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Abstract

Background: Maternal loneliness is associated with adverse physical and mental health outcomes for both the mother and her
child. Detecting maternal loneliness noninvasively through wearable devices and passive sensing provides opportunities to prevent
or reduce the impact of loneliness on the health and well-being of the mother and her child.

Objective: The aim of this study is to use objective health data collected passively by a wearable device to predict maternal
(social) loneliness during pregnancy and the postpartum period and identify the important objective physiological parameters in
loneliness detection.

Methods: We conducted a longitudinal study using smartwatches to continuously collect physiological data from 31 women
during pregnancy and the postpartum period. The participants completed the University of California, Los Angeles (UCLA)
loneliness questionnaire in gestational week 36 and again at 12 weeks post partum. Responses to this questionnaire and background
information of the participants were collected through our customized cross-platform mobile app. We leveraged participants’
smartwatch data from the 7 days before and the day of their completion of the UCLA questionnaire for loneliness prediction. We
categorized the loneliness scores from the UCLA questionnaire as loneliness (scores>12) and nonloneliness (scores<12). We
developed decision tree and gradient-boosting models to predict loneliness. We evaluated the models by using
leave-one-participant-out cross-validation. Moreover, we discussed the importance of extracted health parameters in our models
for loneliness prediction.

Results: The gradient boosting and decision tree models predicted maternal social loneliness with weighted F';-scores of 0.897
and 0.872, respectively. Our results also show that loneliness is highly associated with activity intensity and activity distribution
during the day. In addition, resting heart rate (HR) and resting HR variability (HRV) were correlated with loneliness.
Conclusions: Our results show the potential benefit and feasibility of using passive sensing with a smartwatch to predict maternal
loneliness. Our developed machine learning models achieved a high F|-score for loneliness prediction. We also show that intensity
of activity, activity pattern, and resting HR and HRV are good predictors of loneliness. These results indicate the intervention
opportunities made available by wearable devices and predictive models to improve maternal well-being through early detection
of loneliness.
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Introduction

Loneliness is a subjective, unpleasant feeling of mismatch
between desired and perceived meaningful social relationships
[1]. Loneliness can have adverse health consequences such as
negative cardiovascular outcomes and mental health disorders
[2] and even increase the risk of mortality [3]. In addition,
loneliness is a global public health issue that is growing in
modern society and has also slightly increased during the
COVID-19 pandemic and its attendant social isolation [4-8].

Maternal loneliness during pregnancy and the postpartum period
is associated with several health issues for the mother and her
child. Various studies showed a positive correlation between
loneliness and depression during pregnancy across countries
[8-13]. In addition, maternal loneliness is associated with life
dissatisfaction and pair-relationship dissatisfaction [12]. Other
studies showed that loneliness was significantly associated with
postpartum depression [14,15]. It was also shown that, in the
COVID-19 pandemic, loneliness during pregnancy was
associated with serious psychological distress [16], anxiety [17],
cognitive distortion [13], higher level of perceived stress [9],
and a lower level of social support [9,10]. Maternal loneliness
increases the risk of respiratory tract infections in newborn
babies [18]. The prediction or early detection of maternal
loneliness could help avoid adverse consequences for the mother
and her child through proper intervention.

Previous studies investigated loneliness during pregnancy and
the postpartum period using observational methods based on
self-reported measures, such as standard questionnaires [11]
and interviews [19]. For example, Perzow et al [8] used
self-report questionnaires to discern symptoms of depression
and anxiety, loneliness, and COVID-19-related adverse health
outcomes. In another study, Giurgescu et al [9] used web-based
surveys to investigate the association between loneliness,
depression, perceived stress, and social support during the
COVID-19 pandemic in pregnant Black women. In another
study [13], standard questionnaires were used to study the
relationship between loneliness, depression, and cognitive
distortion.

These studies investigated the associations between loneliness
and various health issues, comparing the loneliness of people
with health problems to the loneliness of those without health
problems. However, they do not recommend or describe
proactive services to predict or detect loneliness early on. In
addition, subjective studies require participants’ engagement
in answering the questionnaires or interview questions.
Therefore, data collection is burdensome for pregnant women,
especially in late pregnancy or during the postpartum period
when they are occupied with a newborn baby and may find it
difficult to remember and find time to answer questionnaires
or engage in an interview.
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Using wearable devices and smartphones for well-being and
health care apps has been increasing rapidly in recent years.
These devices enable continuous passive sensing of
socio-behavioral data. However, few studies have used
smartphones and wearable devices to predict loneliness using
passive sensing [20,21]. The authors of one study [21] leveraged
GPS and Bluetooth data gathered by participants’ smartphones
to explore the association between momentary loneliness and
companionship type in college students. In addition, another
study [20] explored the sleep and physical activity data recorded
on a wristband activity tracker, as well as the location, screen
time, calls and SMS logs, and Bluetooth data of college students
over the course of a semester and used this data to predict
loneliness. Although these studies predicted loneliness by using
wearable devices and passive sensing, they were limited to
college students living on a university campus. Moreover, these
studies did not use heart rate variability (HRV) features, even
though it has been shown that loneliness is associated with lower
resting HRV [22].

To the best of our knowledge, there is no study in the literature
that has predicted maternal loneliness during pregnancy and the
postpartum period on the basis of objective physiological data.
The previously mentioned studies were limited to subjective
data or performed on other population groups (ie, college
students). Predicting maternal loneliness with the use of passive
data sensing is beneficial to improving maternal and child
well-being with minimal cost and effort required of mothers.

In this paper, we present a passive sensing method, enabled by
a smartwatch, for loneliness prediction during late pregnancy
and the postpartum period. The smartwatch collected heart rate
(HR), HRYV, physical activity, and sleep parameters. These
physiological parameters were chosen due to the association of
loneliness with lower resting HRV [22], decreased physical
activity [23], and poor self-reported sleep quality [24,25]. We
then developed 2 machine learning models—a decision tree and
gradient boosting—to predict loneliness based on the objective
data. Moreover, we investigated the importance of health
parameters in loneliness prediction. In summary, the main
contributions of this paper are as follows:

1. Presenting a passive sensing method, enabled by a
smartwatch, for loneliness prediction during late pregnancy
and the postpartum period.

2. Developing 2 machine learning models to predict loneliness
during pregnancy and the postpartum period based on
objective health data collected by a wearable device.

3. Investigating and discussing physiological parameters’
importance to maternal loneliness prediction.

Methods
Study Design

An observational longitudinal study was conducted in free-living
conditions with a convenience sample of pregnant women in
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Southwest Finland. This study is part of a project using a
wearable-based system to remotely monitor women’s
physiological health parameters, including HR, HRYV, sleep,
and physical activity, during pregnancy and the postpartum
period. This system used a smartwatch to collect objective health
parameters and a cross-platform mobile app to collect subjective
and background information. The remote maternal monitoring
system was described and evaluated in a previous study [26].
As mentioned in [26], for privacy protection, we used the Secure
Sockets Layer Application Programming Interface to provide
secure communication between the cloud layer and our apps.
We also used authentication for all of our apps, and we did not
send or store any personal data on our cloud server.

Participants and Recruitment

Pregnant women with singleton pregnancies were recruited at
12-15 gestational weeks for this study. The inclusion criteria
were: (1) having the ability to understand the Finnish language;
(2) being at least 18 years old; and (3) having an Android or
10S smartphone.

Recruitment was performed through maternity clinics or social
media advertisements for 2 groups of pregnant women with

Table 1. Participant background information (N=31).
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different inclusion criteria from January 2019 to March 2020.
The first group included women with a history of preterm birth
(gestational weeks 22-36) or late miscarriage (gestational weeks
12-22). The second group consisted of women with a history
of previous full-term, uncomplicated pregnancies and no
pregnancy losses.

In scheduled face-to-face meetings with eligible volunteer
pregnant women, the researchers informed the women about
the study. Then, participants provided their written informed
consent and received a smartwatch and the study instructions.
The participants were asked to wear the smartwatch
continuously during their pregnancies and for 3 months post
partum. They also installed our customized cross-platform
mobile app on their smartphones.

A total of 62 pregnant women were recruited for this study. Out
of which 4 women withdrew from the study. We also excluded
data from participants with a high amount of missing data (see
Data Sets and Machine Learning Models for Loneliness
Prediction). Thus, 31 pregnant women were included in this
study. The participants’ background information is provided in
Table 1.

Parameters Values
Age (years), mean (SD) 329 (4.97)
BMI, mean (SD) 26.3 (8.6)
Marital status, n (%)

Married or cohabitation 30 (96.8)

Other 1(3.2)
‘Work status, n (%)

Working 26 (83.9)

Student 1(3.2)

Unemployed 0(0)

Other 4(12.9)
Education, n (%)

High school 11 (35.5)

College 7(22.6)

University 13 (41.9)
Pregnancy planned, n (%)

Yes 30 (96.8)

No 1(3.2)
Pregnancy week at recruitment (gestational week+day), mean (SD) 1443 (1+4)
Pregnancy weeks at birth (gestational week+day), mean (SD) 39+2 (1+4)
Mode of delivery, n (%)

Vaginal 24 (77.4)

Cesarean 7(22.6)
Infant birth weight (g), mean (SD) 3542.4 (556.3)
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Data Collection

Data were collected from each participant by a Samsung Gear
Sport smartwatch and by our customized cross-platform mobile
app. The Samsung smartwatch included a photoplethysmography
(PPG) sensor and an inertial measurement unit. It ran Tizen OS,
which is an open-source operating system that enabled us to
develop customized apps for the smartwatch. The smartwatch
provided PPG signals, acceleration data, and gyroscope data.
We developed customized apps for the smartwatch to collect
sleep and physical activity data continuously and collect 12
minutes of PPG signal every other hour. The data were stored
on the internal storage of the smartwatch. In addition, we
developed a smartwatch app to transfer the collected data to our
cloud server using Wi-Fi. The smartwatch, enabled by our apps,
had sufficient battery life (ie, 2-3 days) for data collection [26].

Our customized cross-platform mobile app provided self-report
questionnaires to the participants. To evaluate loneliness, we
used the 12-item version of the revised University of California,
Los Angeles (UCLA) Loneliness Scale questionnaire, consisting
of questions about the factors of social and emotional loneliness
[27]. Each factor was addressed by 6 questions, to which the
answers had potential scores ranging from 6 to 24. Higher points
indicated greater feelings of loneliness. We followed the
participants from gestational weeks 12-15 throughout the
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pregnancy and until 3 months postpartum. The structured
questionnaires were decided to be sent at week 36 to capture
the situation at the end of the pregnancy (third trimester) and
at 12 weeks postpartum to capture the situation after the birth,
when the mother had already had some time to adapt to living
with the newborn baby. We also collected background
information through the mobile app.

Data Sets and Machine Learning Models for Loneliness
Prediction

The collected data from the smartwatch were used to generate
7 data sets. Then, we developed 2 machine learning models and
used these data sets to train and test our models. Finally, we
investigated the important parameters for loneliness prediction.
Our machine learning pipeline, of which an overview is shown
in Figure 1, comprised the following processes:

1. Feature extraction

2. Data set creation and labeling

3. Missing data imputation

4. Training and testing the machine learning models (decision
tree and gradient boosting) for different data sets

5. Investigating the important features of the 2 machine
learning models for loneliness prediction

These steps are described in the following sections.

Figure 1. Machine learning pipeline. HR: heart rate; HRV: heart rate variability.

Feature extraction

HR and HRV Slazg e Physical activity
features features
Labeling
Data sets
Sleep and | HRV and ST
Physical | Sleep and - . HRV and
Sleep HRV - physical physical .
activity HRV - . physical
features features activity activity -
features features activity
features features
features
|
A 4

Missing data imputation

Discard sample data if it has
less than 4 valid days

Fill missing values with average value
of the feature within the data sample

.

Machine . Sent boost
learning DeC|5|o.n.tree Gradient . Qostlng
models classifier classifier

v

Important feature extraction

Feature Extraction

We extracted HR and HRYV, sleep, and physical activity data
from the objective data collected by the smartwatch.
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HR and HRYV Features

We used PPG signals to extract HR and HRV features. The
smartwatch collected 12 minutes of PPG signals every other
hour with a sampling frequency of 20 Hz (as described in a
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previous study [26]). Based on the duration of PPG recordings,
we used short-term HRV analysis, including 5-minute windows
of PPG signals, for HRV extraction [28,29]. Our HR and HRV
extraction pipeline consisted of 3 steps.

Reliable Signal Detection

PPG signals are prone to noise, such as motion artifacts.
Therefore, unreliable signals had to be detected and discarded.
Therefore, we used the PPG signal quality assessment method
introduced in [30], which used a one-class support vector
machine (SVM) classifier to distinguish reliable and unreliable
signals [30]. This classifier was trained using several
morphological features of the PPG signals, such as the
correlation between the cardiac cycles. Then, we leveraged the
trained model to detect and subsequently discard unreliable
PPG signals.

Peak Detection and Interbeat Interval Extraction

We used a bandpass filter with cutoff frequencies of 0.7 Hz and
3.5 Hz to filter out noise outside the human heart rate range.
We used a moving average-based peak detection method with
adaptive thresholds to detect peaks and extract interbeat intervals
(IBIs). Then, we used error detection methods to remove false
peaks and their corresponding IBIs. To this end, too-large or
too-small IBIs were removed based on the other IBIs in the
same window of the signals. The peak detection and IBI
extraction method was implemented using HeartPy library [31]
in Python.

Resting HR and HRV Extraction

We extracted resting HR (when the HR is lowest during sleep)
and its corresponding HRV parameters using detected peaks
and extracted IBIs. HR is calculated as the number of peaks per
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minute. We used normal IBIs to extract HRV parameters that
could be reliably extracted at the sampling frequency of
collected PPG signals (20 Hz) [32]. The extracted HRV
parameters were average normal IBIs (AVNN),
root-mean-square of the successive differences (RMSSD), SD
of IBIs (SDNN), power in the low-frequency range (LF), power
in the high-frequency range (HF), and LF to HF ratio (LF/HF).

Sleep Features

Using the smartwatch, we recorded total sleep time (TST), sleep
fragmentation, wake after sleep onset (WASO), and average
hand movement during sleep, as described in a previous study
[33]. We also added a sleep quality indicator showing WASO
of €20 minutes [34] and a sufficient sleep parameter, which
showed TST between 7 and 8.5 hours [35].

Physical Activity Features

The smartwatch captured several physical activity parameters
at a granularity of 10 minutes. By aggregating the smartwatch’s
activity parameters during participants’ awake time, we
extracted daily step counts, walking steps, running steps,
distance, activity duration, and activity intensity. We then
calculated the sedentary time as awake time without walking
and running activities. We also added a sufficient activity
indicator to show daily step counts above 7000. Finally, we
extracted statistical parameters from the distribution of step
counts and duration of activity during the day, based on the
hourly data. The statistical parameters of hourly activity
distribution were mean, minimum, median, maximum, SD, IQR,
range, skewness, kurtosis, and root-mean-square. We selected
the most relevant physical activity features to be used in our
models. Table 2 shows the summary of extracted features.
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Table 2. Summary of extracted features.
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Parameters Unit Description
HR? and HRV" features
HR bpm Number of heartbeats per minute
AVNN® ms Average of normal IBIs¢
SDNN® ms SD of normal IBIs
RMSSD! ms Square root of the mean of the sum of the squares of differences between adjacent
normal IBIs
LF® ms2 Power in low-frequency range (0.04-0.15 Hz)
HED ms? Power in high-frequency range (0.15-0.4 Hz)
LF/HF N/Al Ratio of LF to HF
Sleep features
TST Min Total sleep time
Sleep fragmentation N/A Number of sleep interruptions during the night
WASOK Min Wake after sleep onset
Average hand movement N/A Average intensity of hand movement during sleep, provided by the smartwatch
Sleep quality indicator N/A Indicate whether WASO is of <20 minutes or not
Sufficient sleep parameter N/A  Indicate whether TST is between 7 and 8.5 hours
Physical activity features
Step counts N/A Total step counts during the day
Walking steps N/A Total steps walked during the day
Running steps N/A Number of running steps during the day
Distance m The distance traveled during the day
Activity duration Min Duration of activity during the day
Activity intensity N/A Intensity of activity based on the calories burned provided by the watch
Sedentary time Min Awake time without activity
Sufficient activity indicator N/A Indicate whether activity was sufficient (step count above 7000) or not

Statistical features from the distribution of step N/A Mean, minimum, median, maximum, SD, IQR, range, skewness, kurtosis, and root
counts mean square of hourly step counts

Statistical features from the distribution of activ- N/A
ity duration

Mean, minimum, median, maximum, SD, IQR, range, skewness, kurtosis, and root
mean square of hourly activity duration

*HR: heart rate.

HRV:heart rate variability.
CAVNN: average normal IBIs.
YIBI: interbeat interval.
°SDNN: SDs of IBIs.

TRMSSD: root-mean-square of the successive differences.
8LF: low-frequency range.

"HF: high-frequency range.
"N/A: not applicable.

ITST: total sleep time.

KWASO: wake after sleep onset.

the smartwatch data. These data sets were used to train and test

Data Set Creation and Labeling our developed machine learning models.

We generated 7 data sets using different combinations of HR

and HRY, sleep, and physical activity features extracted from Labeling was performed using UCLA scores. We only

considered UCLA social loneliness factors and ignored the
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UCLA emotional scores since we had few participants with
high emotional scores. We used binary classification for
loneliness prediction and considered UCLA social score of >12
as 1 (loneliness) and UCLA social score of <12 as 0 (no
loneliness) [27]. We used UCLA participants’ responses at
gestational week 36 and week 12 after delivery as labels in our
data set. We combined the data from both time points as the
data set was small.

The UCLA questions ask respondents to consider their feelings
over the previous week (7 days) [27]. Therefore, for each sample
in our data sets, we included data from 7 days before and the
day of answering the UCLA questionnaire (ie, 8 days of data).

Table 3. Wear time per day in our data sets.

Sarhaddi et al

Missing Data Imputation

We added a data sample that contained 8 days of data and a
loneliness label from one participant in the data set if the data
sample had at least 4 valid days. A valid day was defined as a
day in which the participant wore the smartwatch for at least
10 hours during waking hours and in which the watch collected
valid sleep data [36-40]. The samples with fewer than 4 valid
days were discarded due to the high proportion of missing data.
In addition, we used the average values of each feature in one
data sample to fill in the missing values in that data sample.
Table 3 represents the wear time per day in our data set.

Day

Wear time (minutes), mean (SD)

1 1170 (210)
1255 (150)

1150 (200)
1220 (170)

1320 (100)
1270 (145)

2
3
4
5 1240 (150)
6
7
8

1310 (130)

We added 39 data samples from 31 participants (8 participants
had 2 data samples) to our data sets. The data from other
participants were excluded due to the high ratio of missing data
(ie, less than 4 valid days in the week before and the day of
answering the UCLA questionnaire). The missing data resulted
from different technical and practical issues during monitoring.
For example, some participants had preterm births before
gestational week 36. Many wore the watch for an insufficient
amount of time. Some participants removed the smartwatch’s
customized app by resetting the watch.

Machine Learning Models

We developed decision tree and gradient boosting models for
predicting loneliness and investigated the importance of features
for loneliness prediction.

A decision tree classifier is a simple, flexible, robust, and easy
to interpret method, which is well suited to complex ecological
data [41,42]. This model has a tree-like structure that includes
internal nodes and leaves. Each internal node splits the data
based on one feature. The features are selected based on the
Gini index, which represents the purity of classification. Each
leaf node shows the class label.

Gradient boosting is another machine learning method that can
be used for classification and regression. It is an ensemble of
weak prediction models, and in each step of training, it adds a
new estimator to improve the results. This model performs well
on noisy data and outperforms most common machine learning
models [43].

The decision tree method was chosen as it is fast and simple,
and a specific feature’s importance can be easily understood
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from the tree structure. In addition, the gradient boosting model
was chosen as it performed well in prediction with nonlinear
decision boundaries and has produced good results in similar
studies [20].

Model Evaluations

To evaluate the models, we first used feature selection on
physical activity features to avoid overfitting. We used the
recursive feature elimination (RFE) method, which recursively
eliminated the least important features. Then, we investigated
the performance of the predictive machine learning models
using the leave-one-participant-out cross-validation method.
Therefore, we used one participant’s data for validation, and
other participants' data were used for training. The evaluation
was performed for all participants, and the average performance
was reported.

The following machine learning measures were used for
performance evaluation:

e Precision: percentage of predicted samples that actually
belonged to a class

e Recall: percentage of correctly predicted samples per class

e F-score: harmonic mean of precision and recall per class

e Weighted F-score: weighted average of F';-scores

e Sensitivity: percentage of lonely participants correctly
detected

e Specificity: percentage of nonlonely participants correctly
detected

e AUC (area under the curve) score: area under the receiver
operating characteristic (ROC) curve
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Finally, we investigated important features for each model, for
example, the features that contribute most to each model. The
machine learning models, feature selection, model evaluation,
and important feature investigation were implemented using
the scikit-learn library in Python [44].

Ethics Approval

This study received ethical approval from the Ethics Committee
of the Hospital District of Southwest Finland (approval number
DNRo: 1/1801/2018). Written informed consent was obtained
from all participants.

Results

In this section, we present the performance of our predictive
models in terms of precision, recall, F}-score, and weighted

F|-scores. We also discuss the importance of features in
loneliness prediction.

Loneliness Prediction

The prediction results of the predictive models for different data
sets are summarized in Table 4. The data sets contain HRV

Sarhaddi et al

features, sleep features, physical activity features, and different
combinations of these feature sets. Figure 2 illustrates the
F|-scores of the decision tree and gradient boosting for different

data sets.

The decision tree model achieved the best performance on data
sets that contained physical activity features (physical activity
features, physical activity and HRV features, physical activity
and sleep features, or all the features). The results show that
physical activity features had the highest impact on the
prediction results for the decision tree model. Moreover, the
specificity of the models for all the data sets containing physical
activity features is 0.864 which shows that the decision tree can
detect nonlonely persons correctly with high accuracy.
Furthermore, the sensitivity of the decision tree for physical
activity features or all features is 0.882, which shows that the
model performance is very high in correctly detecting loneliness.
Figure 3 shows the decision tree model for the physical activity
features data set and the features used in the loneliness
predictions.

Table 4. Per class precision, recall and F1-score, weighted F1-score, sensitivity, specificity, and area under the curve (AUC) score performance measures
for the predictive models. Data sets with weighted an F1-score of >0.8 are shown in italics.

Models and data sets Precision Recall Fi-score Weighted  Sensitivity — Specificity AUC
F-score
Non- Loneliness Non- Loneliness Non- Loneliness
lonely lonely lonely

Decision tree
Sleep 0.778 0.619 0.636 0.765 0.7 0.684 0.693 0.765 0.636 0.7
HRV? 0.6 0.528 0.614 0.514 0.607 0.521 0.567 0.513 0.614 0.563
pab 0.905  0.833 0.864 0.882 0.884 0.857 0.872 0.882 0.864 0.873
Sleep and HRV 0.7 0.579 0.636 0.647 0.667 0.611 0.642 0.647 0.636 0.642
Sleep and PA 0.905 0.833 0.864 0.882 0.884 0.857 0.872 0.882 0.864 0.873
HRV and PA 0.864 0.824 0.864 0.824 0.864 0.824 0.846 0.824 0.864 0.844
All 0.864 0.824 0.864 0.824 0.864 0.824 0.846 0.824 0.864 0.844

Gradient boosting
Sleep 0.611 0.476 0.5 0.588 0.55 0.526 0.540 0.588 0.5 0.544
HRV 0.553 0.471 0.591 0.432 0.571 0.451 0.516 0.432 0.591 0.512
PA 0.87 0.875 0.909 0.824 0.889 0.848 0.871 0.823 0.909 0.866
Sleep and HRV 0.667 0.524 0.545 0.647 0.6 0.579 0.591 0.647 0.545 0.590
Sleep and PA 0.833 0.867 0.909 0.765 0.87 0.812 0.845 0.765 0.909 0.837
HRV and PA 0.909 0.882 0.909 0.882 0.909 0.882 0.897 0.882 0.909 0.896
All 0.87 0.875 0.909 0.824 0.889 0.848 0.871 0.823 0.909 0.866

*HRV: heart rate variability.
bpA: physical activity.
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Figure 2. F1-scores of decision tree and gradient boosting for different data sets. HRV: heart rate variability; PA: physical activity.
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Figure 3. Features used in decision tree model for physical activity data set.
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As did the decision tree model, the gradient boosting model had
better classification results for data sets containing physical
activity than for other data sets. Moreover, gradient boosting
performed better on the data set of physical activity features
than it did on the data set of physical activity and sleep features.
The model’s performance is the same for all features and
physical activity features. However, the gradient boosting model
achieved higher performance on the data set containing both
physical activity and HRV features than it did on any other data
set.

The gradient boosting model can correctly detect nonlonely
persons with more than 90% accuracy on data sets that contain
physical activity features. Moreover, this model achieves a
performance higher than 88% in detecting lonely participants.
The results show that adding sleep features can negatively affect
the performance of gradient boosting in correctly detecting
lonely people but has no effect on detecting nonlonely people.

Feature Importance in Loneliness Prediction

We investigated the importance of the features in the decision
tree and the gradient boosting models on data sets that achieved
a weighted F|-score higher than 80%. For the decision tree, in
the 4 models with the highest F;-score, the most important
features were the intensity of activity and kurtosis of the steps
during the day (based on hourly data). Other features that
contributed to the prediction were resting SDNN, LF, LF/HF,
maximum, median, and mean duration of activity during the
day. For gradient boosting, same as the decision tree, the most
important features were also the intensity of activity and kurtosis
of the step count. Other features include several distribution
parameters of total steps and duration during the day, such as
kurtosis, maximum, average, IQR, SD, range, and
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root-mean-square, sedentary time, and HRV features (including
resting HR, LF/HF, SDNN, and AVNN) also contribute in the
gradient boosting model prediction.

The most frequently selected features with high importance in
these models show their significant impact on prediction.
Therefore, the results show that intensity of activity and activity
distribution during the day have the highest association with
and effect on loneliness.

Discussion

Principal Findings

In this study, we developed 2 predictive models—decision tree
and gradient boosting—to predict loneliness during late
pregnancy and the postpartum period by using physiological
data collected by a smartwatch. The models used 8 days of data
collected passively by a smartwatch to predict maternal social
loneliness. The gradient boosting and decision tree models
achieved weighted F';-scores of 0.897 and 0.872, respectively.
Moreover, both models achieve the same sensitivity. However,
gradient boosting has higher specificity than the decision tree
model, indicating that gradient boosting performs better at
correctly detecting nonlonely people. These results show the
feasibility of predicting maternal loneliness during pregnancy
and the postpartum period by passive sensing using wearable
devices.

In addition, we investigated the importance of sleep, resting HR
and HRYV, and physical activity collected by the smartwatch for
loneliness prediction. Our results show that physical activity,
patterns of activity during the day, and resting HR and HRV
are the most important predictors of loneliness. The decision
tree results show that having high or intensive activity levels
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(ie, when most of a participant’s daily steps happen within a
short period of time) can be a good sign of nonloneliness. On
the other hand, having less intensive activity levels and a low
resting HRV when most of a participant’s activity takes place
before evening can be a predictor of loneliness.

This finding about the association between low physical activity
and increased loneliness is very important for maternity care.
It is well known that women’s levels of physical activity
decrease as pregnancy proceeds [39]. By contrast, high levels
of prenatal activity and exercise are associated with lower
pregnancy-related and obstetric complications as well as a higher
health-related quality of life [45-47]. Though a low level of
physical activity may, in itself, be a risk for many adverse
outcomes, it could also be a sign of loneliness and thereby
further increase negative health consequences. Therefore, health
care professionals should encourage pregnant women to be
physically active but, simultaneously, should be attentive to the
signs of loneliness so that they are able to support pregnant
women individually and, by implication, promote the health of
both the mother and her fetus or infant.

Comparison With Previous Studies

To the best of our knowledge, this is the first study predicting
loneliness during pregnancy and the postpartum period based
on objective health parameters. Previous work usually
considered college students or young adults [20,21,48], and
older people [49].

Badal et al [49] used natural language processing methods to
predict loneliness in older people. Our results show higher
precision, recall, and F'-scores than their results for quantitative
loneliness prediction. Moreover, their method required a
semistructured interview. However, our method passively
collects data and requires no further effort from participants. In
another study [21], researchers used GPS and Bluetooth data
gathered by participants’ smartphones as well as ecological
momentary assessment surveys collecting real-time self-report
information about companionship types and social interactions.
Their models can predict self-report loneliness with an average
AUC equal to 0.74. In contrast, our models have better
performance, and we used a standard UCLA questionnaire for
labeling. Moreover, Doryab et al [20] predicted loneliness for
college students with an accuracy of 80.2%, based on data
collected from a smartphone and a wearable device. Our results
for pregnant women achieved higher performance than their
work did. Moreover, their model requires the use of more
information from participants (such as the phone numbers of
close friends or family members, used to assess calls to close
contacts), which raises privacy concerns. However, our work
only used physiological parameters.

In addition, some studies investigated important features in
loneliness prediction. Wang et al [48] showed that daily activity
duration, traveled distance, and activity duration in the evening
are negatively correlated with loneliness in college students.
Other studies also showed a negative correlation between
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loneliness, duration of activity, total movements, and step counts
[20,50]. This is in alignment with our results, which show
physical activity features to be the most important factors in
loneliness predictions. Ben-Zeev et al [51] reported that
loneliness was not associated with sleep duration, a result
confirmed by our study’s finding regarding participants’ sleep
parameters.

Limitations and Future Work

We have 39 valid data samples with which to train and test our
predictive models. The data set is small, but the findings
provided valuable insights, showing potential in this research
direction. The outcomes serve as a starting point, indicating the
viability of such loneliness detection methods and showing
future directions to pursue larger-scale investigations to validate
and expand upon our initial findings. In the future, we will need
to test our predictive models with more data in order to
generalize the results. In addition, the participants in this study
were healthy. Therefore, the predictive models’ validity is
limited to a healthy population. In the future, we should consider
including participants with diagnosed health problems.

We used data from late pregnancy (gestational week 36) and
12 weeks postpartum for loneliness prediction. However, it is
known that physiological health parameters such as HRV and
physical activity change during pregnancy and the postpartum
period [52,53], for example, physical activity decreases during
pregnancy. Generalizing our predictive models to the whole
pregnancy requires using data from additional weeks during
pregnancy and the postpartum period. Moreover, we combine
the data from pregnancy and postpartum to train our data set.
In the future, with a larger data set, we should investigate
pregnancy and postpartum separately and examine the
discrepancy between the 2 stages of maternal loneliness.

We used predictive models for detecting loneliness, which
predict loneliness based on objective health data. However,
these models lack the causality effects between loneliness and
objective parameters. In the future, we should use causal
inference methods to investigate the cause-and-effect relations
between the parameters.

Conclusions

In this paper, we present predictive machine learning models
for loneliness prediction during pregnancy and the postpartum
period. Using HRYV, sleep, and physical activity data collected
by smartwatches, our presented predictive models achieved
high F|-scores. Our findings illustrate the potential benefit and
feasibility of predicting loneliness during pregnancy by using
objective data collected passively through a smartwatch. In
addition, our findings provide insight into which physiological
parameters are associated with loneliness during late pregnancy
and the postpartum period. Using passive sensing and predictive
models to predict and detect loneliness can support the creation
of interventions based on prediction outcomes and thereby
effectively improve maternal and infant well-being and prevent
adverse health outcomes related to loneliness.
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HR: heart rate

HRYV: heart rate variability

IBI: interbeat interval

LF: low-frequency range

PPG: photoplethysmography

RFE: recursive feature elimination

RMSSD: root-mean-square of the successive differences

ROC: receiver operating characteristic

SDNN: SD of IBIs

SVM: support vector machine

TST: total sleep time

UCLA: University of California, Los Angeles

WASO: wake after sleep onset
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