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Dicrotic Notch (DN), one of the most significant and indicative features of the arterial blood pressure (ABP) waveform,
becomes less pronounced and thus harder to identify as a matter of aging and pathological vascular stiffness. Generalizable
and automatic DN identification for such edge cases is even more challenging in the presence of unexpected ABP waveform
deformations that happen due to internal and external noise sources or pathological conditions that cause hemodynamic
instability. We propose a physics-aware approach, named Physiowise (PW), that first employs a cardiovascular model to
augment the original ABP waveform and reduce unexpected deformations, then apply a set of predefined rules on the
augmented signal to find DN locations. We have tested the proposed method on in-vivo data gathered from 14 pigs under
hemorrhage and sepsis study. Our result indicates 52% overall mean error improvement with 16% higher detection accuracy
within the lowest permitted error range of 30𝑚𝑠 . An additional hybrid methodology is also proposed to allow combining
augmentation with any application-specific user-defined rule set.
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1 INTRODUCTION

Fig. 1. High level explanation of the proposed ap-
proach. (a) PW methodology. (b) Hybrid voting
method with a user-defined rule-based algorithm.

Arterial Blood Pressure (ABP) waveform carries critical informa-
tion on both the cardiovascular system and its underlying control
system [1]. Extraction of such information has been the target of
research in a wide range of healthcare applications such as early
hemodynamic impairment detection [2], hypotension prediction
[3], and fluid responsiveness analysis in critical care [4].
Dicrotic Notch (DN) is a clinically significant feature of ABP

waveform that patterns a secondary up-rise in the pressure signal
after the main maxima. The automatic DN detection becomes
challenging as its morphology ranges from a clear-cut pressure
up-rise to a diminished slope change. The problem is intensified
under signal deformations due to the presence of many dynamic
actors, such as internal and external noise sources or pathological
conditions, affecting the ABP waveform.
Previously established DN detection methods, categorized as

rule-based or model-based approaches, commonly target DN de-
tection on normal ABP waveforms and ignore the edge cases. As these edge scenarios become more prevalent with
aging and underlying conditions that increase the vascular beds stiffness or hemodynamic instability, automatic
DN detection methods may fail to capture patterns that do not comply with their preset assumptions.

We propose a physics-aware approach, Physiowise (PW), that enhances generalizability under ABP waveform
deformations. Figure 1 depicts the overall view of the proposed method. PW is a combination of model-based
and rule-based methods. The model-based data augmentation aims to synthesize the deformed ABP waveforms
closely while omitting unexpected patterns that do not comply with the model’s assumptions. This results in a
much more controlled fluctuation on the augmented ABP waveform in comparison to the original ABP waveform.
The proposed rule-based algorithm can generate the DN placements using this augmented waveform (Figure 1
(a)). A user-defined rule-based method can also be integrated with our approach (Figure 1 (b)). Such a rule-based
method is applied on both original and augmented data to generate two sets of DN placement markers. A voting
algorithm receives these identified DN placements and decides the final DN identification output.
We propose a novel parameter optimization technique that can highlight DN location under waveform

deformations, a scenario that has not been covered by model-based methods before. To enhance the technique
further, we have designed a rule-based algorithm that is tuned with the learned parameters from the optimizer.
We have compared the performance of the proposed algorithm with two pre-existing rule-based algorithms when
applied on the augmented data and passed through the voting algorithm.
PW approach is tested on a real-world dataset annotated by a human expert for comparison purposes. The

dataset time windows are randomly selected from 14 pigs undergoing sepsis and hemorrhage studies. The results
shows 52% percent overall improvement in mean DN detection error and 25% decrease in its standard deviation.
The approach also gains 16% accuracy improvement in the lowest permitted error range of 30𝑚𝑠 .

2 PHYSIOLOGICAL BACKGROUND
DN, the transient increase in the ABP curve, is a clinically significant feature that indicates the complete closure
of the left ventricle and the end of the systolic duration [5]. Left ventricle ejection time, defined as the interval
between end-diastole and DN, is a primary indicative measure for many conditions such as aortic valve disease,
left ventricle muscle failure [6], ischemic heart disease, heart failure, hypertension, and aortic stenosis [7]. Hence
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the automatic detection of the DN onset and contributing factors is of significance in blood pressure study and
monitoring.

Fig. 2. Various morphologies of the dicrotic notch
([8–10])

The DN is widely known to be caused by a brief aortic back-flow
at the end of ejection duration that fully closes the left ventricle [5].
This backflow is a fraction of the forward ejection flow reflected
off the many-branched vasculature.

In their pioneering work on pulse waveform analysis, Dawber
et al. [8–10] define four classes for the categorization of DN in
the arterial pulse waves (Figure 2). Their study shows that DN
morphology is closely related to arterial stiffness; Healthy young
people show clear-cut Class-I DN morphology that may change
towards Class-IV with age or pathological conditions that increase
vascular stiffness.

As expected, the speed of the backflow wave increases as vas-
cular beds become stiffer. More delayed arrival of backflow to the aorta in healthy young individuals causes a
more pronounced DN. A rushed backward wave, however, reduces the phase difference between the forward and
backward flows and, as a result, the DN prominence.
The cardiovascular system is a closed loop network of multi-branched vessels continuously circulating a

complex fluid, blood, using a pulsating pumping organ, the heart. This system is also affected by many concurrent
internal/external dynamic actors (e.g. autonomic nervous system, environmental parameters such as temperature,
and various noise sources). Hence, the patterns of local flow and pressure signals can be highly complicated
and unexpected. Figure 3 shows a small selection of various waveforms that we commonly observe in our
in-vivo dataset. Numerous fluctuations and/or vanishing DN morphology are noticeable in these examples. Such
complexities must be considered when designing the DN detection approaches to achieve high performance and
reliability in edge cases.

3 RELATED WORK
Rule-based and model-based approaches are two general methods previously discussed in the literature for
automatic DN detection using ABP/PPG signals.
Rule-based approaches utilize a set of expert-crafted rules to find the DN location. They are the dominant

approach in real-time applications because of their speed and simplicity. Li et al. [11] define an empirical method
for DN detection with the assumption that two inflation points are present in common blood pressure signals.
Then, the first zero crossing following the second inflation point indicates the suggested DN location. Singh
et al. [12] propose using a smoothed version of the first derivative to find the major maximum point and thus
the DN location on the blood pressure waveform. Chakraborty et al. [13] utilize an empirical formula for DN
detection using the first and second derivatives of the denoised PPG signal. They target DN detection in specific
low-resource telemonitoring applications where speed and power are limited. To the best of our knowledge,
this work is the only method with a PPG dataset including pathological conditions from cardiovascular patients.

Fig. 3. A few examples of ABP waveforms in the dataset and their expert-annotated DN placement.
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Balmer et al. [14] focus on locating the end-systolic point in notch-less ABP waveforms derived from distal blood
pressure measurements. They use a probabilistic weighting of second derivative peaks to recognize the end of
the systolic duration while considering the previous heartbeat results. As common in most derivative-based
methods, the performance of rule-based methods is brittle and sensitive to noise and unexpected blood pressure
deformations. Thus, a rule-based algorithm may fail to generalize in variant deformation occurrences where the
DN detection can be challenging.
Model-based approaches, on the other hand, use the underlying differential equations governing the physio-

logical system to explain the pressure signal and extract the main characteristics of the cardiovascular system
including the DN location. The model-based approaches can potentially generalize under unexpected morphology
variations as they analyze the underlying physiological system. However, their added complexity and non-convex
structure make the optimization convergence sensitive to the optimization methodology and parameters initial-
ization. As a result, their application for DN detection has been limited to close to normal blood-pressure curves
where convergence is more easily achievable. Hoeksel et al. [15, 16] utilize a simple three-element Windkessel
Model [17] to estimate the arterial blood flow from the input ABP signal. They locate DN to be where the first
backflow occurs. Politi et al. [18] studies the effect of vascular resistance on DN shape and location using a
numerical model of the vessels with viscoelastic walls. Myers et al. [19] uses a four-compartment cardiovascular
model and a four-stage optimization algorithm to characterize cardiovascular function. To enhance convergence
and performance, their algorithm first prioritizes the five most sensitive parameters during the first two stages,
learns the remaining parameters in the third stage, and refines the parameters manually for further improvement
in the fourth stage.
In this work, we propose a physics-aware method, PW, that combines the strength of both model-based and

rule-based approaches. Our proposed model-based augmentation methodology is designed to consider ABP
waveform deformations that have not been covered before. It identifies the common local minima traps and
guides the optimizer to convergence during two stages of optimization. The proposed rule-based algorithm is then
fine-tuned with the estimated parameters from the model-based step and applied on both ABP and the augmented
waveform for final DN placement. To allow application-specific modification, our model-based method can be
combined with any user-defined set of rules using a hybrid voting method.
This paper is a modification and extension of our previous work [20], where we have proposed the voting

DN detection approach (only with pre-existing rule-based algorithms) using a more complex cardiovascular
model that has an extra inertance and compliance in the vascular section. The complex model can estimate the
ABP patterns more closely and smoothly in comparison to a simple substitute that we use in this paper. Thus,
it improves the voting accuracy when using a pre-existing rule-based algorithm. Yet the higher complexity of
the model makes the optimization less robust and the model prone to instability. In this work, we use a simpler
and more stable model in combination with a proposed rule-based algorithm that can compensate for the lower
smoothness of the augmented curves and achieve much better performance under waveform deformations.

4 PHYSICS-AWARE APPROACH TO PATTERN RECOGNITION: RATIONALE
When it comes to high-risk healthcare applications, the reliability standard is particularly strict. Any failure in
such applications may cause lifelong damages or even lead to death. Real-world healthcare signals may carry
various unexpected patterns due to many concurrent dynamic actors that are present inside the system and its
environment. Pattern recognition algorithms must be able to account for such variations to achieve the high
reliability standard of the clinical domain.

While rule-based pattern recognition methods commonly yield rigid and brittle algorithms with low reliability,
they are popular in many healthcare applications due to their speed and simplicity. Such algorithms may fail to
capture the complicated patterns that arise in a dynamic system. As a solution, the identification and elimination
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of patterns that do not comply with the rule-based assumptions tend to improve the efficacy of the rule-based
pattern recognition algorithm. However, this is not a simple task. The natural concurrency of dynamic phenomena
in the physical system imposes a wide range of possible patterns on the captured signal. Hence the level and type
of required filtering tend to differ even for different parts of the same dataset from the same patient.

Focusing on the DN detection problem, the question that this paper tries to answer is "whether one can adopt
the well-established physiological knowledge in the field to identify and eliminate such waveform irregularities
in a more generalizable way to enhance detection accuracy?"
physics-aware Approach to DN detection: The non-steady nature of the pulsating blood flow in addition

to the intricate dynamics of the non-stationary multi-branched vascular network alongside the effect of many
concurrent internal/external dynamic actors make the prediction of local flow and pressure signals highly
complicated and thus unexpected. On the other hand, the DN gets less and less pronounced, the stiffer the
vascular beds become as a matter of age or other underlying conditions. Given the complicated internal/external
dynamics and the vanishing DN morphology (Figure 2), filtration of irrelevant effects on pressure signal is not a
simple task. As a result, the filtered signal may carry many unexpected deformations that often mislead the rule-
based DN detection algorithm. To circumvent this problem, we aim to employ physiological prior knowledge in
the field. More specifically, we use a model-based method for data augmentation before rule-based DN detection.

Model-based learning approaches aim to estimate the parameters of an established physiological model of the
cardiovascular system, so the estimations of system dynamics match the observed ABP data as closely as possible.
The parameters optimizer can also access prior knowledge on parameters’ range and statistics. As limited as such
knowledge might be, its incorporation in the learning process helps convergence probability and decreases the
required learning time. The resulted model-based approach can identify the relevant simplified patterns and, thus,
augment the input signal by eliminating its intractable dynamics. The estimated patterns would be restricted
by the boundaries of the defining Ordinary Differential Equations (ODE) model. This way, the estimated signal
is explainable and follows the expected behavior. As such a model considers the underlying mathematics that
govern the system, the approach can achieve higher generalizability to deal with unexpected scenarios that may
arise.

5 PHYSIOWISE: PHYSICS-AWARE DN IDENTIFICATION METHODOLOGY
The details of the proposed physics-aware approach are depicted in Figure 4. The proposed approach can be
segmented into four key components, data preprocessing, data augmentation, PW rule-based algorithm, and
voting. It is noteworthy that the last two components depict two separate DN estimation methodologies.

Data preprocessing is designed for basic noise reduction of the ABP signal. Then, the signal is divided into
3-heartbeat windows, each being passed to the data augmentation segment separately. During data augmentation,
the physiological prior knowledge is employed for extracting the relevant signal patterns and eliminating
unrecognized noise effects. Learning parameters of a simplified cardiovascular model (ODE model) to explain
the 3-heartbeat input ABP signal, the secondary estimated ABP waveform (output of the ODE solver) would
only carry effects that comply with the simplified model mathematics. Thus, the deformation effect is drastically
reduced when augmented data is passed to the rule-based method. PW uses the rule-based algorithm proposed in
this paper. Yet the rules set can be replaced with any other user-defined rule-based DN detection algorithm if
required for a specific application.
The preprocessing component (Figure 4) is designed to reduce the signal noise. We use the Savitzky-Golay

(S-G) filter [21], a moving average filter to smooth the ABP signal. It was selected due to its advantage of sharp
edge preservation [22]. However, as expected, it cannot fully eliminate the effect of many concurrent dynamics
affecting the ABP signal.
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Fig. 4. Data preprocessing, data augmentation, and both PW and hybrid voting DN detection procedure block diagram.

5.1 Data Preprocessing
The Mayer waves effect (a cyclic change of ABP waveform [23]) is then assumed to be of the form 𝑠𝑖𝑛(2𝜋 𝑓𝑀𝑡) +
𝐴𝐵𝑃 (𝑡) where 𝑓𝑀 is the Mayer wave frequency. 𝑓𝑀 ≪ 1

𝑇
holds for all the input signals in our dataset. We have

identified 𝑓𝑀 by fitting a sine wave to diastolic minimum pressures and, then, omitted the effect of the Mayer
wave on the signal. We chose to use diastolic minimum points as they are less likely to show extra bumps and
deformations while the systolic maximum points can commonly be deformed.

5.2 Cardiovascular Model

Fig. 5. (a) Three-compartment cardiovascular model overview.
(b) Cardiovascular circuit model.
𝑃 : pressures, 𝑅: hydraulic resistances, 𝐶 : compliances

Our simplified cardiovascular model is composed of
three single-input single-output compartments con-
nected in a closed-loop (Figure 5 (a)). These compart-
ments, the left pulsating heart (LPH), arterial systemic
compartment (ASC), and post-arterial systemic com-
partment (PASC), are illustrated in Figure 5. Figure 5
(b) shows the ASC and PASC compartments circuitry.

In Ursino’s model, the heart’s pumping pulses are
modeled as an output flow source with a single squared
sinusoidal pulse during the left ventricular ejection
time.We have extended the function of 𝐹𝑜,𝑙 , the ventric-
ular output flow source, to include the DN activation
function. As discussed in section 2, the DN is caused by
a brief aortic back-flow at the end of systole duration.
The effect of aortic back-flow, 𝐹𝑏𝑓 , is modeled in equation (1) as a flow source parallel to the 𝐹𝑜,𝑙 . 𝑉𝑙𝑣 and 𝐹𝑖,𝑙 are
left ventricle’s blood volume and input blood flow, respectively (detailed equations can be found in Ursino et al.
work [24]).

𝑑𝑉𝑙𝑣

𝑑𝑡
= 𝐹𝑖,𝑙 − (𝐹𝑜,𝑙 + 𝐹𝑏𝑓 ) (1)
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𝐹𝑏𝑓 in each heart beat duration is then modeled with a Sine-squared function with magnitude, 𝐴, duration, 𝑇𝑑 ,
and unset time, 𝑇𝑢 , as shown on equation (2).

𝐹𝑏𝑓 (𝑡) =
{
𝐴𝑠𝑖𝑛2 ( 𝜋 (𝑡−𝑇𝑢 )

𝑇𝑑
) for 𝑡 ∈ [𝑇𝑢,𝑇𝑢 +𝑇𝑑 ]

0 O.W.
(2)

The ASC and PASC compartments of the cardiovascular model (Figure 5 (b)) can be explained with equations
(3) to (5). In these equations, 𝑉𝑡 is the total blood volume. Subscripts 𝑒𝑥 , 𝑠𝑎, 𝑝𝑎, and 𝑙𝑎 denote left ventricle exit
region, systemic arteries, post-arterial region, and left atrium, respectively.

𝑑𝑃𝑒𝑥

𝑑𝑡
=

1
𝐶𝑠𝑎

.(𝐹𝑜,𝑙 + 𝐹𝑏𝑓 − 𝐹𝑠𝑎) (3)

𝐹𝑠𝑎 =
𝑃𝑠𝑎 − 𝑃𝑙𝑎

𝑅𝑠𝑎 + 𝑅𝑠𝑝
(4)

𝑃𝑙𝑎 =
1
𝐶𝑙𝑎

(𝑉𝑡 −𝐶𝑠𝑎𝑃𝑒𝑥 −𝑉𝑙𝑣) (5)

To use a gradient-based optimizer, the model needs to be differentiable. Hence, we must approximate and
substitute the ’unsmooth’ components (components that are not differentiable) in the model. Among the different
components, we identified two ’unsmooth’ groups: the components with a non-negativity constraint (i.e. hydraulic
compliance, resistance, blood volume, backflow amplitude, and time components) and the components with
piece-wise functions (equation (2) and 𝐹𝑜,𝑙 and 𝐹𝑖,𝑙 equations from baseline model [24]).
For the first group, we have used the soft constraint method. In order to ensure the learned parameter (𝑃𝑖 ) is

non-negative, a secondary unconstrained parameter (𝑃𝑖 ) is created, where 𝑃𝑖 = 𝑒𝑥𝑝 (𝑃𝑖 ). This way, any function
that uses 𝑃𝑖 remains smooth and due to the natural positive value of exponential function (𝑒𝑥𝑝 (𝑃𝑖 ) ∈ (0,∞)), we
are guaranteed to have a non-negative 𝑃𝑖 .
The second group of unsmooth components are piece-wise functions of the form presented in (6); where 𝑓

is a linear function of numerical time step, 𝑡𝑛 , 𝑍 is a sine-squared function of 𝑡𝑛 , and 𝑍𝑚 is a constant value.
To represent the backflow equation (2) at the numerical time step 𝑛, we should set 𝑍 (𝑡𝑛) = 𝐴𝑠𝑖𝑛2 ( 𝜋 (𝑡𝑛−𝑇𝑢 )

𝑇𝑑
),

𝑓 (𝑡𝑛) = 𝑡𝑛−𝑡0
𝑡𝑢

, and 𝑍𝑚 = 1.

𝐺 (𝑡𝑛) =
{
0 𝑓 (𝑡𝑛) < 𝑍𝑚
𝑍 (𝑡𝑛) 𝑓 (𝑡𝑛) ≥ 𝑍𝑚

(6)

To work with this group of components, we used the 𝑡𝑎𝑛ℎ function approximation. The approximation replaces
the piece-wise function with𝐺 , according to (7). 𝛼 is a constant factor defining the slope of transition between
−1 and 1 in the 𝑡𝑎𝑛ℎ function. For large values of 𝛼 , the approximated implementation behaves almost similar to
the original piece-wise function with a smoother differentiable transition between 0 and 𝑍 (𝑡𝑛).

𝐺 (𝑡𝑛) =
𝛼

2𝑍 (𝑡𝑛) (tanh(𝑓 (𝑡𝑛) − 𝑍𝑚) + 1) (7)

5.3 Optimization Methodology
The optimizer’s goal is to minimize the distance between the ODE solver’s output, i.e. estimated ABP waveform,
and input signal, i.e. preprocessed ABP waveform, by tuning ODE model parameters. It also aims for recognizing
major signal features such as systolic and diastolic pressures, and DN placement.
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The non-linear and non-convex structure of the differential equations governing the cardiovascular function
(even in its simplified form) makes the parameter optimization step quite challenging. While convergence to
global minima will not be guaranteed, the optimizer can get trapped in a local minima that prevents correct
DN detection or does not generate a visible DN at all. The cost function, optimizer setting, and parameters’
initialization are major contributing factors that should be systematically tuned to mitigate the problem.

5.3.1 Bayesian Cost Function. Optimization for a non-convex model can be guided through its cost function.
More specifically, the cost function introduces the optimization priorities that can guide the gradient descent
algorithm out of unfavorable local minima. We have utilized a Bayesian cost function to tackle the challenge of
optimization in the non-linear and non-convex space under study. Such cost functions are designed to use the
prior literature-driven knowledge on physiological parameters’ values to limit the search space of the parameter
estimation and improve the convergence.
The proposed Bayesian cost function equation (8) minimizes the sum of two separate weighted terms. They

are the squared error of the estimated pressure and squared parameters displacement at each iteration step 𝑗 .

𝐻 𝑗 = | |𝑊𝑑

(𝑃𝑒 𝑗 − 𝑃𝑝 )
𝜎𝑝

| |2 + ||𝑊𝑒 (𝑌𝑒 𝑗 − 𝑌𝑚) | |2 (8)

where 𝑃𝑒 , 𝑃𝑝 , 𝜎𝑝 , 𝑌𝑒 , and 𝑌𝑚 are estimated parameters vector, parameters average value vector, parameters
standard deviation vector, estimated arterial pressure, and measured arterial pressure respectively.𝑊𝑑 and𝑊𝑒 are
the weight vectors of the displacement and error terms.
Squared error term:The error term calculates theweighted sum of the squared distance between the estimated

output and the input signal. The optimizer will be penalized more if it misses on the most indicative features,
namely systolic and diastolic pressures, which have been proven to be of significance in prior literature. Before
optimization starts the systolic and diastolic peaks are pinpointed on the measurement curve, and their indices
are fed into the cost function’s weight generator ahead of the optimization initiation. To magnify the effect of the
systolic and diastolic blood pressures in the cost function,𝑊𝑒 is then increased for a small window around the
peaks.
Squared parameter displacement term: The displacement term limits the parameters’ search space by

considering the prior average value of the parameters, driven from literature, and an educated guess over the
parameters standard deviation. The non-convex optimization is guided to convergence by penalizing the cost
function with the squared distance between estimated and prior average values of the parameter vector. Similar
to the squared error term, the squared parameter displacement term has the ability to highlight the significant
parts of its input by increasing their assigned weights. We use this ability to give more displacement freedom to
parameters with a higher effect on the estimated signal in comparison to other parameters.
A parameter’s displacement freedom is higher if its standard deviation is higher and thus an overall lower

weight is assigned to its displacement term in the cost function. In other words, the optimizer can distance
the value of such parameter from the average at a lower cost. Ideally, these weights must be set using the
inverse of the covariance matrix driven from prior knowledge in the field. However, the values are not readily
available in case of the cardiovascular modeling. Another solution is to utilize a global sensitivity analysis of cost
function with respect to every model parameter (prior to the estimation process) to find a rough estimation of
the covariance matrix. However, the approach is data-driven and case-specific while lacking perspective over
expected physiological parameters’ spread. Also, the cardiovascular model stiffness leads to model instability
during global sensitivity analysis under practically unacceptable parameter ranges which are not of concern
during the optimization process. Instead, we use an educated guess about the standard deviation terms. The
selected variances are provided later in the paper.
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5.3.2 Transient Response Influence. As parameters vary, through the estimation process, the convergence from
initial values of the state variables to their new steady-state values creates a transient response. In the presence
of such a continually-changing transient response, the question is which section of the estimation signal, from
initial values to the steady-state response, should be used to compute the cost function. Ideally, the algorithm can
learn both the initial values of state variables and the parameters. But this methodology overwhelms the learning
algorithm and hinders the convergence in our system. In this paper, the estimation process aims to only fit the
steady state response of the model to the data. For implementation, we allow a small extra simulation time until
the forward ODE solver reaches the steady state. Then the steady state results are fed into the cost function as
the estimated signal, 𝑌𝑒 𝑗 .

5.3.3 Optimizer Setting. The parameter estimator algorithms used in this paper are all gradient descent methods.
We calculate the gradient of the cost function 𝐻 for each parameter value using a local sensitivity analysis
algorithm. The continuous local sensitivity analysis (CSA) method [25] has been selected considering the
relatively small number of parameters under optimization (less than 100) and its timing benefits.

The forward-mode of CSA calculates the model sensitivities by extending the ODE system to include equation
(9); where 𝜕𝑓

𝜕𝑢
is the Jacobian of the derivative function 𝑓 with respect to the current state variable, 𝑢, and 𝜕𝑓

𝜕𝑝𝑖
is

the gradient of the derivative function concerning the 𝑖-th parameter.

𝑑

𝑑𝑡
( 𝜕𝑢
𝜕𝑝𝑖

) = 𝜕𝑓

𝜕𝑢

𝜕𝑢

𝜕𝑝𝑖
+ 𝜕𝑓

𝜕𝑝𝑖
(9)

Hence, the sensitivities are computed to the same error tolerance as the original ODE terms and only a single
numerical ODE solver call is required [25].

5.3.4 Optimization Procedure. To further advance the optimization strategy, we should study the optimization
procedure and the effect of each parameter variation on the estimated signal. The optimization results show that
the optimizer usually gets trapped in a local minima under various deformations. This is due to the fact that
initialization plays a significant role in optimization convergence when dealing with non-convex structures.

To guide the optimizer out of local minima, two significant control knobs are available. Those are displacement
freedom weights and initial parameters values. For an effective tuning of such control knobs, a deeper under-
standing of the optimization procedure and parameters variation effect on the estimated signal is required. We
have observed that when initializing parameters with values that are driven from literature (Figure 8(a)), the
estimated signal may be distanced far from the measured ABP. The optimizer would then focus on recognizing
the outstanding patterns with the highest effect on the cost function, which are usually the main maximum
and minimum peaks in the signal. In other words, systolic and diastolic pressures are the first target of the
optimization procedure.
To explain the maximum shape and placement, the optimizer employs all tools at hand, including both the

main forward pumping flow and the DN backflow. As a result, at the end of the optimization step, the backflow
features become false contributing factors to the main systolic peak and, thus, more resistant to variation. During
this stage, the common trap is when the optimizer syncs the phases of the forward and backward flows to achieve
the highest rising maxima during the systolic peak. Due to unexpected deformations near the systolic peak, the
optimizer may also bring the phases closer together to get higher maxima but tune the distance to explain an
unwanted deformation near maxima.
First Stage Optimization: The first stage optimization imitates the general positioning and morphology of

the blood pressure curve. At the same time, the cost function displacement term keeps the parameters in the
expected physiological range. Therefore, at the beginning of the first stage, the parameters are initialized to
their average values (𝑃𝑝 ), derived from clinical literature [24]. For parameters with no prior expected values, we

, Vol. 1, No. 1, Article . Publication date: November 2023.



10 • Mahya Saffarpour, Debraj Basu, Fatemeh Radaei, Kourosh Vali, Jason Y. Adams, Chen-Nee Chuah, and Soheil Ghiasi

Table 1. Stage I: Parameters initialization

Average values driven from [24] and the assigned standard deviations
Compliance (𝑚𝑙/𝑚𝑚𝐻𝑔), Hydraulic Resistance (𝑚𝑚𝐻𝑔.𝑠.𝑚𝑙−1), Volume (𝑚𝑙 )
𝐶𝑠𝑎 = 0.26 𝑅𝑠𝑎 = 0.529 𝑉𝑡 = 5300

𝑅𝑝𝑎 = 0.529
𝜎𝐶 = 0.5 𝜎𝑅 = 0.5 𝜎𝑉𝑡 = 500

Problem-specific initial values and standard deviations
Pressure, Flow, Volume, Time, Amplitude
(𝑚𝑚𝐻𝑔) (𝑚𝑙.𝑠−1) (𝑚𝑙 ) (𝑠)
𝑃𝑠𝑎,0 = 60 𝐹𝑠𝑎,0 = 5 𝑉𝑙𝑣,0 = 225 𝑇𝑑 = 0.02 𝐴 = 10
𝑃𝑒𝑥,0 = 30 𝑇𝑢 = 0.1
– – – 𝜎𝑇 = 0.1 𝜎𝐴 = 10

have picked the initial values based on the optimizer’s stability through several algorithm runs. Table 1 lists the
initialization of the parameters for the first stage. Commonly there is no visible DN placement on the estimated
ABP waveform at the end of the first optimization run. Since the initial placement and shape of the estimated
signal are much distanced from the output signal, the optimizer tries to learn the pattern of outstanding features
in the output signal, namely main peaks. To achieve that, it usually optimizes the parameters to get a similar
phase on systolic and DN bumps or silences the DN bump in a far-off placement. Therefore, the optimizer is
commonly trapped in a local minima at this point and cannot find a way out. To prevent backflow contribution
to the systolic peak, we have manually silenced the DN parameters and restrained their variation freedom during
this step. Thus, similar to the actual cardiovascular system behavior, the optimizer focuses on finding the systolic
maxima and diastolic minima only using the main pumping flow and other systemic parameters. The optimization
results at the end of the first stage are depicted in the Results section, Figure 8, part (b).
Second Stage Optimization: During the second stage initialization, the estimated parameters from the first

stage optimization are altered to magnify the expected DN location in the estimated waveform. A high DN peak is
imposed on the previously estimated arterial pressure in stage one using the expected average DN placement. The
parameter displacement freedoms are also set to give freedom to changing backflow parameters while restraining
all other parameters learned during the last stage. As a result, the optimizer is guided out of the local minima to
focus on DN shape and location during the second-stage parameter estimation. The case-sensitive parameter
alteration equation (10) is applied to the backflow parameters to adjust the DN shape and location. The value of
𝐶𝑠𝑎 is also divided by half to increase the downward diastolic slope. This slope is commonly excessively flattened
during first stage optimization to compensate for dicrotic or other deformation bumps on the signal.

𝑇 ′
𝑢 =

2
3𝑇ℎ𝑏, 𝑇 ′

𝑑𝑢𝑟
= 0.15, 𝐴′ = 70 (10)

𝐶 ′
𝑠𝑎 =

𝐶𝑠𝑎

2 (11)

where 𝑇ℎ𝑏 is the heart-beat time period.
The second stage initialization and optimization results are shown in the Results section on Figure 8 part (c)

and (d) respectively. The final estimated ABP waveform at the end of the second stage optimization visualizes a
clear-cut DN identification.
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5.4 Proposed Rule-Based Algorithm

Fig. 6. The ABP signal before and af-
ter preprocessing step.

Our proposed rule-based algorithm extends Li et al. [26] proposed rule-based
method to account for inputs from the model-based step. Li finds the DN
placement by limiting the search window on the ABP waveform using some
simple preset rules based on the distance from systolic and diastolic peaks.
Within each search window, the algorithm looks for the first zero-crossing
point on the first derivative curve. If no zero-crossing points exist in the search
window, the algorithm finds the first empirical point as the DN placement.
This method is highly dependent on the search window selection and the
noise of the dataset. Zero-crossing points are pretty common in a deformed
ABP waveform which has been misleading Li’s algorithm when applied to
our dataset.
The fluctuation of model-based augmentation of the original ABP signal

is much smoother under the limitations of defined ODEs. These fluctuation
patterns meet the physiological prior knowledge to highlight DN location on a deformed waveform. The learned
parameters of the augmented model can approximate the expected range of DN placement on both ABP and its
augmented curve. Such input can enhance the accuracy of DN placement while simplifying the required rules.

Instead of using distance from peaks, Physiowise overwrites the search window using the learned parameters
of the model-based augmentation. Also, it uses the augmented and thus smoother version of the waveform when
finding DN placement. Equations (13) to (14) show the set of PW rules that overwrite the lower and upper limits
of the search window, 𝑡𝑢𝑙 and 𝑡𝑙𝑙 , if overwrite condition 𝑆𝑜𝑤 is met for heartbeat 𝑛. 𝑡0, 𝑡𝑝 , 𝑑𝑡 , and 𝑑𝑚 denote the
pulse start time, systolic peak time, transmission time, and marginal time respectively.

𝑆𝑜𝑤,𝑛 = (𝑡𝑢,𝑛 < 𝑡𝑝,𝑛 + 3
4 (𝑡0,𝑛+1 − 𝑡𝑝,𝑛)) 𝑎𝑛𝑑 (𝑡𝑢,𝑛 > 𝑡𝑝,𝑛 + 𝑑𝑚) (12)

𝑡 ′
𝑢𝑙,𝑛

=𝑚𝑖𝑛(𝑡𝑢,𝑛 + 𝑑𝑡 , 𝑡0,𝑛+1) (13)
𝑡 ′
𝑙𝑙,𝑛

=𝑚𝑎𝑥 (𝑡𝑢,𝑛 − 𝑑𝑚, 𝑡𝑝,𝑛 + 𝑑𝑚) (14)

5.5 Voting Procedure
The PW approach does not require voting if the proposed rule-based algorithm is used. However, if one wishes to
use a hybrid modality with another rule-based method of choice for a specific application, voting can combine the
proposed model-based technique in this paper and the selected rule-based method to gain higher performance. In
such a scenario, the proposed model-based approach is first applied to the ABP data to estimate the augmented
version. Next, both the augmented curve and ABP curve are scanned by the selected rule-based algorithm for DN
placement. The voting method then receives both result sets and compares the DN placements to identify the DN
location. During the voting procedure, if both rule-based and hybrid algorithms have placed a DN location for a
heartbeat, the average position is identified as the voting result. Otherwise, if one failed to find a DN location in a
heartbeat under study, the result of the other algorithm decides the DN position.

6 RESULTS
We have implemented the cardiovascular model and the parameter estimator using the Julia Language [27–30].
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6.1 Dataset
We have analyzed ABP signals for 24 datasets randomly selected from 4 and 10 pigs undergoing sepsis and
hemorrhage recovery studies, respectively, for our experimental demonstration. The studied pigs are all adminis-
tered bolus therapy with a rate of 100𝑚𝑙/𝑠 in continuous ejection and rest time windows of 60𝑠 . For the sepsis
experiments, the ABP was measured using a 5-French intra-arterial sheath placed into the carotid artery. For the
hemorrhage animals, the ABP was measured using a 7-French catheter that was inserted into the carotid artery
that was threaded into the proximal aorta. More details about the study can be found in [31]. Data acquisition is
also done using the PowerLab device [32].
Each random dataset contains 27 heartbeats and there are 648 heartbeats in total. All the DNs are manually

annotated by an expert physician. These annotations are the gold standard against which the performance will
be compared. The dataset sampling frequency is 100 Hz. We went through the preprocessing method explained
in subsection 5.1 to remove noise and other artifacts from the raw signal as shown on Figure 6.

6.2 Evaluation Metrics
We define the error of DN detection in each heartbeat time-series, 𝑏, to be the absolute time difference between
the gold-standard and detected DN location in each heartbeat equation (15).

𝐸𝑟𝑟𝑏 = |𝑇𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 −𝑇𝑔𝑜𝑙𝑑 | (15)

Using the aforementioned heartbeat-level definition of 𝐸𝑟𝑟 , equation (16) presents the defined DN detection
accuracy percentage, 𝐴𝑐𝑐𝐷𝑖

%, in a dataset, 𝐷𝑖 , containing a vector of hearbeats, 𝐵𝑖 , under a maximum permitted
error, 𝐸𝑀 .

𝐴𝑐𝑐𝐷𝑖
% =

100 × 𝑐𝑎𝑟𝑑 ({𝑏𝑖, 𝑗 ∈ 𝐷𝑖 |𝐸𝑟𝑟𝑏𝑖,𝑗 ≤ 𝐸𝑀 })
𝑐𝑎𝑟𝑑 (𝐷𝑖 )

(16)

where 𝑐𝑎𝑟𝑑 (𝐷𝑖 ) stands for the cardinality of set 𝐷𝑖 .

6.3 Hyperparameter Tuning
For the optimizer algorithm, we have selected Adam optimizer [33] for its adaptive parameter tuning (with
respect to each parameter’s past update history) and momentum consideration that can lead to a shorter run time.
We have preset the ADAM optimizer learning rate equal to 0.01 and the first and second decay of momentums
equal to 0.9 and 0.999 consecutively.

The results of the proposed optimization methodology demonstrate effective guidance of cost function outside
unfavorable local minima. To support the choice of three heartbeats per optimization, we have included the failed
optimization results of a single heartbeat window for an example of an ABP waveform (Figure 7). Figure 8 then
shows how the proposed optimization algorithm can recognize the DN pattern in the same example when using
a three heartbeat window.
Figure 7(a) and 8(a) each shows a snapshot of the first stage initialization with values summarized in Table 1.

During this optimization stage, we have identified 𝑇𝑠𝑦𝑠 , 𝐶𝑠𝑎 , and 𝑅𝑠𝑎 as the most effective parameters on signal
position and swing. Thus we have assigned a lower displacement weight of 0.1 to them while all other parameters’
displacement weight is set to 10. To guide the optimizer to focus on systolic and diastolic pattern recognition,𝑊𝑒

is set to 5 for indices with distance 𝑑 ≤ 10𝑚𝑠 from maximum and minimum and 1 for all other indices. The results
of first stage optimization (Figure 7(b) and 8(b)) depict a successful learning of systolic and diastolic pressures
(maximum and minimum) using both window selections.

Then, initializing the parameters for the second stage optimization in Figure 7(c) and 8(c) creates an exaggerated
DN maxima. At this stage of optimization, the most effective parameters on DN shape and position are 𝑇𝑑 , 𝑇𝑢 ,
and 𝐴. These parameters’ displacement term is, thus, set to 10 while keeping other parameters constant.𝑊𝑒 term
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Fig. 7. Failed two-stage optimization algorithm progress in an example of ABP waveform when considering only a single
heartbeat. (a) First stage initialization. (b) First stage optimization results. (c) Second stage initialization. (d) Second stage
optimization results.

Fig. 8. Successful two-stage optimization for the aforementioned example of ABP waveform. (a) First stage initialization. (b)
First stage optimization results. (c) Second stage initialization. (d) Second stage optimization results.

is also reset to 1 for all indices including maximum and minimum range as their learning is not the attention
of this stage of optimization. The final results show successful visual DN recognition in Figure 8(d) for the
three-heartbeat window, while the single-heartbeat window choice in Figure 7(d) shows no upstroke (no DN) on
the descending part of the estimated wave and gets trapped in the local minima. Such behavior is commonplace
based on many results we have gathered. Intuitively, having more heartbeats during optimization provides a
better understanding of parameters’ effect on the signal and reduces the chance of overfitting to a small and
limited features window.

6.4 DN Detection Statistics
We have first tested our hybrid approach with two pre-existing rule-based methods [26, 34]. Alexander Laurin
developed the rule-based DN detection algorithm using the technique of derivatives and thresholds described
in Pan et al. in [34]. Li et al. [26] proposed an automatic delineator for the fiducial points of ABP waveforms,
namely their onsets, systolic peaks, and DN. From this point forward we use the following acronyms for different
combinations of methods. LRB and PRB are Li’s and Pan’s vanilla rule-based algorithms. LHyb and PHyb denote
the hybrid method before voting where Li’s and Pan’s rule-based algorithms are applied to the augmented
waveforms. LVot and PVot are the hybrid voting method using Li’s and Pan’s pre-existing rule-based algorithms.
PW, as mentioned before, would be the Physiowise physics-aware approach where the proposed rule-based
algorithm is applied to the augmented data without voting.

We present the DN detection results on two datasets in Figure 9 as example plots. The depicted results compare
the DN detected using pure rule-based, hybrid, voting, and PW approaches with expert-annotated golden DN
locations. While the proposed method shows much more reliable results in many cases of ABP deformations, the
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Fig. 9. A diverse example of augmentation and DN placement results. All augmented waveforms are estimated using three
consecutive ABP pulses, yet only the first pulse is shown for simplicity.

Table 2. DN detection statistics under different methods

Overall 𝐸𝑟𝑟 Acc%, Acc%, Acc%,
statistics 𝐸𝑀 = 30𝑚𝑠 𝐸𝑀 = 50𝑚𝑠 𝐸𝑀 = 70𝑚𝑠

Method Mean, SD, Total Best Dset Worst Dset Total Best Dset Worst Dset Total Best Dset Worst Dset
(𝑚𝑠) (𝑚𝑠) improv. improv. improv. improv. improv. improv.

LRB [26] 49 37 41% — — 63% — — 78% — —
LHyb 50 46 40% 37% -55% 59% 48% -53% 76% 52% -46%
LVot 40 44 43% 19% -57% 67% 40% -23% 84% 33% 0%
PRB [34] 42 61 68% — — 86% — — 86% — —
PHyb 48 62 56% 55% -77% 72% 55% -55% 89% 74% -29%
PVot 35 46 66% 37% -59% 87% 67% -14% 91% 76% -7%
PW 20 28 82% — — 89% — — 90% — —

rule-based algorithm fails to recognize the DN position on the augmented signal in some others. As derivative-
based rules are sensitive to noise and unexpected deformations, they might fail to capture the DN due to slight
pattern modification. This issue is even worse with second derivatives. A voting mechanism improves the statistics
of locating DN in such failed cases.
Table 2 provides statistics of DN detection quality under different methods. The results show that the hybrid

approach with voting can improve the mean error by 17% while reducing its standard deviation by 25%. The
Table provides the statistics of best and worst per dataset cases of DN detection where 𝐸𝑀 is set to be 30𝑚𝑠 (the
strict permitted error range), 50𝑚𝑠 (typical permitted error range), and 70𝑚𝑠 (tolerant permitted error range).
Focusing on the typical error range setting, the results show up to 67% accuracy improvement in the best case
with only −14% decline in the worst case. The last row of Table 2 shows the PW results. As explained before, PW
uses a model-based approach and the proposed rule-based algorithm (no voting step) to find the DN placement.
We have also used 𝑑𝑚 = 0.05𝑠 and 𝑑𝑡 = 0.15𝑠 when implementing equations (13) to (14). The results suggest 52%
and 54% lower error and standard deviation in comparison to the best results of tested pre-existing rule-based
methods. PW also shows 16% higher accuracy in the permitted error range of 30𝑚𝑠 .
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Fig. 10. Bland-Altman comparison of DN placements using input method 1, LRB, and (a) LHyb method as input method 2.
(b) LVot method as input method 2. (c) PW as input method 2.

Fig. 11. Bland-Altman comparison of DN placements using input method 1, PRB, and (a) PHyb method as input method 2.
(b) PVot method as input method 2. (c) PW as input method 2.

6.5 Discussion
Figure 10 shows the Bland-Altman comparison of LRB algorithm with three methods. The comparison with LHyb
is depicted in Figure 10 (a). This plot shows a poor agreement between the rule-based and hybrid methods. LVot
method is compared with LRB method in Figure 10 (b), where a slightly higher agreement is observable. This
plot also suggests that LVot commonly estimates higher DN placement in the low-value segment of LRB results,
while estimating lower DN placement for high-value results. Figure 10 (c) shows the comparison with PW input
method where PW is leaning towards estimating larger values than LRB algorithm with an average difference
of 37𝑚𝑠 . While the overall agreement is lower on this subplot, a stronger agreement than previous methods is
observable for mid-range values.

We have done a similar Bland-Altman comparison for PRB algorithm and three methods on Figure 11. The PHyb
approach shows much higher agreement with PRB method (Figure 11 (a)) in comparison to the first comparison
on Figure 10 (a). As expected, the agreement is boosted in Figure 11 (b) when using PVot method. Based on these
results, Pan’s method seems to generate larger DN placement estimates in comparison to Li’s method. Thus a
slightly higher correlation is observable between PW approach and the PRB algorithms as shown in Figure 11 (c).

In this paper, we consider hard datasets for a specific rule-based algorithm to be the ones with an 𝐴𝑐𝑐% ≤ 50%
under 𝐸𝑀 = 50𝑚𝑠 . In other words, a dataset is hard for a rule-based algorithm if the algorithm cannot find the
DN location of more than 50% of its heartbeats with 𝐸𝑟𝑟𝑠 ≤ 50𝑚𝑠 .
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Fig. 12. Accuracy of the proposed DN detection approaches applied to 27 heartbeat datasets that (a) are hard cases for LRB
method. (b) show the worst accuracy degradation at 𝐸𝑀 = 50𝑚𝑠 in comparison to LRB method.

Fig. 13. Accuracy of the proposed DN detection approaches applied to 27 heartbeat datasets that (a) are hard cases for PRB
method. (b) show the worst accuracy degradation at 𝐸𝑀 = 50𝑚𝑠 in comparison to PRB method.

The DN detection evaluation of 24 datasets finds 10 and 3 hard cases for Li’s [26] and Pan’s [34]. We then
select three hard cases for each rule-based algorithm and apply our proposed DN detection approaches to test
the accuracy level for a varying 𝐸𝑀 . As shown in Figures 12 (a) and 13 (a), PW and the hybrid voting methods
can achieve superior performance on real-world ABP signals prone to noise and artifacts.

We also studied the three worst accuracy degradation cases (at 𝐸𝑀 = 50𝑚𝑠) when applying the voting method
to Li’s and Pan’s algorithms. Figures 12 (b) and 13 (b) show the accuracy comparison of the methods applied to
these cases for a varying maximum permitted error.

Our study on the hybrid approach shows that even when DN is visually detectable on the augmented waveform,
the high sensitivity of pre-existing rule-based algorithms to unexpected changes might mislead the hybrid
algorithm and lower the overall accuracy. We have proposed the voting method to mitigate the issue in cases
where the pre-existing rule-based algorithm fails to correctly detect DN on the augmented signal but returns
better results with the ABP waveform. Although voting improves the accuracy, fine-tuning the user-defined
rule-based method to capture the patterns of the augmented signal seems essential.

Using the PW and its proposed rule-based algorithm, we can commonly find DN locations more accurately or
closely comparable to the pre-existing rule-based algorithm. There are also a few cases of vanishing DN like
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dataset 6 on Figure 13 (b) that PW does not show acceptable performance on. Although we see a comparable
performance from PW on some data points with vanishing DN, there are some examples where the model-based
algorithm fails to highlight the DN location correctly when DN is much less pronounced. There are a few cases
of Class IV ABP waveforms (refer to Figure 2) in the dataset (less than 5% of the whole samples) where DN is not
visible and the downward ABP shape is a smooth concave curve. Yet the authors do not claim better performance
in such scenarios.

7 CONCLUSION
In this work, we have proposed a physics-aware methodology with a generalizable DN detection capability in the
presence of many typical blood pressure curve deformations and mild cases of vanishing DN morphologies. The
method has shown 52% mean error improvement on real-world expert-annotated pig data undergoing sepsis
and hemorrhage study. However, more study needs to be done on the possibility of fine-tuning the optimization
technique or using other time-series measurements to locate DN in severe vanishing cases where DN is very
subtle or invisible. Although it is out of the scope of this paper, a more in-depth study of the speed limitations of
model-based methods can help with extending their usage to also cover the time-constrained target applications
where the restrictions can be met.
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