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ABSTRACT 

 
The objective of this study is to develop data-driven predictive models for seismic energy 

dissipation of rocking shallow foundations during earthquake loading using decision tree-based 
ensemble machine learning algorithms and supervised learning technique. Data from a rocking 
foundation’s database consisting of dynamic base shaking experiments conducted on centrifuges 
and shaking tables have been used for the development of a base decision tree regression (DTR) 
model and four ensemble models: bagging, random forest, adaptive boosting, and gradient 
boosting. Based on k-fold cross-validation tests of models and mean absolute percentage errors 
in predictions, it is found that the overall average accuracy of all four ensemble models is 
improved by about 25%–37% when compared to base DTR model. Among the four ensemble 
models, gradient boosting and adaptive boosting models perform better than the other two 
models in terms of accuracy and variance in predictions for the problem considered. 
 
INTRODUCTION 
 

It has been shown that properly designed shallow foundations, with controlled rocking during 
earthquakes, have beneficial effects on the seismic performance of structures by dissipating 
seismic energy in soil and by effectively acting as geotechnical seismic isolation mechanisms 
(e.g., Gavras et al. 2020 and Gajan et al. 2021). Despite the mounting experimental evidences, 
foundation rocking and soil yielding is still perceived as an unreliable or unproven energy 
dissipation mechanism for reducing seismic force and ductility demands on the structure. The 
lack of practical, reliable dynamic soil-foundation interaction models for rocking foundations is 
among primary concerns that hinder the use of foundation rocking as a designed mechanism for 
improving the seismic performance of structural systems. As globally available experimental 
databases become increasingly common, machine learning algorithms in predictive modeling 
have become efficient in many fields (e.g., Geron 2019). Models based on machine learning 
algorithms have the ability to learn directly from experimental data and generalize experimental 
behavior, capture the effects and propagation of uncertainties, and hence can be used in 
combination with mechanics-based and physics-based models as complementary measures in 
practical applications. 

The objective of this research is to develop well-trained and tested data-driven predictive 
models for seismic energy dissipation of rocking foundations using multiple decision-tree based 
ensemble machine learning algorithms and supervised learning technique. Data from a rocking 
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foundation database, consisting of 140 dynamic base shaking experiments conducted on 
centrifuges and shaking tables in the US and Greece are used for training and testing of machine 
learning models. The input features to machine learning models include critical contact area ratio 
of foundation, slenderness ratio and rocking coefficient of rocking system, and peak ground 
acceleration and Arias intensity of earthquake motion. The base machine learning algorithm 
used in this study is decision tree regression (DTR), a nonlinear, nonparametric algorithm that 
uses supervised learning technique to build a tree-like data structure. Multiple DTR models are 
then combined together to develop four ensemble models using bootstrap aggregating 
(bagging), random forest, adaptive boosting (ada-boosting), and gradient boosting ensemble 
methods. 
 
DATA MINING AND DATA PREPARATION 
 

Database. The results obtained from five series of centrifuge experiments and four series of 
shake table experiments (altogether 140 individual experiments) have been used in this study. 
The centrifuge experiments were conducted in University of California at Davis (Gajan and 
Kutter 2008, Deng et al. 2012, Deng and Kutter 2012, and Hakhamaneshi et al. 2012) and the 
shake table experiments were conducted in University of California at San Diego (Antonellis et 
al. 2015) and the National Technical University of Athens in Greece (Drosos et al. 2012, 
Anastasopoulos et al. 2013, and Tsatsis and Anastasopoulos 2015). Details of these experiments, 
including types of soils, foundations, structures, and ground motions, number of shaking events, 
raw data, and meta data, are available in a database (Gavras et al. 2020). A summary of 
processed data from these experiments in terms of meaningful engineering parameters and the 
relationships among them are published in Gajan et al. (2021).  

Input features. Input features for machine learning algorithms considered in this study 
include three rocking system parameters (critical contact area ratio (A/Ac), slenderness ratio 
(h/B), and rocking coefficient (Cr)) and two earthquake ground motion parameters (peak ground 
acceleration (amax) and Arias intensity of ground motion (Ia)). A/Ac is conceptually a factor of 
safety for rocking with respect to vertical loading (where A is the total base area of the footing 
when in full contact with the soil and Ac is the minimum footing contact area required to support 
the applied vertical load). The moment capacity (Mult) of a rocking foundation has been shown to 
correlate with A/Ac through the following relationship (Gajan and Kutter 2008),  

 

𝑀𝑢𝑙𝑡 =  
𝑉 ∙ 𝐵

2
∙ [1 −

𝐴𝑐

𝐴
] 

 
The rocking coefficient of a soil-foundation-structure system, Cr, is the ratio of ultimate 

rocking moment capacity of the foundation to the weight (V) of the structure normalized by the 
effective height (h) of the structure (Deng et al. 2012),  

 

𝐶𝑟 =  
𝐵

2 ∙ ℎ
∙ [1 −

𝐴𝑐

𝐴
] 

 
where, B is the width of the footing in the direction of shaking. These five input features have 
been selected based on their close relationships with seismic energy dissipation presented in 
Gajan et al. (2021). The range of values, the mean, and the standard deviation of all five input 
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features are presented in Table 1. As can be seen from Table 1, experimental results utilized in 
this study cover a wide range of rocking system capacity parameters and ground motion demand 
parameters.  
 

Table 1. Details of input features used in machine learning algorithms 
 

 
 

Performance parameter. Seismic energy dissipation (ED) in soil during foundation rocking 
is the performance (prediction) parameter considered in this study and is calculated from the total 
area enclosed by the cyclic moment-rotation hysteretic loops of foundation. ED is normalized by 
the applied vertical load on the foundation and the width of the foundation in order to obtain a 
nondimensional parameter called normalized seismic energy dissipation [NED = ED/(V·B)] and 
to make comparisons meaningful across different experiments. The data from the database for 
140 individual experiments have been processed to obtain the variation of NED with Ia of 
earthquake for different clusters (Cr) of rocking systems and for sandy soils and clays. The 
experimental data used in this study is shown in Figure 1 (Gajan et al. 2021). The data presented 
in Figure 1 generally indicate that (i) the amount of scatter in data is relatively high and (ii) 
simple statistics-based models are not capable of correlating the data with reasonable accuracy. 
This hypothesis is verified when the accuracy of machine learning models developed in this 
study is compared with the accuracy of simple, statistics-based linear regression models 
(presented in Results section). 

 

 
Figure 1. Variation of normalized seismic energy dissipation in foundation soil with Arias 

intensity of earthquake and rocking coefficient of foundation (Gajan et al. 2021) 

Input feature A/Ac h/B Cr amax (g) Ia (m/s)
Range of values 1.9 - 17.1 1.2 - 2.83 0.08 - 0.36 0.04 - 1.28 0.03 - 26.4
Mean value 8.17 1.89 0.24 0.43 2.31
Standard deviation 4.27 0.53 0.08 0.26 4.37
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Feature transformation and normalization. As can be seen from Figure 1, the variation in 
NED and Ia is relatively high, and hence the data is plotted in log – log space. For this reason, 
these two parameters (NED and Ia) are transformed to logarithmic values (base 10) before the 
training and testing phases of machine learning models. In addition, in order to make reliable 
predictions using models developed by different machine learning algorithms, all the input 
feature data are normalized by using min-max feature scaling so that each input feature value 
varies between 0.0 and 1.0.  
 
MACHINE LEARNING (ML) ALGORITHMS 
 

Decision tree regression (DTR). The DTR is a nonlinear, nonparametric ML algorithm that 
uses supervised learning technique to build a tree-like data structure by employing a top-down, 
greedy search through the space of possible branches using information gain as a measure of 
reduction in uncertainty in data (reduction in entropy in data). While building the tree, the DTR 
algorithm minimizes a cost function to choose a single feature (k) and a threshold value (tk) for 
that feature when deciding a split, and the process is repeated until it reaches the maximum depth 
of the tree or if it cannot find a split that would reduce the uncertainty further. The cost function 
that the DTR algorithm minimizes is given by J(k, tk) (Geron 2019), 

 
𝐽(𝑘, 𝑡𝑘) =  

𝑚𝑙𝑒𝑓𝑡

𝑚
. 𝐸𝑙𝑒𝑓𝑡 +

𝑚𝑟𝑖𝑔ℎ𝑡

𝑚
. 𝐸𝑟𝑖𝑔ℎ𝑡 

 
where Eleft and Eright measure the mean absolute error of the left and right subsets of the splitting 
node, respectively, and mleft and mright are the number of instances in the left and right subsets, 
respectively (m = mleft + mright). The major hyperparameter of the DTR model is the maximum 
depth of the tree, as deeper trees tend to overfit the training data while relatively shorter 
(shallow) trees tend to underfit the training data. During testing or prediction phase, the DTR 
model arrives at an estimate by asking a series of questions to the data related to input feature 
values, each question narrowing the possible values until the model gets confident enough to 
make a prediction. The final prediction is the average value of the dependent (prediction) 
variable in that leaf node. 

Bagging regression (BAR) and random forest regression (RFR). A bagging regression is 
an ensemble model that fits multiple base DTR models each on random subsets of the training 
dataset and then aggregates each individual DTR’s predictions on testing dataset by averaging to 
form a final prediction. Bagging is typically used as a way to reduce the variance of the base 
model by introducing randomization into its construction procedure and making an ensemble out 
of it. A special case of general bagging model is called a random forest model, where random 
number of input features are used to build multiple DTR models of different depths (hence the 
name random forest). For the base DTR model and the BAR model developed in this study, the 
number of features is equal to 5 and the maximum depth of the tree is equal to 6. For RFR 
model, the maximum number of features for a base DTR is limited to 2 (randomly chosen 2 
features out of total 5 features) and the maximum depth of the tree is limited to 6 (random depths 
that can vary from 1 to 6). Therefore, the RFR algorithm, in general, introduces more 
randomness in the model and is expected to perform better than the bagging ensemble model. 
The optimum value of number of trees needed (base DTR models) for all four ensemble models 
is found to be around 50 (discussed further in hyperparameter tuning section). 
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Adaptive boosting regression (ABR) and gradient boosting regression (GBR). The idea 
of boosting method is to train multiple individual base DTR models sequentially, each trying to 
correct the predecessor. In the process, the boosting method combine several weak learners into a 
strong learner (Geron 2019). In adaptive boosting, each base DTR model has a weight (predictor 
weight) and each training data instance also has a weight (instance weight). The ABR model 
begins by fitting a DTR on the original dataset and then fits additional DTR models on the same 
dataset but where the weights of instances of data are adjusted according to the error of the 
current prediction (using the current predictor weight). As such, subsequent DTR models focus 
more on difficult cases of data. When ABR model makes predictions on a new data instance 
(from test dataset), it simply computes the predictions of all individual base DTR models and 
weighs them using the predictor weights. Similar to ABR, gradient boosting (GBR) works by 
sequentially adding base DTR models to an ensemble, each one correcting its predecessor. 
However, instead of tweaking the data instance weights at every iteration, the GBR fits the new 
predictor to the residual errors made by the previous DTR model. When GBR model makes 
predictions on a new data instance (from test dataset), it simply computes the predictions of all 
individual base DTR models and adds them up together. 
 
RESULTS AND DISCUSSION 
 

Initial evaluation of ML models. Altogether 140 experimental data (instances) are extracted 
from the above-mentioned database and are randomly split into two groups for the purpose of 
initial training (supervised learning) and testing (validation) of ML models. A 70%– 30% split is 
used to randomly create a training dataset (98 instances) and a testing dataset (42 instances) 
using the train-test-split function available in “scikit-learn” library of modules in Python 
(https://scikit-learn.org/stable/). In addition to the decision tree-based ML models described 
above, for the purpose of comparisons, a multivariate linear regression (MLR) model is also 
developed using the same input features and supervised learning technique. Since MLR model is 
a linear, parametric model, it is used as the baseline model for comparison of model 
performances. All ML models are first trained using the same training dataset (98 instances) and 
then tested using previously unseen testing dataset (42 instances). The variation of predicted 
NED with their corresponding experimental NED values on top of 1:1 prediction-to-experiment 
comparison lines during initial testing phase are presented in Figure 2 for all four decision tree-
based ensemble ML models (in all four cases, the maximum depth of tree = 6 and the number of 
trees in the ensemble = 50). Also included in Figure 2 are the mean absolute percentage errors 
(MAPE) in predictions of each model during testing.  

For the same train-test split of data, the testing MAPE of baseline MLR model and the base 
DTR model are 0.76 and 0.83, respectively. As can be seen from the results presented in Figure 2 
(a) through (d), it is clear that all four ensemble models perform better than the base DTR model 
and the baseline MLR model. The MAPE of predictions of the ensemble models vary from 0.49 
to 0.60, which is a significant improvement (28% to 41% increase in accuracy on average) from 
the corresponding MAPE of base DTR model (0.83). As can be seen from Figure 2 (a) and (b), 
the predictions of BAR and RFR models look very similar (but not identical) with a MAPE of 
about 0.52 and 0.53, respectively, on test data. This is because of the low number of features 
used in this study (random forest model is typically more efficient compared to bagging when 
the number of features are relatively high (Geron 2019)). On the other hand, the prediction 
results and the MAPE values of BAR and RFR models reinforce the consistency of the 
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algorithms (RFR is a special case of BAR). Both ABR and GBR models also show similar trends 
(Figure 2 (c) and (d)), but with different MAPE values (about 20% difference). It appears that 
ABR model performs better than the GBR model on this test data, however, as will be seen later, 
the GBR model turns out to be the best ensemble model in terms of overall average MAPE and 
the variance in MAPE in k-fold cross validation tests (presented later). 

 

 
 

Figure 2. Comparisons of model predictions of normalized energy dissipation (NED) with 
experimental results for ensemble ML models during initial testing phase 

 
Hyperparameter tuning of models. For the base DTR model and four decision tree-based 

ensemble models presented above, hyperparameter tuning is carried out (i) to investigate the 
sensitivity of model predictions to their hyperparameters, (ii) to determine the optimum values of 
these parameters for the problem considered and data analyzed, and (iii) to ensure that the 
models neither overfit nor underfit the training data. The maximum depth of the tree of the base 
DTR model is varied first, and once an optimum maximum depth is found, the number of trees is 
varied for the ensemble models while the maximum depth of base DTR model is kept at its 
optimum value. In each case, the corresponding MAPE values in predictions during initial 
testing phase are calculated and the results are presented for all five models in Figure 3.  
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parameters. This indicates that the seismic energy dissipation is more sensitive to ground motion 
parameters than to rocking foundation capacity parameters. A/Ac and h/B have feature 
importance scores of 10% to 15% each, while the feature importance of Cr is 7% to 10%, 
indicating that none of the input features are redundant. These observations are remarkably 
consistent over all three ensemble models, except that the feature importance values in GBR 
model for Ia and amax are slightly different compared to the other two models.  

 
 

Figure 4. Normalized feature importance scores obtained from three ensemble ML models 
 

K-fold cross validation tests of models. The k-fold cross validation is a technique for 
evaluating the performance of machine learning models on multiple, different train-test splits of 
dataset. It provides a measure of how good the model performance is both in terms of bias and 
variance. In this study, the entire dataset is randomly shuffled and split into different groups of 
train-test sets for 7-fold cross validation. In a 7-fold cross validation, six folds of data are used 
for training of ML models and one fold is used for testing, and this process is repeated 7 times. 
On top of this, the whole process is repeated 3 times with different randomization of the data in 
each repetition. With this setup, for each model, the 7-fold cross validation tests result in 21 sets 
of predictions and 21 different values for testing MAPE. Figure 5 presents the results of 7-fold 
cross validation test for base DTR model and all four ensemble models developed in this study 
along with baseline MLR model. In each case, results obtained for testing MAPE are plotted in 
the form of boxplots. For each ML model, the boxplot plots the average of MAPE, median of 
MAPE (the horizontal line inside the box), 25th and 75th percentile values of MAPE (bottom and 
top edges of the box), and the 10th and 90th percentile values of MAPE (bottom and top 
horizontal lines outside the box).  

As can be seen from Figure 5, the average MAPE values of all five decision tree-based 
models are smaller than that of base MLR model (average MAPE = 0.9), and the average MAPE 
values of all four decision tree-based ensemble models (average MAPE = 0.5 to 0.6) are smaller 
than that of the base DTR model (average MAPE = 0.8). This indicates that by combining 50 
DTR base models together in four different ensemble ML models, the average accuracy is 
improved by 25% to 37% for the problem considered. The average MAPE values of the models 
alone suggest that, for the problem considered, the overall accuracy of model predictions follows 
the following order, from the most accurate to the least accurate: GBR, ABR, RFR, BAR, DTR, 
and MLR. The variance of DTR model predictions is the highest among all six models. 
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However, by combining only 50 DTR base models, the four ensemble methods reduce the 
variance in model predictions quite significantly. More specifically, the GBR model reduces the 
variance in predictions by about 47% when compared to base DTR model.  

 
 

Figure 5. Summary results of 7-fold cross validation of ML models in terms of the average 
and variance of mean absolute percentage errors (MAPE) 

 
Comparisons with simple linear regression models. When the experimental data presented 

in Figure 1 (all 140 instances) are run through a simple linear regression (SLR) algorithm, with 
log (Ia) as independent variable and log (NED) as dependent variable, it results in a coefficient of 
determination (R2 value) of 0.44. When the data is categorized into four groups (all sand, sand Cr 
< 0.2, sand Cr > 0.2, and clay Cr > 0.2) and run through the SLR model, the following R2 values 
are obtained: 0.41, 0.50, 0.68, and 0.77, respectively. For comparison, the R2 values of all four 
DTR-based ensemble ML models developed in this vary from 0.92 to 0.99 on training data, 
and the R2 values of predictions of previously unseen test data are 0.8 or greater. This indicates 
that the ML models developed in this study are better than the SLR models in terms of 
accuracy. 
 
CONCLUSIONS 
 

Based on the results presented in this paper, the following major conclusions are derived: 
• All four decision tree-based ensemble machine learning models developed in this study 

(BAR, RFR, ABR, and GBR) perform better than a baseline MLR model and simple 
statistics-based SLR models in terms of accuracy and variance in predictions.  

• The average accuracy of all four decision tree-based ensemble models, with only 50 trees 
in each ensemble, is improved by about 25% to 37% when compared to base DTR model. 
The variance in model predictions is reduced by as much as 47% (GBR model) when 
compared to base DTR model. 
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• For the problem considered and data analyzed, the overall average accuracy of model 
predictions follows the following order, from the most accurate to the least accurate: 
GBR, ABR, RFR, BAR, DTR, and MLR. Hyperparameter tuning of models is carried out 
to make sure that models neither underfit nor overfit the training data.  

• Based on the “feature importance” values obtained from three ensemble models, it can be 
concluded that the five chosen input features capture the rocking induced energy 
dissipation satisfactorily and that the energy dissipation is more sensitive to ground 
motion demand parameters than to rocking foundation capacity parameters. 

• The data-driven predictive models developed in this study can be used in combination 
with other mechanics-based models to complement each other in modeling of rocking 
foundations in practical applications. One such approach would be theory-guided 
machine learning, an emerging field that combines physics with data science.  

 
ACKNOWLEDGEMENTS  
 

The authors acknowledge the National Science Foundation (NSF) for funding the research 
presented in this paper through award number CMMI-2138631. 
 
REFERENCES 
 
Anastasopoulos, I., Loli, M., Georgarakos, T., and Drosos, V. (2013). “Shaking table testing of 

rocking-isolated bridge pier on sand.” J. Earthquake Eng. 17, 1–32. 
Antonellis, G., Gavras, A. G., Panagiotou, M., Kutter, B. L., Guerrini, G., Sander, A. C., and 

Fox, P. J. (2015). “Shake table test of large-scale bridge columns supported on rocking 
shallow foundations.” J.Geotech. Geoenviron. Eng. 141. 

Deng, L., and Kutter, B. L. (2012). “Characterization of rocking shallow foundations using 
centrifuge model tests.” Earthquake Engng Struct. Dyn. 41, 1043–1060. 

Deng, L., Kutter, B. L., and Kunnath, S. K. (2012). “Centrifuge modeling of bridge systems 
designed for rocking foundations.” J. Geotech. Geoenviron. Eng. 138, 335–344. 

Drosos, V., Georgarakos, T., Loli, M., Anastsopoulos, I., Zarzouras, O., and Gazetas, G. (2012). 
“Soil-Foundation-Structure Interaction with Mobilization of Bearing Capacity: Experimental 
Study on Sand.” J. Geotech. Geoenviron, 138(11), 1369–1386. 

Gavras, A., Kutter, B. L., Hakhamaneshi, M., Gajan, S., Tsatsis, A., Sharma, K., Kouno, T., 
Deng, L., Anastasopoulos, I., and Gazetas, G. (2020). “Database of rocking shallow 
foundation performance: Dynamic shaking.” Earthquake Spectra. 

Gajan, S. (2021). “Modeling of seismic energy dissipation of rocking foundations using 
nonparametric machine learning algorithms.” Geotechnics, 1, 534–557. 

Gajan, S., and Kutter, B. L. (2008). “Capacity, settlement, and energy dissipation of shallow 
footings subjected to rocking.” J. Geotech. Geoenviron. Eng. 134, 1129–1141. 

Gajan, S., Soundararajan, S., Yang, M., and Akchurin, D. (2021). “Effects of rocking coefficient 
and critical contact area ratio on the performance of rocking foundations from centrifuge and 
shake table experimental results.” Soil Dyn. Earthquake Engng, 141. 

Geron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: 
Concepts, tools and techniques to build intelligent systems. 2nd ed. O’Reilly Media, Inc., 
Sebastopol, CA. 

 

Geo-Congress 2023 GSP 342 307

© ASCE

 Geo-Congress 2023 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Si
va

pa
la

n 
G

aj
an

 o
n 

03
/2

9/
23

. C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.



Hakhamaneshi, M., Kutter, B. L., Deng, L., Hutchinson, T. C., and Liu, W. (2012). “New 
findings from centrifuge modeling of rocking shallow foundations in clayey ground.” in 
Proc, Geo-Congress 2012, 25–29 March, 2012, Oakland, CA. 

Tsatsis, A., and Anastasopoulos, I. (2015). “Performance of rocking systems on shallow 
improved sand: shaking table testing.” Front. Built Environ. 1:9. 

 
 
 
 

Geo-Congress 2023 GSP 342 308

© ASCE

 Geo-Congress 2023 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Si
va

pa
la

n 
G

aj
an

 o
n 

03
/2

9/
23

. C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.


