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Abstract—Multi-modal machine learning (MMML) applica-
tions combine results from different modalities in the infer-
ence phase to improve prediction accuracy. Existing MMML
fusion strategies use static modality weight assignment, based
on the intrinsic value of sensor modalities determined during the
training phase. However, input data perturbations in practical
scenarios affect the intrinsic value of modalities in the inference
phase, lowering prediction accuracy, and draining computational
and energy resources. In this work, we present DynaFuse, a
framework for dynamic and adaptive fusion of MMML inference
to set modality weights, considering run-time parameters of
input data quality and sensor energy budgets. We determine the
insightfulness of modalities by combining design-time intrinsic
value with the run-time extrinsic value of different modalities
to assign updated modality weights, catering to both accuracy
requirements and energy conservation demands. The DynaFuse
approach achieves up to 22% gain in prediction accuracy
and an average energy savings of 34% on exemplary MMML
applications of human activity recognition and stress monitoring
in comparison with state-of-the-art static fusion approaches.

Index Terms—Multi-modal machine learning, energy effi-
ciency, run-time systems

I. INTRODUCTION

Smart eHealth applications such as human activity recog-
nition [1], pain and stress monitoring [2] use multi-modal
machine learning (MMML) algorithms for combining supple-
mentary and complementary information across heterogeneous
sensor modalities [3]. MMML fusion methods such as early
(e.g., feature aggregation) and late fusion (e.g., priority voting)
consider the relative intrinsic value i.e., the significance of
a modality in contributing towards prediction accuracy, to
prioritize among different modalities [4]. On the other hand,
multi-modal sensing in practical settings is often prone to input
data perturbations with different noise components, motion
artifacts, and missing data due to battery drain and physical
failure of sensory devices. Input data perturbations affects
prediction accuracy of MMML models, and drain computa-
tional and energy resources by processing data in a garbage-in
garbage-out fashion [5].

Existing MMML methods determine modality weights
based on their intrinsic value in the training phase, and use
these fixed values for fusion in the inference phase [6], [7].
Figure 1 shows the workflow of training and inference using
static and dynamic modality weight assignment for fusion.
As shown in Figure 1 (a), MMML models are trained over
pre-processed quality data under ideal scenarios. However,
inference in real-time faces external challenges such as per-
turbed input data and battery drain of sensory modalities
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(as shown in Figure 1 (b)), affecting the intrinsic value of
modalities. Yet, state-of-the-art MMML inference strategies
fuse modalities using fixed modality weights that are set at
design time without considering external factors such as input
data perturbations in practical scenarios [6]. This approach
fails to prioritize modalities appropriately based on run-time
variable dynamics, potentially degrading prediction accuracy
and resource utilization. In practical scenarios, the intrinsic
value of a modality is compounded at run-time with the
extrinsic value, which includes factors such as input data
perturbations and available battery levels. As illustrated in
Figure 1 (c), considering input data quality and available
energy budgets of sensor modalities enables re-prioritizing
among modalities for fusion to improve prediction accuracy
and minimize energy consumption.

In this work, we present DynaFuse, a framework for dy-
namic fusion of MMML inference by considering run-time
parameters of input data quality and sensor energy budgets.
We determine the insightfulness of modalities by combining
the design-time intrinsic value with run-time extrinsic value
of different modalities to assign updated modality weights.
DynaFuse adapts the choices of modality weight assignment
and model selection to cater to both accuracy requirements and
energy conservation demands. We select appropriate models
from a pre-trained model pool and adaptively fuse the results
from different modalities using the updated priorities for
resource-efficient inference, achieving an acceptable prediction
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Fig. 2. Noise effect on uni-modal and multi-modal models’ accuracy in Stress
level detection and HAR applications.

accuracy within the lowest energy consumption. We present
the relevant background and motivation for dynamic modality
weight assignment in Section 2, the proposed framework in
Section 3, an evaluation of our proposed approach in Section
4, followed by conclusions in Section 5.

II. MOTIVATION

We demonstrate the disparity in prediction accuracy be-
tween ideal and practical scenarios for an exemplary MMML
application of Human Activity Recognition (HAR). The HAR
application uses data from accelerometer/gyroscope (both foot
and thigh) and Electromyogram (EMG) modalities to detect
activity of the subject. Figure 2 illustrates the overall pre-
diction accuracy when results from different modalities are
combined under varying noise levels. We create different
scenarios where input data from one or more modalities is
noisy. In each scenario, we injected Gaussian noise with
varied standard deviations (0 - no noise, 0.5- noise level-
1, 1 - noise level-2) to demonstrate the effect of different
noise levels on prediction accuracy. Figure 2 also shows the
relative total sensing and compute energy consumption of
each model, represented by the circle marker size. Figure
2 (a) shows the prediction accuracy of uni-modal models
foot and thigh (around 55%) and EMG (33%), and the late
fusion model (around 60%) with no noise. The accuracy of
the foot uni-modal model drops to 45% at noise level-1 and
to 20% at noise level-2. However, existing MMML fusion
strategies do not consider such discrepancies and continue
to use the static modality weights set under ideal conditions.
This affects the prediction accuracy of the late fusion model,
which drops to 50% at noise level-2, since the late fusion
model still uses modality weights from ideal conditions. In
Figure 2 (c), where both foot and thigh modalities are noisy,
the EMG uni-modal becomes the most accurate model at noise
level 2, completely contrasting the modality weight that would
have been assigned under the no-noise scenario. Also, EMG
consumes significantly lower energy than the other models,
reinforcing the assignment of a higher priority. On the other
hand, the foot and thigh uni-modal models prompt the need
for lowering their corresponding modality weights, which were
assigned under no-noise conditions.

Existing MMML fusion strategies do not consider run-
time variable system parameters and rely on static modality
weight assignment, degrading the prediction accuracy [7].
Other approaches that consider input data quality use a binary
weight assignment to drop the entire noisy modality(s) [2],
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Fig. 3. Overview of the DynaFuse framework

limiting the utility of multi-modal inputs. Further, none of the
existing MMML strategies consider energy conservation while
ensuring a certain level of prediction accuracy under noisy
input data scenarios. We address the aforementioned limita-
tions through dynamic and adaptive fusion using qualitative
run-time re-prioritization of insightful modalities for resource-
efficient inference.

IIT. DYNAMIC ADAPTIVE FUSION

Our proposed dynamic fusion framework (DynaFuse) tar-
gets resource efficient MMML inference, combining design
time intrinsic and run-time extrinsic values of different modal-
ities, and varying accuracy and energy demands. Figure 3
shows the end-to-end overview of DynaFuse with input data
originating from different modalities, run-time monitoring,
dynamic fusion module, model pool and inference engine. The
framework is built on top of the model pool — which consists
of pre-trained uni-modal models that are used to execute
inference tasks. The inference engine executes inference tasks
on input data from different modalities (M1 — M,,), fusing
results from relevant uni-modal models from the model pool.
The core DynaFuse components include run-time monitoring
and dynamic fusion modules to monitor run-time parameters
and make dynamic fusion decisions. The run-time monitoring
monitors (i) input data quality to identify the noise level
across modalities in terms of Signal to Noise Ratio (SNR)
and motion artifacts (based on the methodology proposed in
[2]), and (ii) energy consumption of different modalities. The
run-time monitoring enables estimation of extrinsic value of
different modalities in practical scenarios, which will be used
to update the modality weights. The dynamic fusion module
sets modality weights and selects appropriate models based on
run-time monitored parameters by combining the intrinsic and
extrinsic value of different modalities. The inference engine
executes the selected model (uni-modal/multi-modal) with
modality weights assigned by the dynamic fusion module.
Dynamic fusion We implement dynamic modality weight
assignment in two phases viz., resilience estimation — to
evaluate the affect of different noise levels on accuracy of uni-
modal models, and energy demand estimation — to understand
the energy demands for exploring accuracy-energy trade-offs.
Resilience estimation We perform a profiling to assess the im-
pact of different noise intensities on the accuracy of uni-modal
models. During this phase, we collect noise-accuracy pairs
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across different level and types of noise. The results obtained
from the profiling are utilized to estimate the degradation in
prediction accuracy of the models on real-time noisy input
data streams. This estimation phase employs a linear function
that incorporates the noise-accuracy pairs collected during the
profiling phase. We assign initial normalized insightfulness
weights (w!"*) to the uni-modal models based on the esti-
mated accuracies, as shown in Equation 1.

Energy demand estimation We update the normalized insight-
fulness weights (assigned in the resilience estimation phase)
considering the energy demands. We define three modes of
operation viz., high accuracy, nominal, and energy-saving. The
high accuracy mode demands achieving highest possible pre-
diction accuracy, the nominal mode requires achieving highest
possible prediction accuracy within lowest possible energy
consumption, while the energy-saving mode demands lowest
possible energy consumption with an acceptable prediction
accuracy gained by dynamic modality weight assignment. The
corresponding changes in modality weights are implemented
within the boundaries set by these modes. We define a con-
figurable minimum accuracy threshold as 0.8x of maximum
achievable prediction accuracy under ideal scenarios. In high-
accuracy mode, the model (either uni-modal or late fusion
multi-modal with dynamic weights) with the highest estimated
accuracy is chosen for inference. In the nominal modes, uni-
modal model that suffices the accuracy threshold requirement
is selected, while in the energy-saving mode, uni-modal model
with the lowest energy consumption that meets the minimum
accuracy threshold is selected. Selecting uni-modal models (in
nominal and energy-saving modes) aligns with the modality
weights assignment, where the weight for the non-selected
models is set to zero. In certain scenarios where no uni-
modal model satisfies the minimum accuracy requirement,
an additional phase is implemented to enhance control over
energy consumption. The run-time monitoring module dy-
namically updates inherent sensing energy consumption of
different modalities based on their sampling rate. In nominal
and energy-saving modes, the fop-k uni-modal models (sorted
based on energy consumption) are selected for the inference
phase, while the weights of the remaining uni-modal models
are set to zero. The value of k is set to 1 in energy-saving
mode, 0.5X number of modalities in nominal mode, and
number of modalities in high accuracy mode. Selecting or
ignoring uni-modal models for inference is done by masking
w!™" with a binary value b; for each modality to get the
final weight (wzf inaly " as shown in Equation 1. Overall, we
enhance the dynamic modality weight assignment by prioritiz-
ing energy efficiency while simultaneously meeting accuracy
requirements.

est
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IV. EVALUATION
Workloads We evaluate the efficacy of our proposed frame-
work in terms of prediction accuracy and energy conservation,
in comparison with the baseline strategy of static weight as-
signment and model selection [6]. For evaluation, we use two

exemplary MMML applications viz., human activity recogni-
tion (HAR) and stress monitoring. For the HAR application,
we use HuGaDB dataset [8] to train uni-modal models based
on ideal input data scenarios. We use input data from ac-
celerometer and gyroscope sensors attached to foot and thigh,
and EMG sensors attached to front thighs. Neural models are
used for training uni-modal models for each modality (two
convolutional layers, followed by two dense layers). Input
samples are processed with window size of four seconds and
overlap of two seconds to extract temporal properties of the
HAR application. For the stress monitoring application, we
trained uni-modal models for PPG, EDA, and ECG modalities.
WESAD [9] dataset was used for training the mentioned
models. The features for PPG, EDA, and ECG modalities
were extracted using tools provided in [10]. We extracted the
sensing energy consumption of different modalities through
empirical models (presented in [2]) based on the sampling
rate and number of input channels of the modalities, and
compute energy consumption based on the DL model size, and
finally normalized the total energy consumption of modalities
to enable re-prioritization of weights.

Experimental Scenarios For evaluating efficiency of Dyna-
Fuse, we define scenarios with varying noise levels amongst
different modalities, and system-level demands (high-accuracy,
nominal, and energy-saving modes). We inject different levels
of noise in the HAR application by varying the standard de-
viation of Gaussian noise randomly ranging between 0-2. For
the stress monitoring application, we used four noise levels of
Motion Artifacts (no noise, 10%, 30%, and 50%). These setups
simulate realistic noise intensities varying uni-modal models’
accuracy from ideal to totally random classification during
inference. Previous works [11], [2] have used these types of
noise to demonstrate the effect of input data perturbation on
ML models’ accuracy. We experimented with 40 batches of
input data, each comprising random levels of input noise, and
system demands. Each batch consists of 300 samples in the
HAR application and 100 samples in the stress monitoring
application, where the batch size is empirically determined to
emulate realistic noisy input behavior. Across the 40 batches,
we randomly generated objectives such that 50% of the batches
demand high accuracy, 30% demand nominal performance,
and 20% demand energy-saving.

Results We evaluate our proposed DynaFuse approach against
static modality weight assignment strategy [7] [2] for HAR and
stress monitoring applications under different noisy conditions
and accuracy and energy demands. Figure 4 shows modality
weights that are dynamically assigned by the proposed Dy-
naFuse strategy under varying run-time parameters across 40
batches of inputs, for HAR and stress monitoring applications.
Also, we show the static weights that are assigned for each of
the modalities at the design time. Our proposed DynaFuse ap-
proach updates modality weights by adapting to varying input
data quality and accuracy and energy demands across different
input batches. In contrast, the static modality weight assign-
ment strategies continue to use the fixed modality weights,
irrespective of input data quality and energy demands across
different batches. It should be noted that the disparity between
static and dynamic weights in stress monitoring application
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modality weights and selects a fusion model that consumes
low energy but with relatively lower prediction accuracy to
meet the accuracy and energy demands. DynaFuse approach
combines run-time input data quality with demands on ac-
curacy and energy to select the most suitable fusion model,
exploiting accuracy-energy trade-offs to ensure resource effi-
cient MMML inference. For the HAR application, DynaFuse
achieves upto 22% gain in prediction accuracy and average
energy savings of 34% in comparison with the baseline. For
the stress monitoring application, DynaFuse achieves upto
2.6% gain in prediction accuracy and an average energy
savings of 33% in comparison with the baseline. DynaFuse
approach has a significantly lower energy consumption in
specific cases with demands on energy saving. The energy
consumption of DynaFuse is on par with the static assignment
in cases where the objective is to maximize the accuracy.

V. CONCLUSIONS

We presented DynaFuse framework for resource efficient
MMML inference through adaptive dynamic fusion of modal-
ities, considering run-time input data quality and energy saving
demands. We have evaluated our approach on human activity
recognition and stress monitoring applicatios over different
scenarios of variable input data quality, and accuracy and en-
ergy demands. The DynaFuse approach has upto 22% (HAR)
gain in prediction accuracy and average energy savings of
34% (HAR) in comparison with state-of-the-art static modality
fusion approaches. An intelligent reinforcement learning agent
to contextualize system dynamics for model selection and
modality weight assignment is planned for the future work.
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Fig. 5. Prediction accuracy and energy consumption for HAR and Stress
monitoring.

is relatively lower in comparison with the HAR application.
This can be attributed to the deviation among different input
modalities in terms of intrinsic value. For instance, prediction
accuracies of the uni-modal models (PPG, EDA, ECG) in
the stress monitoring are relatively similar and inherently
exhibit high degree of resilience to noise. Thus, the extent of
accuracy gains using dynamic fusion depends on correlation
between different input modalities of an application, although
the energy savings depend on sensor properties.

The adaptivity of DynaFuse approach in updating modality
weights is reflected in maximizing the prediction accuracy
while minimizing the energy consumption. Figure 5 shows per-
batch average prediction accuracy across 40 batches of inputs
and corresponding energy consumption per-batch. In certain
input batches, DynaFuse has either higher or similar prediction
accuracy as the static modality weight assignment strategies
with the HAR appliation. However, prediction accuracy of the
static approach is better than DynaFuse in specific cases. This
is due to the fact that DynaFuse approach deliberately sets
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