboard perturbations across levels of resolution.

angle with respect to the vehicle’s initial location, size, and
perturbation resolution. Perturbation resolution, as illustrated in
Fig. 4, determines the number of grid spaces in the perturbation
that can be manipulated by joint optimization. These attributes
can affect the perturbation strength.

G. Test Wrapper

Separate from DeepManeuver, our infrastructure includes a
test wrapper to inject the perturbation into the environment,
execute a suite of test runs, and assess the overall effectiveness
of the perturbation in forcing vehicle maneuvers that satisfy M.
During this test phase, the wrapper allows the execution of many
simulation runs initialized with V, &€, and O,,, and the collection
of detailed state traces from these test runs to compare against
M. We track the effectiveness of the perturbation over multi-
ple test runs to form an understanding of performance in the
average case, and to deflake a nondeterministic system subject
to environmental noise from the simulator. Metrics computed
include mean angle error, average distance from original tra-
jectory, as well as number of crashes, deviations from the road
surface, and ms fulfilled.

H. Applicability and Generality

DeepManeuver is intended to validate the robustness of the
system as a whole while considering the system state. Since
it requires a vehicle ) controlled by a DNN N operating in
a simulated environment &, it is likely to be applied in the
later phases of the validation cycle. However, the application of
DeepManeuver is not constrained to a specific type of vehicle,
DNN, simulator, environment, or attack surface. For instance,
it could be applied to drones, boats, and industrial systems such
as grippers and assembly-line robotic arms, each operating in
environments with distinct attack surfaces.

III. STUDY

Our study aims to answer the following research questions:

RQ1) How effective is DeepManeuver at generating pertur-
bations that cause an autonomous vehicle to leave the road?
To answer this we compare DeepManeuver to two versions
of a state-of-the-art technique on 6 scenarios across 3 road
topologies, and we explore the effect of some key parameters
on the effectiveness of our approach.

RQ2) How effective is DeepManeuver at generating pertur-
bations that cause an autonomous vehicle to fulfill maneuvers
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involving multiple target states? To answer this question, we
explore the ability of DeepManeuver to achieve three multi-
target maneuvers: hit a target, change lanes, and cut a corner.

A. Setup

1) System Under Test: Our study uses the BeamNG driv-
ing simulator [22] for its pedigree as a customizable high-
fidelity beam-node simulator and its use in research on realistic
simulated driving [15], [25], [26], [27]. For the autonomous
vehicle under test, we equip BeamNG’s prepackaged “hopper”
vehicle (Fig. 1) with an onboard camera matching established
self-driving setups [10], [28]. Images are collected from the
simulator at 15 Hz as 240 x 135 pixels (ratio 16:9) to match
related work. Steering inputs are also collected. The steering
input range of [—1, 1] sets wheel rotation to the left or right,
respectively, which determines the turning radius of the car.
With a steering input of £1 at 40kph, the hopper can change its
yaw relative to the world frame by 29.96° per second. For the
steering model, we re-implemented the canonical Nvidia DNN
architecture, DAVE2 [29]. We trained with data augmentations
on 82,193 images collected over multiple prebuilt BeamNG
driving environments with a final training loss of 0.0022 MSE.
The system can follow the centerline of the road indefinitely in
the racetrack environment used in this study.

2) Environments: We manipulate several variables associ-
ated with the environment. For RQ1, we perform a full factorial
study on the three techniques across 6 scenarios, 2 maneuvers,
and 3 billboard resolutions. Each of the 6 scenarios is set up on
one of 3 straight and curved road topologies in the “industrial”
prepackaged environment within BeamNG. A billboard is in-
serted near the track to serve as the attack surface. We fixed the
physical size of the billboard to occupy at least 1% or about 400
pixels of the image when the car is approximately 28—30m away
from the board. Note that aspects of our study mirror the setup
of the DeepBillboard [11] study to make a fair comparison (see
Section III-B). DeepBillboard indirectly specified the billboard
resolution according to pixel overlap and the shape of each
billboard; in this work, we explore the performance of each
technique on billboards with three different resolutions: 5x35,
10x10, 15x15. For RQ2, we evaluate DeepManeuver on 3 road
topologies with 3 maneuvers: hit a target, change lanes, and cut
a corner.

We spawn the vehicle in the center of the track slightly
outside of the range in which it can perceive the billboard to
allow it to approach O under A control. Note that due to the
built-in nondeterminism and noise in the BeamNG simulator,
test runs are not identical and can demonstrate how well the
perturbation would work under real-world circumstances and
generalize to similar trajectories. During the testing phase, we
track the variation of the effectiveness of the perturbation over
multiple test runs (specified under each question).

B. Design

We apply DeepManeuver and two baseline techniques to var-
ious scenarios in an attempt to generate perturbations that cause
the system under test to satisfy a specified maneuver. We assess
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the performance of each technique by measuring its success in
fulfilling the maneuver. In the rest of this section, we discuss
the techniques and parameter configurations considered, how
they are assessed, and the scenarios explored.

1) Techniques: The techniques to generate the perturbations
constitute the main treatments we evaluate.

For RQ1, those techniques are the proposed DeepManeuver,
the baseline technique DeepBillboard [11], and DBB+
which incorporates enhancements from DeepManeuver
into DeepBillboard, notably the inclusion of noise variance
and supplementing the original trajectory with a second
collection of the unperturbed action and image sequence.
DeepBillboard inspired this work and serves as a baseline
for environmentally-situated adversarial perturbations that
influence the actuation of autonomous vehicles. We have
undertaken several measures to make a fair comparison to
DeepBillboard. First, due to limitations and inconsistencies of
the publicly available DeepBillboard implementation, we have
made a best effort re-implementation of the DeepBillboard
technique. Second, we configure the three techniques with the
same parameters, from the loss function to the initial color of
the billboard (all grey). Third, for independent variables not
explored in the DeepBillboard evaluation, we either justify
their value or explore several values to understand their effect.

For RQ2, we have one treatment, DeepManeuver, since there
are no available techniques that can perform multi-target pertur-
bations. Because the value of target, ; is no longer constant
and depends on the current state, we disable inclusion of the
unperturbed original trajectory for this treatment.

2) Technique Parameters: The techniques take on multiple
parameters, discussed here and under each RQ in more detail.

Noise variance (noise var): Following existing practices
[30], we explore six noise variances {0, 3, 5, 1=, 155 = |»
where 0 indicates no noise. Max variance was selected such
that the mean pixel value begins to shift due to clipping. Inter-
mediate values are based on an inverse log scale.

Gradient Descent Iterations (iters): set to 400 as it was
shown to be sufficient in related work [11].

Cut-on: determines when collection begins. We explore dis-
tances of 20, 24, and 28 meters from the billboard as cut-on
points. Closer than 20m, the billboard may not be visible to a
vehicle in the center of the road, and beyond 28m the billboard
corners are not distinguishable in the image.

Cut-off: We used the vehicle’s reachable set as an indicator
that the deviation is large enough to stop collection. At least
60% of the area reachable by the vehicle is within the track
when driving under normal conditions. Collection stops when
less than 60% of the reachable set remained on the track. The
reachable set is overestimated by bounding the area reachable
by max steering angles and current speed in 1 second.

Objective Functions: The loss for single- and multi-target
maneuvers must be constructed such that it satisfies Equation
1. For the single-target perturbations under RQI1, targety ;
was set to —1 or 1 when perturbing towards the left or
right respectively, and the objective function was defined as
argmin, (—target, ; x mean(z — y)). We take the mean of
the loss at all steps and direct it according to the opposite sign
of target, ; so as to not prioritize minimizing the loss for
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any given step, as MSE loss does for larger terms in the loss
function. For multi-target maneuvers in RQ2, target.;, ; was set
to a steering command to meet the desired pose state and the
objective function was defined as argmin, (MSE(z,y)). In
both cases, = represents the output of A/ on an image sequence
with the current 7 injected (including the image collected at
the current step), and y represents all steering angles actuated
in previous steps, plus the target, ¢ in the current step. For
reference, Equation 1 represents previous steps with £, and
current step with L.

3) Dependent Variables: Dependent variables are associated
with the vehicle behavior under test. Our primary considera-
tion is the effect on the overall system behavior, so we count
whether the target maneuvers are met, and we measure the
average distance from the original trajectory (ADOT) in meters
throughout the run once the perturbation began to take effect.
We also report the average angle error (AAE) of each image in
the test run, which represents the average per-image effect on
the DNN behavior calculated as Ziv: o %‘b””’ A negative
AAE value indicates steering angles were shifted to the right
on average; positive indicates a shift to the left.

Reproducibility. The trained model, framework, data, and
supplementary material are available at https://github.com/
MissMeriel/DeepManeuver.

C. RQI: DeepManeuver Single-Target Maneuvers

We assess the effectiveness of DeepBillboard, DBB+,
and DeepManeuver in forcing a single-target maneuver of
max steering in one direction at each timestep (as done by
DeepBillboard [11]), with the goal of crashing or leaving the
road. In the first part of this section, we study the performance
across a set of road topologies, approximating the setup of
related work. In the second part, we manipulate key parameters
to understand their effect.

1) Baseline Parameters on Varying Road Topologies: First,
we approximated the context explored by evaluations in related
work. We revisit four aspects mentioned in Section III.B.1.
First, the cut-on: DeepBillboard’s physical study began the data
collection sequence when the billboard takes up at least 400
pixels in the image, which here begins at approximately 28m.
Second, we used a grey starting billboard with RGB value (128,
128, 128) for all techniques rather than the gold-yellow bill-
board used by DeepBillboard, as initial maximum values will
hamper optimization. Third, we explicitly explore the effects
of billboard resolution (i.e., 5x5, 10x 10, 15x15) rather than
basing the resolution on the size of the billboard in the image,
and we use perspective warping to place the perturbation into
the image. Fourth, we set up 3 distinct road topologies (see
Fig. 5) to test on a straightaway and left- and right-hand turns
instead of the single straightaway road DeepBillboard used in
its physical test. To account for randomness in perturbation
generation and simulation, we generate 50 perturbations per
technique and parameter combination and perform 10 test runs
on each perturbed billboard.

Table I summarizes the performance of the three techniques
under the original parameters of the related work through a
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TABLE I
ALL TECHNIQUES ON 6 SCENARIOS (TOPOLOGY-MANEUVER PAIRS) AT 3 RESOLUTIONS. METRICS ARE THE SUCCESS RATE, AAE UNDER TEST, AND ADOT.
BEST-PERFORMING VALUES PER ROW ARE IN BOLD. STATISTICALLY SIGNIFICANT BEST-PERFORMING VALUES ARE STARRED

DeepBillboard DBB+ DeepManeuver

noise_var=0, cut-on=28m noise_var:%, cut-on=28m noise_var:%, cut-on=28m

Resol. Success rate  ADOT AAE | Success rate ADOT AAE | Success rate ADOT AAE

Scenario 1: 5x5 0.6% 2.18 0.000 8.8% 2.42 -0.015 26.4% * 3.06 -0.056
left turn on 10x10 0.0% 1.99 0.013 5.8% 221 0.012 * 30.4% *2.62 -0.017
straight road 15x15 0.0% 1.96 0.022 0.2% 2.01 0.011 *21.0% *2.71 -0.033
Scenario 2: 5x5 99.3% 235 -0.198 99.4% 2.31 -0.201 99.2% *250 % -0.204
right turn on 10x10 99.4% 235 -0.180 99.6% 2.34 -0.201 99.8% 234 *-0.215
straight road 15x15 98.7% 233 -0.176 99.0% 2.33 -0.181 88.6%  *235 *-0.186
Scenario 3: 5x5 0.2% 1.09 0.012 6.4% 1.27 *0.034 * 54.6% * 1.86 0.060
left turn on 10x10 8.8% I.11 0.022 * 12.9% 1.32 *0.030 10.8% 1.35 0.021
right-hand curve | 15x15 17.6% 1.27 0.032 16.6% 1.31 0.030 3.4% *1.43 0.015
Scenario 4: 5x5 47.2% 255  -0.367 99.6% 3.09 -0.766 *100.0% *317 * -0.819
right turn on 10x10 15.0% 248  -0.283 79.0% 2.69 -0.599 * 94.2% 287 *-0.678
right-hand curve | 15x15 6.3% 234 -0.258 65.0% 250  *-0.533 * 81.6% 2.60 -0.515
Scenario 5: 5x5 1.4% 0.93 0.011 0.6% 0.90 0.009 *9.2% * 1.65 *0.054
left turn on 10x10 0.0% 1.22 0.025 0.0% 1.08 0.017 1.4% *1.54 *0.047
left-hand curve 15x15 0.0% .27 0.026 0.0% .21 0.021 0.0%  *1.38 *0.033
Scenario 6: 5x5§ 67.6% 1.95 -0.111 88.2% 2.19 -0.152 85.6% 2.17 -0.151
right turn on 10x10 8.2% 1.39 0.041 8.0% 1.40 0.041 * 31.2% *1.64 ¥ -0.015
left-hand curve 15x15 0.0% 1.33 0.056 0.2% 1.34 0.056 *6.0% *1.40 0.047

N NN 60 =
260 26s 20 215 80 285 2% 298 260 265 270 275 280 285 290 295

180 10 160 150 130 B0 180 ) 160 150 190 130

B T — - 0 .
150 160 170 180 150 200 20 130 %0 o 150 150 200 20

(e) DeepBillboard, Scenario 5 (f) DeepManeuver, Scenario 5

Fig. 5. Perturbations generated by DeepBillboard and DeepManeuver for
10x 10 billboard. Billboard is shown in red, original trajectory in thick blue,
DeepManeuver collection sequence in thick orange, and test trajectories are
thin lines.

full factorial study of the combination of three road topolo-
gies, two maneuvers, and three resolution levels. Topology-
maneuver pairs are presented as “scenarios” in the leftmost
column. Odd-numbered scenarios are left-turn maneuvers and
even-numbered scenarios are right-turn maneuvers. Odd-even
pairs of scenarios are performed on the same road topology.
Scenario 1 (Left turn on straight road) shows the ef-
fectiveness of DeepBillboard, DBB+, and DeepManeuver to
force a left turn on a straight road. DeepBillboard perturbations

had little success, producing only 3 crashes across all 1500 test
runs for this scenario (50 billboards, 3 resolution levels, 10 test
runs each). Fig. 5(a) shows test trajectories concentrated around
the centerline of the road with little deviation. DBB+ shows
improvement over DeepBillboard in success rate and ADOT.
Because this is a leftward perturbation, AAE should trend pos-
itive (see Section II1.B.3). At all resolutions, DBB+ has success
rates in the single digits with a decrease across success rate and
ADQOT as resolution increases, and minimal change to AAE.
For DeepManeuver, we see success rates between 21.0% and
30.4%. Still, as shown in Fig. 5(b) for 10x 10 resolution, the per-
turbation has a strong effect on successful trajectories. Because
DeepManeuver uses weighting in the objective function, this
could mean that it does not enact high errors in steering angle
later in the sequence, preventing large changes in trajectory past
certain states. We again see a drop in success rate and AAE for
resolution=15x 15 meaning that the technique performed well
on the collection sequence, but not on test runs, an indication
of overfitting at higher resolutions. It is also worth noting that
the 69.6% of unsuccessful trajectories show a slight deviation
to the right in Fig. 5(b), which would explain the slightly nega-
tive AAE for DeepManeuver. Overall, DeepManeuver performs
best by success rate and ADOT over all resolutions, with the
DBB+ success rate less than one-third that of DeepManeuver.
DeepBillboard had little effect on success rate or ADOT.
Scenario 2 (Right turn on straight road) keeps the same,
straight road topology and reverses the direction of the maneu-
ver. This change significantly increases the effectiveness of all
three techniques. All success rates show a 88.6% success rate
or above and all but one success rate is 98.7% or above, with an
average of 98.1% success rate over all techniques and all param-
eter combinations. Although no success rates are statistically
significantly different, all but one ADOT and AAE measure
are statistically significant better and belong to DeepManeuver.
This large disparity between right- and left-turn maneuvers on
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a straight road appears due to overfitting, as there are a greater
number of right- than left-turn datapoints in the training set for
our DNN. This makes right-hand turn maneuvers easier because
overfitting will create high variance for that subset of datapoints,
allowing for more opportunities to shift the output of the DNN
with small changes to the image.

Scenario 3 (Left turn on right-hand curve). The middle
third of Table I shows the effectiveness of the three techniques
on a right-hand curve road topology. Scenario 3 forces the
vehicle to turn left. DeepBillboard and DBB+ show similar low
success rates between 0.2% and 17.7%. By contrast, DeepMa-
neuver achieves success rates of 3.4% to 54.6%. Both baseline
techniques show monotonically increasing success rates with
increasing billboard resolution, whereas DeepManeuver shows
decreasing effectiveness with increasing billboard resolution.
Although DeepManeuver AAE is low compared to the baseline
techniques, DeepManeuver ADOT is higher across resolutions.
ADOT remaining high indicates that, even for test trajectories
that did not produce a crash, DeepManeuver perturbations were
able to produce more consistent deviation from the original
trajectory than either of the two baseline techniques.

Scenario 4 (right turn on right-hand curve) retains the
right-hand curve topology and reverses the direction of the
maneuver, forcing the car to make an early hard right turn on a
right-hand curve. This significantly increases the effectiveness
of all three techniques. DeepManeuver again outperforms both
techniques with a success rate of 100% at resolution=5x35.
DeepBillboard is more successful on Scenario 4 than Scenarios
1 and 3 for all billboard resolutions, but still far weaker than
DBB+ and DeepManeuver, both of which approach saturation
for at least one resolution. Comparing Figs. 5(c) and 5(d),
DeepBillboard trajectories show higher variation than DeepMa-
neuver trajectories, which consistently veer off the right road
edge. DBB+ shows high sensitivity to resolution, with a 14
percentage point (pp) or greater decrease in success rate for each
increase in resolution, compared to a 12.6pp or smaller decrease
for each resolution increase for DeepManeuver. The improved
performance across techniques indicates either a weakness in
the DNN in this area of the track, or that features of images
collected from normal driving are similar enough to the early
hard right to cause a failure without a state-adaptive technique.
Additionally, the track used to train the DNN has five right-hand
curves and one left-hand curve, which could make perturbing
to the left more difficult given the training data bias. Overall,
DeepManeuver outperforms both DeepBillboard and DBB+ in
all values of resolution for this topology in both success rate
and ADOT.

Scenario 5 (Left turn on left-hand curve). The bottom
of Table I tests each technique on a left-handed curve, first
at forcing a car to make a left-hand turn such that the car
leaves the road. All techniques show a reduction in success rate
for this topology, with values below 10% for DeepManeuver,
and below 2% for the other techniques. ADOT provides hints
about the weaker performances. 5x5 is the best resolution for
all techniques in terms of success rate, with other resolutions
having a success rate of zero or near zero. As seen in Figs.
5(e) and 5(f), the test trajectories’ deviation from the center
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of the road increases as the vehicle approaches the billboard.
The trajectories then either return to the center after passing
the billboard or fail to recover and leave the track in Fig. 5(f).
Although DeepManeuver performs best, this topology illus-
trates how challenging it can be to generate perturbations that
generalize across states.

Scenario 6 (Right turn on left-hand curve). Conversely to
Scenario 5, shows a decrease in success rate and ADOT with an
increase in resolution for all three techniques. DeepManeuver
still performs the best for all performance metrics, with sta-
tistical significance. All techniques see a monotonic decrease
in performance across all metrics with increasing resolution.
This is the least successful right turn for all topologies and all
techniques. This contributes to our hypothesis that overfitting
is the cause, as left turns are the least common road topology in
the DNN’s training dataset. This leaves less of an opportunity
for the DNN to overfit to this topology, causing the increased
robustness on this topology as compared to the straight or right-
hand curved road topologies.

Overall, DeepManeuver provides a 20.7pp average improve-
ment over DeepBillboard and a 8.6pp improvement over DBB+.
DeepManeuver also holds 38 of the 54 best metrics in Table I,
with 6 belonging to DeepBillboard, 9 belonging to DBB+, and
the success rate for Scenario 5, resolution 15 x 15 having no best
metric as all techniques have a rate of 0.0%.

In terms of statistical significance, the Kruskal-Wallis one-
way test was used to determine whether the performance dif-
ferences across techniques was statistically significantly. Each
performance metric was compared for each resolution across
all three techniques. Overall, Table I shows a concentration of
starred metrics on the right side of the table under DeepManeu-
ver, which has 31 statistically significant best-performance out
of the 54 shown in Table I.

We note that DeepBillboard’s performance is less impres-
sive than originally reported. A potential reason is that Deep-
Billboard was assessed only on vehicle perception and DNN
steering output. So, measures that require vehicle actuation
such as success rate or ADOT were not provided. Instead,
the assessment included a measure similar to AAE, which is
reported as an average steering angle error of 8.8 degrees.
However, we note again that since the vehicle did not act on
the DNN’s output, the vehicle was following a test trajectory
very similar to the original trajectory on which the perturbation
was generated. This is an ideal case for DeepBillboard, but one
that is unlikely to occur in practice. For further discussion of
factors contributing to diminished DeepBillboard performance,
occurrences of overfitting, and how to interpret average angle
error, see Section III-E and extended studies in the supplemen-
tary material (see footnote 1).

In terms of cost, DeepManeuver is significantly more ex-
pensive to run than either DeepBillboard or DBB+ by a factor
of N, where N is the final length of the sequence. This is
because perturbation optimization is run at each timestep in
DeepManeuver, compared to only once for DeepBillboard and
DBB+. For example, under Scenario 1 and the earliest cut-
on=20m, DeepBillboard takes an average of 33 seconds to
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generate a perturbation, compared to 156 seconds for DeepMa-
neuver. With the latest cut-on=28m, DeepBillboard takes 53
seconds to generate a perturbation, compared to 405 seconds
for DeepManeuver. Detailed cost assessment and optimization
of DeepManeuver is an avenue for future work.

Across all road topologies, DeepManeuver leads to sta-
tistically comparable or greater ADOT and frequency of
vehicle crashes and road surface departures than base-
line techniques for all but one combination of scenario,
maneuver, and resolution.

2) Parameter Exploration and Key Tradeoffs: In our inves-
tigation, we found that parameterization can have a significant
effect on performance. Hence, we performed a partial ablation
study through a fractional factorial exploration of some key
parameters. To supplement our study of resolution in Table I,
we investigate value ranges for cut-on and noise variance in
Tables II and III, keeping other parameters constant. We reuse
Scenario 1 as the success rate does not saturate or desaturate
for any technique. Best-performing values are highlighted in
bold, and statistically significant best-performing values as de-
termined by a Kruskal-Wallis one-way test are starred.

Table II shows the effect of cut-on values. All techniques are
susceptible to cut-on differences. DeepManeuver is strength-
ened by earlier cut-ons, with a 20pp or greater increase in
success rate for cut-ons of 24 or more. The benefits of earlier
cut-ons is less noticeable DeepBillboard and DBB+, as all cut-
ons show success rates close to zero. DeepManeuver appears to
have a much higher success rate than the other techniques for
all cut-ons, but notably the earlier cut-ons of 24m and 28m.
As expected, cut-on limits the space that the perturbation is
optimized for, so earlier cut-ons are advantageous.

Table III shows the effect of noise-variance with a constant
median cut-on value of 24m. We compare only DBB+ and
DeepManeuver as DeepBillboard does not incorporate noise.
As acommonly applied regularization technique, we expected it
to have a similar effect across techniques. DBB+ and DeepMa-
neuver react positively to the introduction of noise, with % vari-
ance showing the greatest performance boost. DeepManeuver
also shows a significant jump for noise var= 1—10 compared
to other values, indicating that this technique is sensitive to
high and low noise variance. The skewed normal distribution
of all metrics, centered around %, suggests an optimal noise
variance for this technique. A more comprehensive parameter
exploration to address issues of overfitting and other questions
brought up by Table I is presented in the supplementary mate-
rial.

The baseline techniques did not improve within the ex-
plored parameter space. DeepManeuver showed improve-
ment with low cut-on parameters, and performance varied
widely within the range of noise.

D. RQ2: DeepManeuver Multi-Target

To evaluate the effectiveness of DeepManeuver at inducing
multi-target maneuvers, we set up three maneuvers: crashing
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TABLE II
PRELIMINARY EXPLORATION OF THE EFFECTS OF CUT-ON ON A
Resolution = 10 x 10 BILLBOARD. METRICS ARE THE SUCCESS RATE
AND ADOT UNDER TEST

DeepBillboard DBB+ DeepManeuver
noise_var=0 noise_var= 1—15 noise_var= %
cut- | Success ADOT Success ADOT Success ADOT
on rate rate rate
20m 0.0% 1.99 0.0% 1.95 * 5.4% * 217
24m 1.0% 2.11 0.0% 2.04 | *27.2% *2.42
28m 0.0% 2.02 2.8% 222 | *31.4% * 2,63
TABLE III

PRELIMINARY EXPLORATION OF THE EFFECT OF NOISE VARIANCE. METRICS
ARE THE SUCCESS RATE AND ADOT UNDER TEST

DBB+ DeepManeuver
noise_var | Success rate  ADOT | Success rate ADOT
0 0.0% 1.93 *34%  * 211
= 0.0%  *2.07 * 1.4% 2.05
3 0.0% 1.96 *258%  * 242
= 0.0% 2.10 *31.2%  * 245
= 0.8% 2.15 *454%  *2.77
3 1.0% 2.13 #94%  *2.19

into the billboard, changing lanes, and cutting a corner on the
inside of the track. These maneuvers are multi-target because
they require the vehicle reach multiple objective states, and
require updating the output constraint based on the state of the
vehicle at each timestep.

For this study we keep the configuration parameter val-
ues used in the first portion of the previous study as re-
ported in Table I: resolution=10x10,noise_var= 1,
iters=400, cut-of£=0.60, and cut -on=28m. However,
we make two adjustments. First, to better optimize across multi-
ple objectives, we change the loss function to MSE as explained
in Section ILLE.5. Second, we determine that a maneuver is
satisfied when every spatial objective m is reached within a
threshold of 1 meter. The threshold of 1m is measured with
respect to the center mass of the vehicle rather than its bounding
box. In other words, as long as the center mass of the car passes
within 1m of the point, then the objective is met. Because the
hopper vehicle, like most vehicles, is over 2m wide and 2m
long, some portion of the car chassis will pass through the point
defining that part of the maneuver.

We generate 25 billboards per objective and perform 10 test
runs on each billboard. The results and trajectories are summa-
rized in Fig. 6.

The “hit the billboard” maneuver in Fig. 6(a) shows a near
100% success rate. Contrary to the single-target maneuvers in
Section III-C, this maneuver does not attempt to have the vehi-
cle turn right away. Instead, the vehicle follows the centerline
for most of its trajectory, then turns directly into the billboard
near the edge of the road. Since most of the trajectory thus
adheres to normal driving, ADOT and AAE are low. AAE from
the collection and test runs are comparable, suggesting a high
similarity between test and collection runs. This similarity is a
likely reason for the high success rate.
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Multi-target perturbations: hit billboard, move off center lane, take a sharper turn on a corner.
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(c) Cut the corner

Billboard is shown in red, original trajectory in thick

blue, collection sequence in thick orange, and test trajectories are thin multicolored lines.

In Fig. 6(b), we see that most trajectories achieve a lane
change. However, the success rate is little more than 50%.
Further inspection reveals that this is due to our acceptance
threshold of 1m. Relaxing the threshold to 2m improves the
success rate to over 85%. Since this maneuver requires small
but constant deviation from the original trajectory, the ADOT
is 1.21m, and AAE metrics for collection and test runs are
low. This multi-target maneuver shows that DeepManeuver can
effectively enact subtle perturbations that require two clear
objectives — turning right, and then turning parallel with the
road — with a high rate of success.

In Fig. 6(c), the “cut the corner” maneuver turns close to the
inside edge of the road, instead of following the curve like the
original trajectory. The success rate for this multi-target maneu-
ver is 68.4%, with a low trajectory variance across all successful
test runs. However, some trajectories show unintended effects,
such as forcing the car to stay straight when entering the curve
in 3 test runs. The cause of this unintended effect may lie in
the variation in trajectories between test runs and is a candidate
for future work. ADOT results for this maneuver are higher
than other multi-target maneuvers because the distance from the
center of the road to the edge is farther away so it is possible
to drive in a valid area farther from the original trajectory.

DeepManeuver can consistently produce perturbations that
affect the vehicle differently based on state, with high
accuracy in perturbing towards multiple target states.

E. Threats to Validity

Generalization of the findings is limited by the vehicle, DNN,
and environments under which we performed the study. We
systematically chose these aspects following the setup of pre-
vious work, defined in practice when available, and justified
throughout the paper. Regarding the network model choice,
although used extensively in previous work, DAVE?2 is simpler
than today’s architectures [31] and we have trained it with
just enough data to perform consistently on a single track. We
deemed that sufficient to expose the differences between the
techniques, and we expect these techniques’ performance to be
weaker with a higher-performing network. Our findings are also
limited to the parameter space we explored, which captures key
aspects affecting the techniques’ performance but is nonetheless
limited.

The threats to internal validity include the implementation
quality of the DeepBillboard and DBB+ techniques and the
effective manipulation of parameters and configurations. We
have shared our implementation to facilitate checking and re-
production by others. At the time of publication, DeepBillboard
did not have runnable code available; our reimplementation is
based on their repo and paper descriptions. Regarding the study
setup, we tried to replicate and then extend DeepBillboard’s
study in simulation to increase the exploration of what we
consider fundamental variables to the effectiveness of the tech-
niques such as the topologies, the billboard attributes, and when
the billboard is visible. We also consider the non-determinism
as part of the simulation to determine perturbation overfitting
and address the issue of perspectival warp according to that
nondeterminism through the billboard resolution parameter. Ul-
timately, our study setup compares identical scenarios and pa-
rameter combinations, and so we consider this a fair comparison
of the two techniques.

Our measures of success, particularly ADOT and AAE, ob-
scure some aspects of vehicle behavior and thus create threats
to our findings’ construct validity. ADOT does not account
for variance, and so a large deviation that is then corrected
for or a test trajectory that swerves back and forth might
have a low ADOT when there was a significant failure. Sim-
ilarly, AAE may seem low for a perturbation that generates
a high success rate because small deviations add up over
time, and a large error at a particular timestep, at the ex-
pense of optimization for other timesteps, may be the key to
a high success rate. That said, taken together with the success
rates, the metrics provide an overall characterization of each
scenario. We also note that adjudications of various vehicle
failures are based on the deviation threshold chosen to measure
the difference between the original and perturbed trajectory, and
different thresholds can lead to different results.

IV. RELATED WORK

We have organized the related work in two sections, with
the first set focusing on DNN testing and the second set on
testing whole autonomous systems. We note that due to the
high cost associated with test scenario manipulation and repro-
ducing system-level failures, most of these testing approaches
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are performed almost exclusively in simulation, which has been
determined sufficient for testing these systems [14], [15], [32].

A. Testing DNNs

Many traditional software testing techniques and concepts
have been adapted to DNNSs to effectively guide the generation
of test inputs [33], [34]. In particular we note approaches that
use random fuzzing and genetic search [15], [35], [36], those
that are coverage-guided [7], [37], [38], [39], [40], [41], and
those that consider the input distributions [42], [43], [44], [45].

In parallel to more traditional techniques, the machine learn-
ing community pioneered specialized mechanisms to judge
DNN robustness through the generation of adversarial inputs
[46], [47]. Such input generation is a form of metamorphic
testing [48] as realized by Zhou et al. [49], where perturbations
to the DNN’s input are expected to cause no difference in its
output, or to cause specific differences. For example, Deep-
Xplore [7] generates adversarial perturbations using gradient
ascent that vary a minimal number of pixels in an image and
compares the DNN accuracy for an autonomous vehicle steer-
ing model. DeepHunter [39] employs a fuzzer to make changes
that preserve the semantic meaning of an image, much like
changing the image on a billboard or the color of a building
would preserve the road. DeepRoad [50], DeepTest [6], Zhou
et al. [49], and Nie et al. [51] apply image perturbations of vary-
ing sophistication, mimicking effects like weather conditions or
camera distortion, while assessing their impact across various
trained models and architectures. To generalize the validity of
such adversarial perturbations on single images, efforts like
Duan et al. [19] aim to hide adversarial perturbations in the
physical environment.

As argued earlier, the effectiveness of DNN testing tech-
niques in detecting faults does not necessarily map to the whole
system. DNN faults may not cause a system failure (i.e., a
DNN steering error is bounded by the system controller), and
behaviors considered benign at the DNN level may become
problematic for the system (i.e., an accumulation of small steer-
ing errors) [52]. The next set of complementary techniques
targets the system.

B. Testing Autonomous Vehicles

Autonomous vehicle test strategies can be divided along two
axes: black-box or gray-box, state-aware or state-adaptive.

Black-Box testing of AVs treats the system as an in-
put/output function and focuses on generating a challenging
environment configuration for the system [14], [15], [16], [17],
[53]. These frameworks commonly rely on search-based ma-
nipulation of the configuration space defining the environment
(e.g., road topology, objects, actors), to find scenarios that cause
the system to misbehave. For example, Althoff et al. [17] aims
to create critical situations with a small solution space where
the autonomous vehicle must avoid a collision. Among these
efforts, we note the use of simulation to be pervasive and cost-
effective to detect different types of faults [52], [54].

Gray-box testing of AVs peeks into the system to more
effectively generate tests. Some approaches target particular
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system components [5], [18] while others focus on particular
interactions [32], [55]. Other efforts target the whole system
but use insights about high-level component mechanisms to
better generate inputs. DeepJanus [56], for example, accounts
for learned components by performing an evolutionary search
of the input domain model to find frontier inputs for DNN-
dependent systems. Other approaches are more focused on the
DNN, analyzing the DNN like other adversarial mechanisms
but to derive system tests [11], [13], [57], [58]. DeepBillboard
[11], the technique that inspired this work, changes the ap-
pearance of roadside billboards based on DNN analysis while
accounting for the impact on system behavior. It is also novel
in that it aims to generate perturbations based on a sequence of
images collected over a trajectory. Yet, as previously explained,
it does not account for the impact that the perturbation may
have on the system state, which may render the perturbation
ineffective as the affected trajectory diverges from the one in
which the images were collected.

State-aware techniques consider the state of the vehicle,
perceived externally by black-box approaches or through the
system internals in gray-box approaches, to evaluate and guide
testing [11], [14], [32], [59]. For example, Gambi et al. [15]
present an approach to manipulate roads through search-based
procedural content generation, tracking out-of-bounds episodes
such as vehicle lane departures to use as search criteria. Tuncali
et al. [14] use a series of states including collisions and velocity
to identify system inputs that falsify autonomous vehicle re-
quirements. Similarly, Abdessalem et al. [32] induce states in
which vehicle subcomponents such as cruise control and sign
recognition issue conflicting commands through manipulation
of the driving environment.

Other works like Patel et al. [58] incorporate a more so-
phisticated billboard with precise vehicle tracking sensors to
update the perturbation displayed based on the pose of the
vehicle. Besides the additional assumption of having access to
a billboard equipped with a camera sensor to precisely track
the vehicle, the approach training stage generates a perturba-
tion for each pose of the vehicle similar to previous work on
adversarial attacks rather than a cohesive end-to-end pertur-
bation generation. Sadly, there is no implementation available
nor enough implementation or study details in the paper for us
to reproduce the approach as part of our assessment. Boloor
et al. [57] generates state-aware lane markers to influence a
vehicle’s pose. The approach assumes that large portions of
highly regulated environment features like road surfaces can
be changed, and it generates perturbations by exhaustively ex-
ploring that space and examining vehicle crashes to determine
the next candidate perturbation. These works show that setting
the system in the right state and environment matters and that
checking the system state at the test completion can be helpful
to guide the generation of future tests. Deepbillboard [11],
mentioned earlier, took a first step in generating state-aware
perturbations that account for the system state to the extent that
the system state is embedded in the image sequence it analyzes
to generate the perturbation. Again, this line of work does
not consider how the system state evolves throughout the test
execution.
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State-adaptive. Our approach is the first state-adaptive test-
ing approach for autonomous vehicles to manipulate the en-
vironment while considering vehicle state to more effectively
exploit system weaknesses. It is gray-box in that it analyzes the
DNN in connection with system-level behavior. State-adaptivity
also enables the approach to force complex maneuvers of mul-
tiple objectives that rely on the system state.

V. CONCLUSION

DeepManeuver is the first state-adaptive approach to generate
adversarial perturbations that can cause complex maneuvers. Its
power comes from a refinement cycle that interleaves perturba-
tion generation and simulation, jointly updating the state of the
vehicle and perturbation. Our study finds that DeepManeuver
is more effective on average by 20.7pp in comparison to Deep-
billboard, and on average by 8.6pp in comparison to DBB+
at generating perturbations that consistently lead to vehicle
misbehavior than existing techniques, and that can successfully
cause more complex and subtle multi-objective maneuvers.

In future work, we intend to pursue four general directions.
First, we will tackle the computational cost of DeepManeuver.
The perturbation refinement cycles required to update the sys-
tem state and the perturbation is costly, yet there are plenty
of opportunities to accelerate this process through paralleliza-
tion, early stoppage for underperforming perturbations, and
downsampling optimization timesteps between collected states.
Second, we will extend our exploration of factors that may
affect DeepManeuver performance. For example, we plan to
assess its performance under additional models and vehicles,
road topologies, attack surfaces, and parameter configurations.
Third, DeepManeuver does not have to just cause detrimental
maneuvers. We will explore the multi-target capabilities of
DeepManeuver to assist vehicles performing helpful maneuvers
in challenging contexts by for which they may not have suffi-
cient training. Lastly, we intend to adapt this approach to a real-
world context, expanding on early-stage exploratory studies we
have performed on comma.ai’s OpenPilot system. Changes to
the approach itself, realities of perturbing industrially-produced
self-driving networks, and environment conditions will play a
large role in adaptation to real-world autonomous driving.
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