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ABSTRACT

The objective of this study is to develop data-driven predictive models for permanent
settlement of rocking shallow foundations during seismic loading using multiple machine
learning algorithms and supervised learning technique. Data from a rocking foundation database
consisting of dynamic base shaking experiments conducted on centrifuges and shaking tables
have been used for the development of k-nearest neighbors regression, support vector regression,
and random forest regression models. Based on repeated k-fold cross validation tests of models
and mean absolute percentage errors in their predictions, it is found that all three models perform
better than a baseline multivariate linear regression model in terms of accuracy and variance in
predictions. The average mean absolute errors in predictions of all three models are around 0.005
to 0.006, indicating that the rocking induced permanent settlement can be predicted within an
average error limit of 0.5% to 0.6% of the width of the footing.

INTRODUCTION

Recent research findings reveal that properly designed shallow foundations, with controlled
rocking, possess many desirable characteristics such as beneficial seismic energy dissipation and
reduced force and ductility demands transmitted to the structures (e.g., Gavras et al. 2020 and
Gajan et al. 2021). However, the possibility of excessive settlement and rotation of foundation
and the challenges associated with accurate prediction of foundation deformations are among
primary concerns that hinder the use of foundation rocking as a designed mechanism for
improving the seismic performance of structures. The accurate estimation of rocking induced
permanent settlement of shallow foundations poses significant challenges due to complex,
coupled material and geometrical nonlinearities associated with the soil-foundation system
behavior during rocking (yielding of soil and uplift of footing). As globally available
experimental databases become increasingly common, machine learning algorithms in predictive
modeling have become efficient in many fields (e.g., Geron 2019 and Deitel and Deitel 2020).
Models based on machine learning algorithms have the ability to learn directly from
experimental data and generalize experimental behavior, capture the effects and propagation of
uncertainties, and hence can be used in combination with mechanics-based models as
complementary measures in practical applications.

The objective of this study is to develop data-driven predictive models for permanent
settlement of rocking shallow foundations during seismic loading using multiple machine
learning algorithms and supervised learning technique. Data from a rocking foundations
database, consisting of 140 dynamic base shaking experiments conducted on centrifuges and
shaking tables in the US and Greece, are used for training and testing of machine learning
models. Primarily, three nonlinear and nonparametric machine learning algorithms are
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considered in this study: distance-weighted k-nearest neighbors regression (KNN), support
vector regression (SVR), and random forest regression (RFR). The input features to machine
learning algorithms include critical contact area ratio of foundation (related to the factor of safety
for bearing capacity during rocking), slenderness ratio and rocking coefficient of rocking system,
peak ground acceleration and Arias intensity of earthquake motion, and a categorical binary
feature that separates sandy soil foundations from clayey soil foundations.

DATA MINING AND DATA PREPARATION

Database. The results obtained from five series of centrifuge experiments and four series of
shake table experiments (altogether 140 individual experiments) have been utilized in this study.
The centrifuge experiments were conducted in University of California at Davis (Gajan and
Kutter 2008, Deng et al. 2012, Deng and Kutter 2012, and Hakhamaneshi et al. 2012) and the
shake table experiments were conducted in University of California at San Diego (Antonellis et
al. 2015) and the National Technical University of Athens in Greece (Drosos et al. 2012,
Anastasopoulos et al. 2013, and Tsatsis and Anastasopoulos 2015). Details of these experiments,
including types of soils, foundations, structures, and ground motions, number of shaking events,
raw data, and meta-data, are available in a database (Gavras et al. 2020). A summary of
processed data from these experiments in terms of meaningful engineering parameters and the
relationships among them are published in Gajan et al. (2021).

Input features. Input features to machine learning algorithms considered in this study
include three rocking system parameters (critical contact area ratio (A/Ac), slenderness ratio
(h/B), and rocking coefficient (C;)), two earthquake ground motion parameters (peak ground
acceleration (amax) and Arias intensity of ground motion (I,)), and a binary feature (called Type)
that separates foundations on sandy soils from clayey soils. A/A; is conceptually a factor of
safety for rocking with respect to vertical loading (where A is the total base area of the footing
when in full contact with the soil and A, is the minimum footing contact area required to support
the applied vertical load, V). The moment capacity (Mur) of a rocking foundation has been
shown to correlate with A/A. through the following relationship (Gajan and Kutter 2008),

V-B A,
am G -4

where, B is the width of the footing in the direction of shaking. The rocking coefficient of a soil-
foundation-structure system, C,, is the ratio of ultimate rocking moment capacity of the
foundation to the weight (vertical load on foundation) of the structure normalized by the
effective height (h) of the structure (Deng et al. 2012),

C. = B [1 AC]
" 2-h A

These six input features have been selected based on their close relationships with rocking
induced settlement in experiments presented in Gajan et al. (2021). The selection of input
features is also justified by “feature importance” values obtained from random forest regression
model (presented later). The key statistical values of all six input features are presented in Table
1. As can be seen from Table 1, experimental results utilized in this study cover a wide range of
rocking system capacity parameters and ground motion demand parameters.
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Table 1. Details of input features used in machine learning algorithms

Input feature A/A, h/B C, Aax (8) I, (m/s) Type*
Range of values 19-17.1 | 1.2-2.83 | 0.08-0.36 | 0.04-1.28 | 0.03-26.4 | Oorl
Mean value 8.17 1.89 0.24 0.43 2.31 n/a
Standard deviation 4.27 0.53 0.08 0.26 4.37 n/a

*Type: Sand or clay binary feature (0 or 1)

Performance parameter. Rocking induced total permanent settlement (S) beneath the
foundation is the performance parameter (prediction parameter for machine learning models)
considered in this study and is obtained from settlement time-history of the base center point of
the footing at the end of the shake for each experiment. Settlement is normalized by the width of
the footing to obtain a nondimensional parameter called normalized settlement (NS = S/B) and to
make comparisons meaningful across different experiments. The data from the database for 140
individual experiments have been processed to obtain the variation of NS due to foundation
rocking with I, of earthquake for different clusters (C;) of rocking systems and for sandy soils
and clays. The experimental data utilized in this study is shown in Figure 1 (Gajan et al. 2021).
As can be seen from Figure 1, though NS seems to have some correlations with different
parameters such as I, C;, and sand and clay foundations, the variation in the data is so significant
that simple, commonly used statistical models cannot be used to correlate NS with input features
with reasonable accuracy.
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Figure 1. Variation of normalized permanent settlement of foundation with Arias intensity
of earthquake and rocking coefficient of foundation (Gajan et al. 2021)

Feature transformation and normalization. As can be seen from Figure 1, the variation
(numerical range) in NS and I, is relatively high, and hence the data is plotted in log — log space.
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For this reason, these two parameters (NS and I.) are transformed to logarithmic values (base 10)
before training and testing phases of machine learning models. In addition, in order to make
reliable predictions using models developed by different machine learning algorithms, all the
input feature data are normalized so that each input feature value varies between 0.0 and 1.0.

MACHINE LEARNING (ML) ALGORITHMS

K-nearest neighbors regression (KNN). The inductive bias of KNN algorithm is based on
the assumption that when input data points are plotted (as vectors) in multi-dimensional input
feature space, the data points that lie closer together share similar properties (i.e., similar output
or prediction values). If there are hidden relationships between multiple input features and the
prediction variable (NS), the KNN model is able to learn those relationships through training
data. In this study the Euclidean distance measure in n-dimensional space is used to calculate the
distance between two data instances (n = 6 in this study; one for each input feature). In KNN, the
entire training data is stored in the model during training phase. When a test data instance is fed
as input, the KNN algorithm runs through the entire training dataset and finds k number of
training instances that are closer to the test instance. The distance-weighted KNN regression
model weighs the output values by the inverse of their distance from the test data point to its
nearest neighbors and produces an output that is the weighted average of the output values of the
nearest neighbors (i.e. closer neighbors of a test data point will have a greater influence on the
output than neighbors that are further away). The optimum value of k of KNN model is found to
be in between 3 and 6 for the problem considered and k = 3 is used for all cases presented in this
paper, except in hyperparameter tuning phase of models (presented later).

Support vector regression (SVR). The objective of original support vector machine (SVM)
algorithm for classification is to find a hyperplane in an n-dimensional input space that distinctly
separates the data points. The margin (€) is the distance from the hyperplane to the closest data
point (support vector) in n-dimensional space. The major difference between SVM and SVR is
that whereas SVM classification algorithm tries to fit the largest possible margin between
different classes while limiting margin violations of data points, SVR algorithm tries to fit as
many training data instances as possible within the margin while limiting margin violations of
data points. The inductive bias of SVR algorithm is that it assumes that the data points that have
distinct characteristics tend to be separated by wide margins. The major parameter of SVR
algorithm is the kernel function that is used to map (transform) the data instances (input data)
into n-dimensional space. The radial basis function (RBF) kernel is used in this study as it is the
most widely used kernel in SVR and it has the flexibility of dealing with nonlinear data (Geron
2019). Since complex, nonlinear data cannot be accommodated perfectly by a hyperplane and a
margin, a wiggle room is allowed for the margin. A hyperparameter called the cost parameter or
penalty parameter (C) defines the magnitude of this wiggle room across all dimensions in input
space. The optimum value of C of SVR model is found to be 20 for the problem considered and
C = 20 (with € = 0.1) is used for all cases presented in this paper, except in hyperparameter
tuning phase (discussed further in hyperparameter tuning section).

Random forest regression (RFR). The decision tree regression (DTR) algorithm uses
supervised learning technique to build a tree-like data structure by employing a top-down, greedy
search through the space of possible branches using information gain as a measure of reduction
in uncertainty in training data (reduction in entropy in data). A random forest regression (RFR)
model is an ensemble model that fits multiple base DTR models each on random subsets of the
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original training dataset and using random input features, and then aggregate their individual
predictions on testing dataset by averaging to form a final prediction. The major hyperparameter
of DTR model is the maximum depth of the tree, and the optimum value for maximum depth of
the tree is found to be 6 for the data analyzed (presented later). In RFR model, each individual
base DTR model may have a higher bias than if it were trained on the original training dataset,
but introduction of randomness and aggregation reduces both bias and variance. In other words,
the introduction of randomness in input training data (random subset of training data, random
input features and random size individual trees) reduces the uncertainty in final predictions on
test data. For optimum performance of RFR model, the maximum number of random input
features to consider when considering a split is limited to 2 (a hyperparameter) (randomly chosen
2 features out of total 6 features) and the optimum value for maximum number of trees in the
ensemble is found to be 100 (described further in hyperparameter tuning section).

RESULTS AND DISCUSSION

Initial evaluation of ML models. Altogether 140 experimental data (instances) are extracted
from the above-mentioned database and are randomly split into two groups for the purpose of
initial training (supervised learning) and testing (validation) of ML models. A 70%— 30% split is
used to randomly create a training dataset (98 instances) and a testing dataset (42 instances)
using the train-test-split function available in “scikit-learn” library of modules in Python
(https://scikit-learn.org/stable/). In addition to the three nonlinear ML models described above,
for the purpose of comparisons, a multivariate linear regression (MLR) ML model is also
developed using the same input features and supervised learning technique. As MLR model is a
linear, parametric model, it is used as the baseline model for comparison of model performances.
All four ML models are first trained using the same training dataset (98 instances) and then
tested using previously unseen testing dataset (42 instances).

The variation of predicted NS with their corresponding experimental NS values on top of 1:1
prediction-to-experiment comparison lines during initial testing phase are presented in Figure 2
for all four ML models. Also included in Figure 2 are the mean absolute errors (MAE) and mean
absolute percentage errors (MAPE) in predictions of each model. As can be seen from Figure 2,
the three nonlinear, nonparametric ML models developed in this study (KNN, SVR, and RFR)
consistently outperform the linear, parametric baseline MLR model in terms of MAE and MAPE
in predictions. For example, the accuracy of predictions in terms of MAPE of SVR, KNN and
RFR models is improved by about 27% to 36% when compared to that of MLR model (0.7),
while the accuracy of all three nonlinear models in terms of MAE is improved by 20% to 30%
when compared to that of MLR model (0.01). The predictions of SVR model show more
variation (outliers), especially for relatively smaller values of settlement. However, as will be
seen later, the SVR model performs better (increased accuracy and reduced variance) when
combined with KNN model using stacked generalization as a stacked ensemble model. The
results of this stacked model is presented in the summary plots in the last section.

Importance of input features. The implementation of RFR model in scikit-learn (in Python)
has a function called “feature importances”, which outputs relative importance of each input
feature. This function measures a feature’s importance by looking at how much the tree nodes
that use that feature reduce uncertainty in data on average. The function computes this score for
each feature after training, then it normalizes the results so that the sum of all feature
importances is equal to 1.0. To investigate feature importance, twenty different random forest

© ASCE

Geo-Congress 2023



Downloaded from ascelibrary.org by Sivapalan Gajan on 03/29/23. Copyright ASCE. For personal use only; all rights reserved.

Geo-Congress 2023 GSP 341

models are developed by randomly selecting the training data (using the random state variable)
and the feature importance values are obtained for each random forest. The average values of the
feature importance along with their standard deviations (as error bars) are presented in Figure 3.
As can be seen from Figure 3, rocking coefficient (C;) has the highest score for feature
importance, followed by h/B and A/A.. This indicates that rocking system capacity parameters
contribute more to model predictions than the earthquake intensity parameters and type of soil
(in other words, the settlement is more sensitive to rocking foundation capacity parameters than
to earthquake demand parameters). The other three input features also have feature importance
scores greater than 8% to 13% each, indicating that none of the input features are redundant.
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Figure 2. Comparisons of model predictions of normalized settlement (NS) with
experimental results for different ML models during initial testing phase

Repeated k-fold cross validation of ML models. The k-fold cross validation is a technique
for evaluating the performance of ML models on multiple, different train-test splits of dataset. It
provides a measure of how good the model performance is both in terms of accuracy and
variance (commonly referred to as bias-variance trade-off). In this study, the dataset is randomly
shuffled and split into different groups of train-test sets for 5-fold cross validation (k =5). In a 5-

© ASCE

Geo-Congress 2023

609



Downloaded from ascelibrary.org by Sivapalan Gajan on 03/29/23. Copyright ASCE. For personal use only; all rights reserved.

Geo-Congress 2023 GSP 341 610

fold cross validation, four folds of data are used for training of ML models and one fold is used
for testing, and this process is repeated 5 times. On top of this, the whole process is repeated 3
times with different randomization of the data in each repetition (repeated k-fold cross
validation). With this setup, for each model, the repeated 5-fold cross validation tests result in 15
sets of predictions and 15 different values for testing MAE and testing MAPE.
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Input features
Figure 3. Normalized feature importance scores obtained from multiple RFR models

Hyperparameter tuning. For each ML model, the key hyperparameters are tuned using the
average MAPE values obtained in repeated 5-fold cross validation tests performed on the initial
training dataset (98 instances). It should be noted that for final evaluation of models (next
section), the entire dataset (140 instances) are used in 5-fold cross validation. Hyperparameter
tuning is carried out (i) to investigate the sensitivity of model predictions to their
hyperparameters, (ii) to determine the optimum values of these parameters for the problem
considered and data analyzed, and (iii) to ensure that the models neither overfit nor underfit the
training data. The number of nearest neighbors (k), the cost or penalty parameter (C), the
maximum depth of the tree, and the number of trees in the forest are varied for KNN, SVR,
DTR, and RFR models, respectively, and the corresponding MAPE values of predictions are
calculated. The results are presented using the average values of MAPE obtained in repeated 5-
fold cross validations of all four nonparametric ML models in Figure 4.

The testing MAPE of KNN model first decreases as k increases (Figure 4 (a)). Typically and
theoretically, the testing MAPE would increase if k became much bigger. This is a typical
behavior of the KNN algorithm when tested with previously unseen test data. The minimum
MAPE during testing was obtained when k is in between 2 and 4 (the testing MAPE is around
0.9 for this range). Based on this observation and to be consistent with previously published
results on a related topic (Gajan 2021), k = 3 is taken as the optimum value of the KNN
algorithm for the problem considered. Any value smaller than 3 for k would overfit the training
data and much greater values for k would underfit the training data. For SVR model, neither a
very small value for C (underfitting the training data) nor a very high value for C (overfitting the
training data) is preferred. The MAPE values of SVR model first decreases and then increases as
C increases, with the optimum value of C being 20 (Figure 4 (b)).

Similar to the concept in SVR model, for DTR model (Figure 4 (c)), neither a very shallow
tree (underfitting the training data) nor a very deep tree (overfitting the training data) is preferred
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and an optimum value for maximum depth of the tree is needed. The MAPE values of DTR
model first decreases and then increases as the maximum depth of tree increases, with the
optimum maximum depth of the tree being between 6 and 9. Based on this observation,
maximum depth of tree for optimum performance of DTR model is found to be 6 for the problem
considered. For RFR model, as can be seen from Figure 4 (d), the MAPE decreases as number of
trees in random forest increases, indicating that the accuracy of the model increases with the
number of trees. However, after about 100 trees, the MAPE of the RFR model does not decrease
further, indicating that the optimum number of trees required is 100.

E 1 ] T I T T | — E L6 rrr—T T T

s l6r (a) KNN — > - (b) SVR il

g B | 5 12k il

[} | _ o

an on — 1

£ 081 - £

2 | I | I | I | S oogluul vovvenml vl i

=0 2 4 6 g = 1 10 100 1000

Value of penalty parameter "C" in SVR model

g E 1~2_ T T T T T T T T TTTm

= S LI (d) RFR

g g 1.0 C

[} [0}

.%" .%D 0.9 C

3 3 08 RN RN R

= a 1 10 100 1000
Maximum depth of tree in DTR model Number of trees in RFR model

Figure 4. Results of hyperparameter tuning of ML models using 5-fold cross validation

Summary of overall average accuracy and variance of model predictions. Figure 5
presents the results of (a) MAE and (b) MAPE during repeated 5-fold cross validation tests
performed on entire dataset for different machine learning models. It should be noted that results
obtained for an ensemble stacked model (using stacked generalization technique and linear
regression as meta model) combining KNN model and SVR model are also presented in Figure 5
(a) and (b). In each case, results obtained for testing MAE and MAPE are plotted in the form of
boxplots. For each machine learning model, the boxplot plots the average (triangles), median (the
horizontal line inside the box), 25" and 75™ percentile values (bottom and top edges of the box),
and 10" and 90" percentile values (bottom and top horizontal lines outside the box).

The average MAE of all four nonlinear, nonparametric ML models (KNN, SVR, RFR, and
stacked model) are smaller than that of the baseline MLR model (Figure 5 (a)). The average
MAE values of these four models for normalized settlement (S/B) vary between 0.005 and 0.006,
indicating that the rocking induced settlement can be predicted within an error limit of 0.5% to
0.6% of the width of the foundation on average. A similar trend is found for MAPE presented in
Figure 5 (b), except that SVR model seems to have greater variance in predictions. However, by
simply combining SVR model with KNN model (using stacked generalization), the resulting
stacked ensemble model reduces both the average and the variance in MAPE quite significantly.
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In a previous study that incorporated four input features (Gajan 2021), the average MAPE in
predicted normalized settlement is 3.0 or higher for MLR and KNN models. In the present study,
six input features are used and two different ensemble methods have been developed (random
forest using bagging of multiple decision trees and a stack ensemble model by combining KNN
and SVR models), and they show significantly improved performance (the overall average error
(MAPE) reduced from about 3.0 to around 0.7).

(a) MAE in 5-fold cross validation (b) MAPE in 5-fold cross validation
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Figure 5. Summary results of 5-fold cross validation of ML models in terms of the average
and variance of mean absolute error (MAE) and mean absolute percentage error (MAPE)

CONCLUSIONS

Based on the results presented in this paper, the following major conclusions are derived:

e The nonlinear, nonparametric ML models developed in this study (KNN, Stack (KNN
and SVR), and RFR) perform better than a baseline MLR model in terms of accuracy and
variance in predictions of rocking induced settlement of shallow foundations. The overall
average testing MAPE of these three model predictions are around 0.7, and the models
neither underfit nor overfit the training data.

e The overall average mean absolute errors (MAE) in predictions of all four nonlinear ML
models are around 0.005 to 0.006, indicating that the rocking induced settlement can be
predicted within an average error limit of 0.5% to 0.6% of the width of the footing.

e Based on the feature importance values, it can be concluded that the six chosen input
features capture the rocking induced settlement satisfactorily and that none of the input
features are redundant. The permanent settlement is more sensitive to rocking foundation
capacity parameters than to ground motion intensity parameters.

e The data-driven predictive models developed in this study can be used in combination
with other mechanics-based models to complement each other in modeling of rocking
induced settlement of shallow foundations in practical applications.
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