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Abstract—Fetal electrocardiogram (fECG) or photoplethys-
mogram (fPPG) devices are being developed for fetal heart
rate (FHR) monitoring. However, deep tissue sensing is chal-
lenged by low fetal signal-to-noise ratio (SNR). Data quality
is easily degraded by motion, or interference from maternal
tissues and data losses can happen due to communication
faults. In this paper, we propose to combine fECG and fPPG
measurements in order to increase robustness against such
dynamic challenges and increase FHR estimation accuracy. To
the author’s knowledge the fusion of two sensory data types
(fECG, fPPG) has not been investigated for FHR tracking
purposes in the literature. The proposed methods are evaluated
on real-world data captured from gold-standard large pregnant
animal experiments. A particle filtering algorithm with sensor
fusion in the measurement likelihood, called KUBAI, is used
to estimate FHR. Fusion of PPG&ECG data resulted in 36.6%
improvement in root-mean-square-error (RMSE) and 20.3%
improvement in R2 correlation between estimated and reference
FHR values compared to single sensor-type (PPG-only or ECG-
only) data. We demonstrate that using different types of sensory
data improves the robustness and accuracy of FHR tracking.

I. INTRODUCTION
The primary signal used in antenatal monitoring is fetal

heart rate (FHR). Physicians use cardiotocography (CTG) to
observe FHR together with the mother’s uterine contractions
to assess fetal health [1]. However, CTG is easily disturbed
by fetal movements and maternal breathing. Thus, frequent
adjustment to the transducer placement is needed, disrupting
continuous monitoring [2].
In addition to CTG, wearable devices capturing fetal elec-

trocardiogram (ECG) or photoplethysmogram (PPG) have
emerged over the past few years. The fetal ECG (fECG)
technology involves placing specialized electrodes on the
maternal abdomen to pick up the electrical signals produced
by the fetal heart [3]. fECG can be used to detect conditions
such as fetal arrhythmia and congenital heart defects [4].
Transabdominal fetal pulse oximetry (TFO) is a non-

invasive technique used to measure the oxygen saturation of
fetal blood through captured PPG signals [5]–[8]. It involves
the use of an optical probe (optode) that is placed on the
maternal abdomen. The optode emits near-infrared (NIR)
light, and the reflected light is captured using photodetectors
[9]. TFO can be used to detect fetal hypoxia [10].
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Both fetal ECG and TFO are still under development
and further research is needed to improve their accuracy
and reliability in estimating FHR. Targeted fetal signal in
deep-tissue sensing is challenged by the low signal-to-noise
ratio (SNR). Data quality is easily degraded by bad sensor
placement, motion and different unwanted signals from the
sensed medium and signals could be even lost due to commu-
nication faults. In this paper, we propose to combine fECG
and TFO’s PPG measurements through sensor fusion in order
to increase robustness against such dynamic challenges and
increase FHR estimation accuracy. The proposed methods
are evaluated on real-world data captured from gold-standard
large pregnant animal experiments.

II. METHODS
A. Fetal PPG (fPPG)
Fetal PPG (fPPG) signals are collected using reflectance

based pulse oximetry. Transabdominal fetal pulse oximeter
(TFO) is a novel, non-invasive device that uses two NIR
LEDs, and 5 photodetectors to estimate fetal oxygenation
through captured PPG waveforms [9].
As light source-detector distance increases on TFO, the

captured photons at the mother’s abdominal surface are
more likely to have reached the depths of the fetus [9], as
illustrated in Fig. 1b. The optical probe (optode) with the
LED and photodetectors is shown in Fig. 1a. The closest
detector D1 to the LED, mostly captures maternal PPG, and a
very faint fetal PPG only in subjects with shallow fetal depth.
The further photodetectors, D2 to D5, collect a mixture of
maternal and fetal PPG [9], [11].
The fetus is located a few centimeters deep from the

maternal abdomen’s surface, where the TFO is placed. Thus,
the mixed PPG signals contain a very strong maternal noise
and a very weak fetal signal. Maternal noise refers to
maternal heart rate (MHR), maternal respiration rate (MRR)
and Mayer waves [6]. Motion is also a major source of noise.
The fPPG needs to be filtered and processed to compute
FHR. Researchers have reported adaptive filtering can expose
the weak fPPG from TFO’s measurements [11], [12].
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Fig. 1: (a) Picture of optical probe (optode) [11]. (b) Illustration of light
path through maternal and fetal tissues and reflected back to the optode.



B. Fetal ECG (fECG)
The ECG signal of a fetal heart is monitored by electrodes

placed on the mother’s abdomen to create a fetal ECG
(fECG) [3]. fECG uses the same principle as the adult ECG,
but it is much lower in amplitude due to weak fetal cardiac
potential and poor conductivity layers around the fetus. There
also exists high interference from surrounding tissue, such as
maternal ECG, maternal respiration, and motion artifacts [4].
Many different electrode counts and placements have been

researched to capture fECG. As electrode count increases,
researchers have reported higher FHR tracking accuracy [4].
However, we are constrained by the maternal abdomen’s
surface area. As we want to have both the TFO device and
ECG electrodes placed simultaneously, we choose to use a 5-
electrode configuration [3], [4]. There exists a commercially
available portable fetal ECG device, Monica AN24, that uses
5 electrodes to capture 3 channels of fECG. Therefore, the
placement of the electrodes is adapted from the user manual
of Monica AN24 [13]. The reference (-) electrode is placed
on the fetal head, with 3 (+) channels placed around its body.
Similar to fPPG, fECG signals need to be filtered and

processed before estimating the FHR. The challenges in
fECG are very similar to those in fPPG as both are non-
invasive deep-tissue sensing modalities. Past research has
found merit in using adaptive filtering to isolate fECG [14].

C. In Vivo Data Acquisition
The dataset used in this paper is gathered from gold

standard hypoxic lamb model. The institutional animal care
and use committee (IACUC) at UC Davis approved the
study protocol, which was adhered to in all operations.
Fetal hypoxia is progressively induced by inserting an aortic
occlusion balloon catheter into three nearly-term ewes, and
by controlling the blood flow to the femoral artery. Through
the use of hemodynamics and an arterial line placed into the
fetus’ neck, reference FHR data was collected. Reference
maternal heart rate (MHR) numbers were also measured
through hemodynamics. These experiments were conducted
to test TFO’s ability to accurately estimate fetal oxygen
saturation and more details can be found in [7], [15].
TFO PPG data is collected using a custom data acquisition

system at a sampling rate of 8kHz. Reference FHR and MHR
values are recorded using BIOPAC. In addition to TFO, ECG
electrodes are secured in place on the ewe’s abdomen around
the TFO optode. Fig. 2 shows a picture from an experiment,
where the placement of the electrodes and the TFO optode
can be seen. 3 channels of ECG data are collected using
BIOPAC ECG100C amplifiers with a gain of 5000, high-
pass and low-pass filters at [0.05Hz, 35Hz], and a sampling
rate of 500Hz.

D. Fetal Heart Rate Tracking
1) Data Processing: Maternal waves and motion can

mask the fetal PPG and ECG measurements, causing wrong
FHR estimation. Thus, the captured data is passed through
multiple processing steps, visualized in Fig. 4. These steps
have been adapted from previous research [16].

Fig. 2: Photo showing placement
of ECG electrodes and TFO op-
tode on the ewe’s abdomen.
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Fig. 3: Result of Adaptive Noise Can-
cellation applied to CH2 to filter fetal
ECG in time-domain.
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Fig. 4: Block diagram of data processing steps.

First, PPG and ECG data are downsampled to 50Hz. Next,
a band-pass filter ([0.2Hz, 15Hz]) is applied to time-series
PPG and ECG data to remove low and high-frequency noise.
Then, to remove maternal PPG and ECG from the captured
data, we apply recursive-least-squares (RLS) adaptive noise
cancellation (ANC). The maternal noise reference is TFO
detector D1 data for PPG. ANC is applied to all further
detectors in TFO. Examples of noise-canceled fPPG can be
found in [11].
When applying ANC to ECG data, CH1 is used as the

maternal noise reference. Only CH2 ECG is passed through
ANC. Because, we have observed that CH3 electrode already
captured a trace that is not dominated by maternal ECG, and
does not need ANC to expose fECG. Fig. 3 shows the result
of ANC applied to CH2 ECG data. The baseline wandering
in raw ECG data is due to maternal respiration. The raw and
filtered ECG have fetal R peaks in opposite directions due to
electrode placement. The Raw ECG signal has been reversed
to have positive maternal R peaks in Fig. 3.
Since our goal is to extract the FHR, which is a periodic

signal, it is easier to track it in frequency domain. We
compute power spectral densities (PSD) of PPG and ECG
data using Hanning windows of 30 seconds with 50% of
overlap. All spurious peaks within FHR range are zeroed-out
through thresholding. All peaks outside the FHR range (110 -
270 beats-per-minute (BPM)) are multiplied by zero as well.
Finally, all processed PSDs are normalized to have an area
equal to 1 [16]. fPPG and fECG PSDs processed through
these steps are visualized as Spectrograms (PSD over time)
in Fig. 5, for the entire duration of an experiment.
2) Particle Filtering and KUBAI: In the literature, particle

filtering has been applied to TFO PPG data for FHR tracking,
reporting promising results, and the resulting algorithm is
named KUBAI [16]. Particle filtering is a stochastic algo-
rithm that addresses well the dynamic challenges faced in
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Fig. 5: Example spectrogram of data processing results for (a) PPG from
D4 of TFO. (b) ECG from CH2 electrode.

FHR tracking from non-invasive measurements. For more
details please refer to [16]. In this paper, we use KUBAI,
tune its parameters, and apply it to both PPG and ECG data.
In [16], KUBAI outputs an FHR estimate every second

while measurements are available every 30 seconds. We
modify KUBAI such that FHR estimate is outputted only
when a processed PSD is available every 15 seconds. The
prior distribution p([FHR

(i)
t |[FHR

(i)
t�1), representing how FHR

prediction per particle [FHR
(i)
t moves over time, needs to be

adjusted. Since FHR is expected to vary more within 15
seconds compared to 1 second, the variance of KUBAI’s
prior distribution is increased. p([FHR

(i)
t |[FHR

(i)
t�1) is defined

as a mixture of a Gaussian with an increased variance of
s2= 10BPM2 and a Poisson motion with a rate l = 0.1BPM.
3) Sensor Fusion: As each particle i makes an FHR

estimate [FHR
(i)
t over time t, we assign a weight per par-

ticle depending on how good the particle’s FHR estimate
is. In the literature, KUBAI fuses processed TFO PPG
measurements when computing the measurement likelihood
p(Meast |[FHR

(i)
t , MHRt), which directly affects the particle

weights W̃ (i)
t , given in eq. (1) [16].

W̃ (i)
t = W̃ (i)

t�1 ⇤ p(Meast |[FHR
(i)
t MHRt) (1)

We have access to measurements from multiple sensors,
supplying processed PPG and ECG data, that can be used to
define the measurement likelihood p(Meast |[FHR

(i)
t , MHRt).

A function freward(Meast |[FHR
(i)
t ,MHRt) to reward each

particle estimate [FHR
(i)
t is first defined using k individ-

ual measurement sources freward(Meast |[FHR
(i)
t ,MHRt), then

fused through weighted-sums approach, as seen in eq. (2),
where lk is the weight per measurement k [16]. lk should
be chosen based on the expected reliability of each mea-
surement channel to supply a good fetal signal. Finally, the
measurement likelihood is defined as a Sigmoid of the total
reward function, as shown in eq. (3) [16].

freward(Meast |[FHR
(i)
t , MHRt) =

K

Â
k=1

lk ⇤ f (k)reward(Meas(k)t |[FHR
(i)
t , MHRt)

(2)

p(Meast |[FHR
(i)
t , MHRt) =

1

1+ exp
✓

a
�
� freward +b

�◆

with a = 470,b = 4.9e�3

(3)

III. RESULTS AND DISCUSSION

In the literature, KUBAI has been only applied to PPG
data, and measurements from different detectors on TFO
were used for sensor fusion [16]. We propose to supply
KUBAI with the additional ECG data that was captured
during in vivo experiments. By doing so, we aim to increase
the accuracy of FHR estimation and also robustness against
signal losses that can happen in a single sensor-type. For
benchmarking purposes, we first input either PPG or ECG
data to KUBAI, and compute measurement likelihood (3) by
fusion of same sensor-type data channels.
All 3 fECG channels are used in FHR tracking, and only

D2, D3, and D4 fPPG data are used. This is to have an
equal number of channels per sensor-type, and as a result,
make a fair comparison between PPG-only, ECG-only, and
combined PPG&ECG FHR tracking accuracy. When PPG
data from detectors {D2,D3,D4} is used, the weight lk per
detector is defined as {(2,3,3)/8} respectively. Similarly,
for ECG channels {CH1,CH2,CH3}, the weights are set
to {(1,3,3)/7}. When both PPG&ECG data are input to
KUBAI, the weights are adjusted as {(2,3,3;1,3,3)/15} to
keep the sum of weights equal to 1.
Root-mean-square error (RMSE) is used as the measure of

accuracy for estimating FHR through the modified KUBAI
algorithm. The average RMSE across 10 runs of the algo-
rithm is reported to account for stochastic nature of KUBAI
and change in FHR estimates for different runs [FHRt,r. Table
I summarizes the results of FHR estimation with different
sensor inputs. We notice that FHR tracking using ECG-only
or PPG-only results in an overall similar RMSE.
Fig. 6 shows the distribution of overall RMSE for 10

runs of KUBAI with different sensor inputs. In Fig. 6, we
notice that FHR tracking using ECG data results in a slightly
lower median and a much smaller interquartile range (IQR)
compared to PPG. This means ECG-based FHR estimates
were similar across the 10 runs of KUBAI. However, the
25th percentile of ECG-only FHR detection is much higher
than it’s PPG-only counterpart. This means that ECG-only
estimates tracked the wrong signal more consistently. Fig. 7
shows the linear regression analysis between estimated and
reference FHR values. The R2 correlation of FHR estimates,
obtained from ECG-only inputs results in a low correlation
of 0.33 with reference, while estimates obtained from PPG-
only inputs result in a moderate correlation of 0.59.



TABLE I: Fetal Heart Rate Estimation Performance Summary over 10 Runs
Single Sensor-Type Fusion vs. Two Sensor-Type Fusion

Experiment # of
Estimations (N)

Mean RMSE (BPM)1 STDEV of RMSE (BPM)2 Maximum RMSE (BPM)3

PPG ECG
PPG&
ECG

PPG ECG
PPG&
ECG

PPG ECG
PPG&
ECG

1 169 14.93 9.11 1.75 20.00 6.14 0.32 44.15 14.27 2.55

2 178 18.61 40.47 13.56 18.32 11.02 16.00 45.08 44.09 44.09

3 185 16.69 19.80 17.37 0.1 3.32 0.06 16.51 23.19 17.42

4 159 21.45 20.42 19.67 0.12 1.03 5.22 21.63 22.23 25.65

5 178 26.28 1.03 1.03 0.21 0.01 0.004 26.58 1.05 1.03

6 65 2.22 1.02 1.08 0.64 0.03 0.05 3.33 1.07 1.17

Overall 934 21.84 22.30 13.85 4.41 2.96 4.45 45.08 44.09 44.09

1 Mean(RMSE)=
Â10
r=1

q
ÂN
t=1(FHRt�[FHRt,r)2/N

10
2Stdev(RMSE)=

q
Â10
r=1(RMSEr�Mean(RMSE))2

10
3Max(RMSE)=Max(RMSEr,expt)
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Fig. 6: Boxplots of estimated FHR
RMSE overall in 6 experiments
(10 algorithm runs), for different
sensor inputs.
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Fig. 7: Scatter plot of average FHR
Estimates over the 10 runs vs. Refer-
ence, for different sensor inputs.

Fusing both sensor inputs, PPG&ECG, enables further
improvement to FHR estimation performance. The distribu-
tion of PPG&ECG combined FHR estimation RMSE has
the lowest percentiles and median, as seen in Fig. 6. Fur-
thermore, we observe a high R2 correlation of 0.72 between
FHR estimates and reference when both PPG&ECG data are
fused in KUBAI. This is a 20.3% improvement in correlation
compared to PPG-only data input. Moreover, overall the
RMSE of FHR estimates using PPG&ECG is 36.6% lower
than using PPG-only data, as seen in Table I.
Let’s analyze how combining two sensor types help with

KUBAI’s FHR estimation performance. In experiments 1,
combining PPG&ECG helped KUBAI track FHR more con-
sistently across the 10 runs, which in turn reduced the mean,
Max and stdev of RMSE reported in Table I. The consistency
is also visible from the smaller and lower IQR in Fig. 6.
In experiments 3 and 4, unfortunately, both PPG-only and

ECG-only tracked MHR mostly instead of FHR and this
does not change when using PPG&ECG data combined.
It is important to note that experiments 3 and 4 present a
case where the ECG amplifier connected to CH1 experienced
communication faults. This in return degraded ANC’s per-
formance in extracting fECG in CH2 and caused a strong
presence of maternal ECG in the signals input to KUBAI.
In experiment 5, ECG-only FHR tracking outperformed

the PPG performance. Thus, the high accuracy of combined
PPG&ECG output is thanks to the high-quality ECG data.
This demonstrates the importance of having different types

of sensors, to avoid losing accuracy due to data losses caused
by device failure, or noise sources that can happen in a single
sensor type. Using different types of sensor data in FHR
tracking improves both robustness against unforeseeable dy-
namics and the accuracy of our algorithm’s estimates.
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