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Abstract

Observations of the S stars, the cluster of young stars in the inner 0.1 pc of the Galactic center, have been crucial in
providing conclusive evidence for a supermassive black hole at the center of our galaxy. Since some of the stars have
orbits less than that of a typical human lifetime, it is possible to observe multiple orbits and test the weak-field regime
of general relativity. Current calculations oforbits require relatively slow and expensive computations in order to
perform numerical integrations for the position and momentum of each star at each observing time. In this paper, we
present a computationally efficient, first-order post-Newtonian model for the astrometric and spectroscopic data
gathered for the S stars. We find that future, 30 m class telescopes—and potentially even current large telescopes with
very high spectroscopic resolution—may be able to detect the Shapiro effect for an S star in the next decade or so.

Unified Astronomy Thesaurus concepts: General relativity (641); Two-body problem (1723); Orbital motion
(1179); Supermassive black holes (1663); Galactic center (565)

1. Introduction

Supermassive black holes are located at the center of most
large galaxies (e.g., Kormendy & Richstone 1995; Kormendy
& Ho 2013) and provide a unique environment for probing the
effects of general relativity (GR). The Milky Way contains its
own central black hole, Sagittarius A* (Sgr A*; McGee &
Bolton 1954; Downes & Martin 1971; Lo 1989; Lo et al. 1993;
Backer 1994; Genzel et al. 1994; Ghez et al. 1998; Eckart &
Genzel 1999), which is surrounded by a cluster of young stars
(referred to as S stars; Eckart & Genzel 1996, 1997; Ghez et al.
1998; Genzel & Eckart 1998; Eckart et al. 1999). Measuring
their orbits have helped measure the ratio of the mass-to-
distance ratio of Sgr A* (Genzel et al. 1996; Eckart & Genzel
1996, 1997; Genzel et al. 1997; Ghez et al. 2000, 2008; Do
et al. 2013; Boehle et al. 2016).
One of the closest stars to Sgr A* is S0-2 (also known as S2;

Schödel et al. 2002; Ghez et al. 2003; Gillessen et al. 2009),
which has an orbital period of around 16 yr and an eccentricity
of 0.88. Long-term studies of its orbit led to the first detection
of gravitational effects during its 2018 periapsis—namely,
gravitational redshift (GRAVITY Collaboration et al. 2018,
2019; Do et al. 2019; GRAVITY Collaboration et al. 2021,
2022a) and Schwarzschild precession (GRAVITY Collabora-
tion et al. 2020)—in an S-star orbit. As both photometric and
spectroscopic sensitivities improve and shorter-period S-star
candidates are identified (e.g., Peißker et al. 2020a, 2020b),
additional tools are needed to analyze and detect higher-order
GR effects, such as the Shapiro delay, and additional
precession due to the frame dragging and quadrupole moment
of the spacetime (e.g., Wex & Kopeikin 1999; Weinberg &
Milosavljevic 2004; Will 2008; Angélil et al. 2010; Merritt
et al. 2010; Angélil & Saha 2014; Psaltis et al. 2016; Grould
et al. 2017; Waisberg et al. 2018).

Current modeling of S-star orbits involves integrating
numerically the GR equations of motion for each time step
(e.g., Gillessen et al. 2017; Do et al. 2019). This method
requires integrating across the span of observations using very
small time steps to avoid error buildup and results in slow,
expensive computations. Furthermore, the computational cost
of such numerical calculations increases rapidly when using the
orbits of multiple stars to jointly constrain the shared properties
of the system (e.g., the black hole mass), since this involves
simultaneously solving the geodesic equations for each time
step for each star. This approach could become prohibitive
when searching the multidimensional orbital parameter space
with a statistical sampling algorithm, such as a Markov Chain
Monte Carlo (MCMC), to obtain optimal solutions and
quantify uncertainties in orbital parameters.
A simplification to these calculations can be introduced

because of the fact that S-star orbits have pericenter distances
that range from 1400 Sgr A* Schwarzschild radii to values that
are larger by orders of magnitude (Gillessen et al. 2017). At
such distances the orbits can be modeled as primarily Keplerian
orbits with small corrections caused by GR effects. A
framework for describing this behavior is through a semi-
analytic post-Newtonian (PN) model, which uses traditional
Keplerian orbital equations with additional terms up to some
order in v/c, derived from GR equations.
Damour & Deruelle (1985, 1986, referred to hereafter as

D&DI and D&DII) obtained an elegant analytic solution to the
two-body problem in the first post-Newtonian order (1PN),
which incorporates a variety of relativistic effects. The timing
model developed by D&DII has been the workhorse for the
pulsar community for many years in detecting relativistic
effects (e.g., Edwards et al. 2006). It was further expanded to
include second-order post-Newtonian (2PN) terms (Damour &
Schafer 1988; Wex 1995).
While the D&DII analytic solution has been implemented in

a timing model for fitting pulsar arrival times, the same model
is not readily applicable for fitting astrometric and spectro-
scopic data of stars. This is because the latter relies on the
Doppler shifts of absorption or emission lines in the stellar
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spectra as opposed to time intervals between pulses. The beauty
of the analytic D&DII timing model, however, makes it
possible to derive the line-of-sight velocities that correspond to
a variety of time delays.

In this paper, we use the framework of the D&DI and D&DII
1PN two-body model (in harmonic coordinates) to derive a
new analytic astrometric and spectroscopic model that
incorporates the relativistic and astrophysical effects relevant
to modeling S-star orbits.

In addition to computational efficiency, there are significant
scientific advantages to our approach. In the numerical
approach, all relativistic effects of the same PN order that are
embedded in the geodesic equations are reported as a single
observable (i.e., the position in the sky or spectroscopic line
shift). In principle, the magnitudes of the individual effects can
be disentangled by exploring the differences in the numerical
solutions with and without each effect (Grould et al. 2017). In
contrast, a PN analytic approach, such as our model, allows for
calculating directly the characteristic “fingerprint” of each effect
on the observables separately from the others (see Section 6),
while providing a direct analytic handle of the dependence of
each effect on the various parameters of the system.

The following sections present the two-body orbital
equations (Section 2), the projection of those equations to the
plane of the sky (Section 3), and the equations for spectro-
scopic effects (Section 4). We discuss the implications of the
model for S-star observations in Section 6. Unless otherwise
indicated, we use geometrized units, i.e., G= c= 1, where G is
the gravitational constant and c is the speed of light.

2. Orbital Model

As discussed in Section 1, our model has three main
components: the two-body orbital model, the astrometric model,
and the spectroscopic model. Since we want to use our model to
be able to fit observations of the S stars, we first identify what
parameters are the observables. With telescopes, we are able to
observe the projected positions of the stars, i.e., R.A. (α) and
decl. (δ), and the radial velocities derived from their spectra:

l
l

=
D( ) ( ) ( )v t

t
, 1z obs

obs

0

where λ0 is the rest-frame wavelength of the stellar absorption or
emission line used for measuring radial velocities and Δλ is the
shift at time tobs between observed and rest-frame wavelengths.

Four free parameters, the orbital period (P), the total mass of
the system (M), the mass ratio of the two bodies (q), and the
radial eccentricity (eR), govern the shape, period, and rate of
precession of the two-body orbits.

The orientations of the orbits with respect to Earth determine
the two-dimensional motions in the sky (i.e., the astrometric
model) and the line-of-sight motions, which we can derive
through spectroscopy. The three orientation angles, the
inclination (i), argument of ascending node (Ω), initial
argument of periapsis (ω0), and initial time of periapsis (or
epoch of position, t0), are free parameters for our model. We
must also fit the projected and line-of-sight proper motions of
the Galactic center with respect to Earth (μα, μδ, μ∥).

Nineteen additional quantities (introduced in the following
sections) are derived parameters that we calculate from the
observed or free parameters. Table 1 in Appendix B lists all the
parameters introduced in this paper with appropriate references

and units. Figure 1 illustrates how the binary system orbital
parameters relate to each other.
In this section, we present the orbital equations and

parameters in geometrized units.

2.1. Coordinate Systems

We use four main coordinate systems/reference frames
(Figure 2), all of which are described in Edwards et al. (2006).
These are the star reference frame (denoted by the subscript
“star”), the binary barycenter (BB), the solar system
barycenter (SSB), and the observer reference frame (“obs”).
The different reference frames are necessary to define the
various time delays discussed in Section 4. All celestial sky
coordinates are given in the International Celestial Reference
System (Luzum & Petit 2015).
The times (or “clocks”) we use in this paper are directly

related to the four reference frames. We define the time of
emission as measured at the stellar location as tstar, the same
time as measured by an observer at the binary barycenter as
tBB, the time of arrival at the binary barycenter as ta,BB, the time

Figure 1. The binary orbital parameters in the barycenter frame of the system.
The large red, precessing ellipse shows the motion of the smaller mass m2 over
roughly two periods. Similarly, the smaller blue ellipse shows the motion of the
larger mass m1 over the same amount of time. Dotted magenta lines mark the
semimajor and semiminor axes of the ellipses for both objects around the
binary barycenter, which is indicated by a black dot. Arrows between the
binary barycenter and the two masses denote the distances r1 and r2 between
the binary barycenter and orbiting objects. A black “x” marks the closest
approach that the smaller mass m2 makes to the larger mass m1, which
precesses by an angle Δθ for each orbit. The position angle, θ, is the angle
formed between the periapsis point and the location of one of the masses,
which are offset from each other by 180°.
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of arrival at the solar system barycenter as tSSB, and the time of
arrival recorded by the observer on Earth as tobs.

The relation between the observer light arrival time tobs and
the star light emission time tstar (used for the time-dependent
orbital equations in Section 2.7) is the star-frame emission time
plus the sum of all time delays due to binary system motion,
solar system motion, and motion between the binary barycenter
and solar system barycenter/observer, i.e.,



=
+ D + D + D
+ D
+ D

[ ]
[ ]

[ ] ( )

t t
binary effects

parallax effects
. solar system effects 2R

obs star

RB EB SB

KB

In our model, the total binary system time delay includes the
binary Roemer delay (ΔRB), binary Einstein delay (ΔEB), and
binary Shapiro delay (ΔSB). The total solar-system-related time
delay is the Earth Roemer delay (ΔR☉). The interstellar time
delay comprises time delays due to parallax and proper motion,
which is simply the Kopeikin effect (ΔKB). We provide explicit
formulae for the time delays in Section 4.

Additional relations between the other time variables are as
follows. The binary Einstein delay relates the star emission
time to the time as measured at the binary barycenter by an
inertial observer as tBB= tstar+ΔEB. The time of arrival at the
binary barycenter relates to the star emission time via the
binary effects, i.e., ta,BB= tstar+ΔRB+ΔEB+ΔSB. Similarly,
the observer time of arrival relates to the solar system

barycenter time of arrival via the solar system effects, i.e.,
tobs= tSSB+ΔR☉. Since the spectroscopic timing model is less
sensitive than pulsar timing, we neglect interstellar delays (such
as dispersion). As a result, the solar system barycenter time of
arrival and binary barycenter time of arrival are related by a
constant offset, which we set to zero without loss of generality.

2.2. Mass Measures

Three of the key values in describing a two-body orbital
system are the total system mass and the individual masses of
the two objects. We denote the component masses by m1 and
m2, such that m2�m1. In the case of modeling stars orbiting a
supermassive black hole, m1 is the mass of the black hole and
m2 is the mass of the star. The total mass of the system is
M=m1+m2. In classical, two-body orbits, the mass ratio of
the two objects,

= ( )q
m

m
, 3a2

1

is an important parameter that we can use to rewrite the reduced
mass,

m =
+

=
+

( )m m

m m

m

q1
, 3b1 2

1 2

2

and dimensionless reduced mass (ν) as

n
m

=
+

=
+( )

( )
m m

q

q1
. 3c

1 2
2

Note that in Sgr A*
–S-star systems, the mass ratios can be

q∼ 10−6
–10−5. In these cases, one can take the limit of q= 1,

but in this paper we leave the full expressions for generality.

2.3. Period, Semimajor Axis, and Mean Motion

The easiest, most direct property to measure is the orbital
period, P. With the total system mass and orbital period, we use
the 1PN version of Kepler’s law (Blanchet et al. 1998, their
Equation (8.6)) to calculate the center-of-mass semimajor axis,
implicitly, via

n= + - +⎡
⎣⎢

⎤
⎦⎥

( ) ( )P
M

a

M

a
1 3 . 4a

R R

2
3

Another useful related quantity is the mean motion, the
constant angular speed needed for an object to complete an
equivalent circular orbit. It relates to the inverse period as

p
= ( )n

P

2
. 4b

2.4. Energy and Momentum

In addition to calculating the semimajor axis, aR, from P, we
also fit for the eccentricity, eR. In combination with the system
mass, M, and the dimensionless reduced mass, ν, these two
parameters set the orbital behavior and we use them to calculate
the energy and angular momentum of the system. Here, the
total energy is

n
=

- -( )
( )E

M

M a

2

7 4
5a

R

Figure 2. The relationship between the observer frame, the solar system
barycenter, the binary barycenter, and the star frame, as defined in this paper.
Distances and object sizes have been rescaled to show effect. The red axes for
each reference frame are arbitrary to show how coordinate systems may vary
from frame to frame depending on orientation.
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and the total angular momentum is

n n
n

=
- + - + - -

+ -
⎧
⎨⎩

⎫
⎬⎭

[ ( )]( )
[ ( )]

( )J M
e E E

E E

1 2 5 3 6

2 5 3
. 5bR

2 1 2

We also define the quantity K, which is the GR correction to
the total angular momentum of the system, rewritten in natural
units from D&DI (their Equation (4.14)) and given by

=
-

( )K
J

J M6
. 5c

2 2

This is a particularly important quantity, as the value of K is
what governs the orbital precession,

q pD = -( ) ( )K2 1 , 5d
where Δθ is the angle the orbit precesses in each
period (D&DI).

2.5. Other Eccentricities

While Keplerian orbits have only one effective eccentricity,
eR, in GR, there are additional eccentricities that result from the
curved spacetime (D&DI, their Equations (3.6b)–(c), (4.13)). In
the 1PN model, these are the time eccentricity (et; D&DI, their
Equation (3.6c)),

n= + -⎡
⎣⎢

⎛
⎝

⎞
⎠
⎤
⎦⎥

( )e e
M

a
1 4

3

2
, 6at R

R

and the angular eccentricity (eθ; D&DI, their Equation (4.13)),
which in natural units is

m
= +q ⎜ ⎟

⎛
⎝

⎞
⎠

( )e e
a

1
2

. 6bR
r

In some cases, the differences between the eccentricities are
negligible and all eccentricity expressions give comparable
answers (see Section 4 for examples). The radial eccentricity
can be determined readily from observational astrometric data.

2.6. Individual Object Parameters

As noted in Section 2.3, the semimajor axis and radial
eccentricity defined here are with respect to the center of mass
of the system. Since observations of the S stars result in
tracking the orbits of the individual stars, we need the derived
parameters (i.e., the semimajor axis and radial eccentricity) that
give the orbital shapes of both objects in a two-body system,
which we can derive from the corresponding effective one-
body parameters (i.e., aR and eR) and the mass ratio (q).

For the more massive of the two bodies, m1, the semimajor
axis of its respective orbit around the binary barycenter is

=
+

( )a a
q

q1
, 7ar R1

and the radial eccentricity is

= +
-
+

⎡
⎣⎢

⎤
⎦⎥

( )
( )

( )e e
m q

a q
1

1

2 1
7br R

R

1
1

(D&DI, their Equations (6.3a)–(b), in natural units and mass
ratio q).

Similarly, the less massive of the two bodies, m2, follows an
orbit around the binary barycenter with a semimajor axis of

=
+

( )a a
q

1

1
, 7cr R2

and a radial eccentricity of

= -
-
+

⎡
⎣⎢

⎤
⎦⎥

( )
( )

( )e e
m q

a q
1

1

2 1
7dr R

R

2
2

(D&DI, their Equations (6.3a)–(b), in natural units and mass
ratio q).

2.7. Time-dependent Orbital Motion

In Sections 2.2 through 2.6, we presented the equations
necessary for calculating many of the derived parameters in the
model. In this section, we use those parameters to obtain the
time-dependent orbital motion of the individual objects and the
binary barycenter.
The heart of this time dependence comes from Kepler’s

equation, which relates time eccentricity (et), mean motion (n),
mean anomaly (u), star time of emission (tstar), and epoch of
position (t0) via D&DI (their Equation (3.3)):

- - - =( ) ( ) ( )u e u n t tsin 0. 8at star 0

The mean anomaly, which is the angle between the periapsis
of an orbit and another position in the orbit at some time, is
crucial for calculating the other values in the polar orbital
equations (i.e., radius and angle). The previous equation does
not have an analytical solution for u but can be solved using a
fast algorithm, such as the Newton–Raphson method. Note
that, unlike the time-dependent equations in the astrometric
model (Section 3), which use the observer time tobs, Kepler’s
equation is evaluated at the star time of emission tstar. This
difference, described by Equation (2), takes into account the
vacuum retardation effect for the astrometric model.
The time-dependent distances of the two orbiting bodies

from the barycenter, as given in D&DI (their Equations (7.1d)–
(e)), are

= -( ) ( )r a e u1 cos , 8br r1 1 1

and

= -( ) ( )r a e u1 cos . 8cr r2 2 2

Calculating the position angle θ of the orbiting objects is
somewhat more complicated. D&DI present the rather
straightforward equation (their Equation (4.11b))

q q= + ´
+
-

q

q
⎜ ⎟
⎡

⎣
⎢
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎤

⎦
⎥ ( )K

e

e

u
2 arctan

1

1
tan

2
, 8d0

1 2

but using this in computations requires special care because the
evaluation of the term ( )utan 2 results in floating-point errors
for the calculated value of θ around the asymptotes (i.e., u= xπ
for odd x). Instead, we use a series expansion (D&DII, their
Equation (17d)) of this equation (D&DI, their Equation
(4.11a)), which avoids these computational issues:

q q= + ´ ( ) ( )K A u , 8ee0
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where

å= +
+ -

q
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¥
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We performed convergence tests (Figure 3) of the series
Ae(u) at different values of angular eccentricity (eθ) and
determined that only a small number of terms is needed for
necessary computational accuracy, e.g., 30 terms for fractional
errors of less than 10−8.

Much like the position angle θ, the argument of periapsis
also precesses due to GR effects (Equation 5(c)). Given the
initial argument of periapsis, the time-dependent argument of
periapsis (in terms of the mean anomaly, u) is

w w= + -( ) ( ) ( ) ( )u K A u1 . 8ge0

3. Astrometric Model

In the previous section (Section 2), the 1PN orbital equations
are expressed with respect to the binary barycenter. In order to
model observations, however, we must transform them to a
frame with respect to the plane of the sky, i.e., in terms of R.A.
(α) and decl. (δ).
We make a transformation from binary barycenter motions

to projected sky motions by first converting the polar binary
barycentric frame (r1, r2, θ) to a Cartesian binary barycentric
frame (x, y) as is typically done, i.e.,

q= ( )x r cos , 9a1 1

q= ( )y r sin , 9b1 1

q p= +( ) ( )x r cos , 9c2 2

and

q p= +( ) ( )y r sin . 9d2 2

We transform the positions from the Cartesian binary
barycentric frame to the plane of the sky using using three
angles: the inclination (i), longitude of the ascending node (Ω),
and argument of periapsis (ω0). The inclination describes the
tilt of the orbit with respect to the observer, while the longitude
of the ascending node is the rotation of the location of the
ascending node (i.e., where the orbit intersects with the
reference plane) with respect to the center of mass. Similarly,
the argument of periapsis is the rotation of the object point of
closest approach to the center of mass in the orbital plane. See
Figure 4 for a graphic depiction.

We use the Thiele–Innes constants (A, B, C, F, G, H) defined
by Equations (20)–(25) in O’Neil et al. (2019) to describe this
rotation:

w w= W - W ( )A icos cos sin sin cos , 9e

w w= W - W ( )B isin cos cos sin cos , 9f

w= ( )C isin sin , 9g

w w= - W - W ( )F icos sin sin cos cos , 9h

w w= - W - W ( )G isin sin cos cos cos , 9i

and

w= ( )H icos sin . 9j

The relative R.A. and decl. values (Δα and Δδ) with respect
to the celestial coordinates of the binary barycenter in the sky
(denoted by α0 and δ0) use combinations of these constants (as

described in O’Neil et al. 2019), such that

a a aD = - = +( ) ( )
d
Bx Gy

1
, 9k0

and

d d dD = - = +( ) ( )
d
Ax Fy

1
, 9l0

where d is the distance between the solar system barycenter and
the binary barycenter. These sky projection values are in units
of radians.
While proper motion and parallax do fall under the category

of astrometry, since they affect the observed positions of the
binary system in the sky, they are calibrated out by subtracting
the binary barycenter coordinates from the observed R.A. and
decl. values, as done in Equations 9(k) and 9(l). The binary
barycenter coordinates, α0 and δ0, change over time due to
proper motion. Given some sky coordinate, ai and δi, at initial
time t0, after time tobs, the new R.A. becomes

a a m= + -a( ) ( ) ( )t t t , 9mi0 obs 0

and the new decl. becomes

d d m= + -d( ) ( ) ( )t t t . 9ni0 obs 0

Parallax and proper motions still contribute to line-of-sight
motions, however, and we discuss the effects on observed
radial velocities in Section 4.5.

Figure 3. Convergence plots for the calculation of the position angle of
orbiting objects (θ) with eccentricities of 0.1, 0.3, 0.5, 0.7, 0.9, and 0.98 for a
variety of different orbital phases. With the exception of very high
eccentricities, 30 terms are typically sufficient for errors of less than 10−8.

Figure 4. Diagram showing the relationship of the three angles used in the
astrometric model: inclination (i), longitude of the ascending node (Ω), and
argument of periapsis (ω). The angled blue ellipse shows the orbital plane, with
the periapsis point marked. The gray plane is parallel to the vector pointing
toward the observer and gives perspective for how the orbital plane is inclined
with respect to Earth.
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The various Newtonian and relativistic effects enter the
astrometric model in two ways, via their contribution to (i) the
relative positions of the stars and the black hole in the frame of
the binary barycenter, and (ii) the light propagation time
between the star and the observer. Indeed, Equation 8(a) for the
calculation of the relative positions is written in terms of tstar,
which is determined by propagation effects and is related to the
time of observation tobs via Equation (2). We provide explicit
equations for the various propagation effects in the following
section, since we will use the same equations to derive the
various spectroscopic effects.

In the astrometric model, so far we have neglected the effects
of gravitational lensing of the stellar positions in the black hole
spacetime. These effects have been explored, for example, in
Nusser & Broadhurst (2004) and Bozza & Mancini (2012),
and, albeit nondetectable with current data, might be relevant
for modeling future observations (Grould et al. 2017).

4. Spectroscopic Model

As discussed in Section 1, pulsar timing models (e.g.,
D&DII; Edwards et al. 2006) use the time delays between
emission and observation of pulses from binary pulsar systems
to fit for the orbital parameters. With the S stars, we have both
astrometric as well as spectroscopic data. In the previous
section, we presented the equations we use to model the
astrometric data. In this section, we present new line-of-sight
velocity equations, which we derive from the time delay
equations given in Edwards et al. (2006).
Our spectroscopic model incorporates five timing effects

(presented in the following subsections): the binary Roemer
effect (Section 4.1), the periastron precession (Section 4.2), the
binary Einstein effect (Section 4.3), the binary Shapiro effect
(Section 4.4), and the Earth Roemer effect (Section 4.6). We
also derive velocity equations for the Kopeikin effect (Section
4.5) and the solar Shapiro effect (which we do not report here
for brevity) to check their magnitudes and confirm that they are
negligible. This allows us to omit other timing delays listed in
Edwards et al. (2006) that are caused by Earth, the solar
system, interstellar space, as well as higher-order GR effects,
such as frame dragging, quadrupole moment, and additional
2PN terms as described in Angélil et al. (2010).

All time derivatives listed in this section are with respect to
the observer time (tobs), or the arrival time of the light from the
star as seen by the observer.

4.1. Binary Roemer Effect

The binary Roemer delay component (i.e., the component of
the Roemer delay that pertains only to the movement of the star
around the binary barycenter) is denoted by ΔRB. It is simply
the light travel time for the line-of-sight distance across the
orbit divided by the speed of light (i.e., D = - ˆ · rn cRB ).
Adapting notation from both D&DII and Edwards et al. (2006),
we calculate the binary Roemer delay as

w
w

D =- -

+ - q

[( )
( ) ] ( )

a u e i

u e i

cos sin sin

sin 1 cos sin . 10a
r rRB

2 1 2

Taking the time derivative of Equation 10(a) gives the
equation of radial velocity resulting from the binary Roemer

effect:

w

w

D
=- -

- +

q

w

[ ( )

] ( )

d

dt
a
du

dt
i u e

u v

sin cos cos 1

sin sin , 10b

r
RB 2 1 2

where du/dt is derived from Kepler’s equation (Equation 8(a))
such that

p
=

-
( )du

dt P e u

2 1

1 cos
. 10c

t

The additional term vω results from the time dependence of the
argument of periastron, ω. It is known as the periastron
precession, which we introduce below.

4.2. Periastron Precession

Periastron precession is a first-order GR effect that causes the
orbit of an object to shift or rotate around its pericenter over
time. As the location of periapsis advances around the binary
barycenter, the slight change in direction from a regular
elliptical orbit results in an observed, line-of-sight velocity
boost for the orbiting object. The dω/dt term in the time
derivative of the binary Roemer delay (Equation 10(b))
describes this spectroscopic effect:

w
w

w

=-

- -

w

q

[

( ) ] ( )

v a
d

dt
i u

u e

sin cos cos

sin sin 1 . 11a

r

2 1 2

The time derivative of the argument of periastron (dω/dt)
relates to the time derivative of the mean anomaly du/dt
(Equation 10(c)) by

w
= -

= -
-

-
q

q

( ) ( )

( ) ( ) ( )

d

dt
K

dA u

dt

K
e

e u

du

dt

1

1
1

1 cos
, 11b

e

2 1 2

where K is again the dimensionless parameter related to the
total momentum of the system and determines the amount of
orbital precession (Equations 5(c)–5(d) and 8(g)).

4.3. Binary Einstein Effect

The binary Einstein delay (ΔEB) accounts for the difference
between the star time of emission (tstar) and the binary
barycenter time (tBB), which occurs due to both gravitational
redshift (from GR) and time dilation (from special relativity).
We write the binary Einstein time delay as

D =
+
+

( )
( )

( )e

n

m q

a q
u

2

1
sin , 12at

R
EB

1

where m1 is the companion mass to the orbiting star (since we
define m1�m2). The derivative of this time delay, then, is
simply

D
=

+
+

( )
( )

( )d

dt

e

n

m q

a q
u
du

dt

2

1
cos , 12bt

R

EB 1
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which, when we substitute in the expression for du/dt
(Equation 10(c)), becomes

D
=

-
+
+

( )
( )

( )d

dt

e

e u

m q

a q
u

1 cos

2

1
cos . 12ct

t R

EB 1

In the case of a circular orbit, Equation 12(c) results in a null
effect, even though gravitational and relativistic Doppler effects
are still present. The reason is that this equation only describes
the change in the combined wavelength shift along an eccentric
orbit introduced by the changing separation and velocity
magnitude. The baseline effect is absorbed into the systemic
radial velocity of the object, i.e., the line-of-sight proper motion
(μ∥), which is a free parameter, and can be trivially obtained in
post-processing.

4.4. Binary Shapiro Effect

The binary Shapiro delay (ΔSB) describes the GR effect
introduced when light from one of the bodies in the model
passes through the gravitational well of the other. We rewrite
Equation (73) from Edwards et al. (2006) in geometrized units
as

w

w

D =- - - -

+ -

{ [ ( )

]} ( )

m e u i u e

e u

2 ln 1 cos sin sin cos

1 cos sin , 13a

SB 1

2

where the usage of e without a subscript indicates that any
eccentricity (i.e., eR, eθ, et) may be used, as the difference is
negligible. This results from the fact that the expressions for the
three eccentricities differ at the ∼1/c2 order, which we omit in
the 1PN limit since they already multiply a term of the same
order.

The time derivative of the binary Shapiro delay (ΔSB) gives
the binary Shapiro effect for spectroscopic measurements:

w w

D
=- -

- -


[

( )] ( )

d

dt

m du

dt
e u i

u e u

2
sin sin

cos cos 1 sin sin , 13b

SB 1

2

where we have introduced the symbol , i.e.,

w

w

º - - -

+ -

 [ ( )

] ( )

e u i u e

u e

1 cos sin sin cos

cos sin 1 . 13c2

4.5. Kopeikin Effect

The Kopeikin effect combines spectroscopic contributions
from both proper motion of the binary system and the parallax
as seen from Earth. As discussed in Section 3, this is an
astrometric effect, as well, but is calibrated out by subtracting
the binary barycenter location from all observed positions of
the two bodies for each time step or observation.

We base our definition of the Kopeikin effect (ΔKB) on
Sections 2.7.1 and 2.7.2 in Edwards et al. (2006), where it is
broken into three components (Edwards et al. 2006, their
Equation (72)):

D = D + D + D ( ). 14aKB SR AOP OP

Here, ΔSR is caused by changes in the viewing angle geometry
due to the proper motion, ΔAOP is due to the annual orbital
parallax, and ΔOP is due to the orbital parallax (the orbital
equivalent of the Shklovskii effect). These three components,
rewritten in geometrized units from Edwards et al. (2006, their

Equations (73)–(75)), are

m m
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where C and S are given by Equations (65) and (66) in Edwards
et al. (2006) and m m d=a a*

cos .
The annual orbital parallax and orbital parallax distances (to

the binary barycenter) are approximately equal such that
d≈ dAOP≈ dOP. As with the previous effects, the total
Kopeikin effect is simply the time derivative of the above
equations:

D
=

D
+

D
+

D ( )d

dt

d

dt

d

dt

d

dt
, 14eKB SR AOP OP

where

m m

m m

D
= -

W + W

+ W - W

+
D

-

a d

a d

⎡
⎣

⎤
⎦

( )

( )

( )

( )

*

*

d

dt
a i t t

dC

dt
i

dS

dt
i

t t

sin

sin cos csc

cos sin cot

, 14f

r
SR

a,BB 0

SR

a,BB 0

D
= - + ( ) ( )d

dt

a

d
isin , 14grAOP

AOP

and

D
= +⎛

⎝
⎞
⎠

( )d

dt

a

d
i C

dC

dt
i S

dS

dt
isin csc cot . 14hrOP

2

OP

2 2 2

Here, the symbols  and  are defined as
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The time derivatives of the expressions for C and S are
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4.6. Earth Roemer Effect

The Earth Roemer effect is analogous to the binary Roemer
effect (Section 4.1), except that the changes in light travel time
are due to the motion of the Earth around the solar system
barycenter. We define the Earth-motion Roemer delay
component using similar notation to Equations (13)–(16) in
Edwards et al. (2006):

D = - ⋅Å ( )^r R , 15aR BB

where r⊕ is the vector from the solar system barycenter to the
Earth:

=Å

Å

Å

Å

⎛

⎝
⎜

⎞

⎠
⎟ ( )r

x
y
z

, 15b

and R̂BB is the unit vector between the binary barycenter and
the observer:
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m h m m
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The binary barycenter–observer unit vector (R̂BB) breaks
down to the primary component (ĥ), which is the initial unit
vector between the observer and the binary barycenter (in
celestial coordinates), i.e.,

h
a d
a d

d
=
⎛

⎝
⎜

⎞

⎠
⎟ˆ ( )

cos cos
sin cos

sin
, 15d

and the shift in the binary barycenter position over time due to
proper motion (μα, μδ, μ∥) of the binary system. While the line-
of-sight proper motion, μ∥, is one of the free parameters for the
model, the transverse proper motion, μ⊥, depends on the R.A.
and decl. proper motions, μα and μδ. We define the transverse
proper motion as

m m a m d= +a d^ ˆ ˆ ( )
*

, 15e

where the projected R.A. and decl. vectors â and d̂ are given by
Edwards et al. (2006, their Equations (17)–(18)):

a
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The Earth Roemer effect is the time derivative of the Earth
Roemer delay (Equation 15(a)), such that

D
= - + + +   ( ) ( )☉d

dt
, 15hR

1 2 3 4

where the symbols 1, 2, 3, and 4 are shorthand for
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5. Summary of Model

Having presented all of the equations and parameters we use
in our analytic, 1PN model for S stars, we summarize in
Figure 5 the steps one should take to implement it.
The Earth Roemer and Kopeikin effects both depend on the

position of the Earth around the Sun, and so to calculate them we
must use Earth ephemerides. For the time derivatives of any values
that use these data, we use three-point midpoint differentiation.

6. Spectroscopic Effects of S Stars

6.1. Magnitude of Spectroscopic Effects

Due to the exquisite accuracy of pulsar observations, pulsar
timing models must incorporate numerous time delays in
addition to the geometric and relativistic effects from the binary
system. Such effects include atmospheric delays, dispersion
from both the interplanetary medium and interstellar medium,
frequency-dependent delays, and gravitational effects from
many bodies in our solar system, namely Venus, Jupiter,
Saturn, Uranus, and Neptune (in addition to the Sun).
Timing models for spectroscopic observations of S stars, on

the other hand, do not require the same accuracy. The current
sensitivity level for Doppler shifts on the instruments capable
of observing the S stars (i.e., Keck and the Very Large
Telescope) are around 10 km s−1 (Thatte et al. 1998; Martin
et al. 2018), and upcoming ground-based 25–40 m extremely
large telescopes (ELTs) are anticipated to have velocity
sensitivities of around 1 km s−1 (e.g., Mawet et al. 2019;
Marconi et al. 2021). As a result, we may neglect timing effects
that are significantly smaller than predicted ELT-class
sensitivities. Note that the ELT-class sensitivities have been
estimated for stars down to ∼19 mid-infrared magnitude, but
will depend on the actual properties of stars with smaller orbital
separations that may be discovered in the future.
In considering the possibility of detecting higher-order GR

effects, it is useful to consider the order-of-magnitude strengths
of the spectroscopic effects described in Section 4. We derived
scaling equations for the six velocity components of the
spectroscopic model and present them in Appendix A.
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Using these scaling relations, we show in Figure 6 the relative
strengths of the binary Roemer effect, binary Einstein effect,
periastron precession, binary Shapiro effect, Earth Roemer
effect, and Kopeikin effect for orbital periods that range from
0.5 to 500 yr with a fixed system mass and two-body mass ratio
that is characteristic of Sgr A* and the S stars. The widths of the
bands result from a range of eccentricities, e= 0.7–0.98, with
the smaller effects corresponding to lower eccentricities.

In this plot, we see that the absolute magnitudes of the
spectroscopic effects differ greatly from each other: while the
binary Roemer effect results in velocities that range from 102–
105 km s−1, the Kopeikin effect has velocities that span 10−4

–

10−2 km s−1. The binary Einstein, periastron precession, and
binary Shapiro effects fall between these two extremes, with
Doppler effect ranges of 100−103 km s−1, 10−3

–104 km s−1,
and 10−3

–102 km s−1, respectively.
Another notable aspect of Figure 6 is the difference in the

slopes of the various spectroscopic effects. As a purely
geometric phenomenon, wavelength shifts introduced by the
binary Roemer effect scale as l lD ~ ~- -a PR

1 2 1 3,
growing larger with smaller semimajor axes. The magnitudes
of the periastron precession and binary Shapiro effects also
increase with smaller semimajor axes and periods, although
they do so much more rapidly ( l lD ~ ~- -a PR

3 2 1). This is
because of the steeper scaling of the PN corrections with orbital

separation. Similarly, the binary Einstein effect lies in between
these scalings ( l lD ~ ~- -a PR

1 2 3). The Kopeikin effect,
on the other hand, is not a GR effect. Rather, it describes the
radial-velocity contributions from the parallax and proper
motions of the binary system. As a result, since there is more
time for parallactic effects and proper motions to affect
observations for any given orbit, the magnitude of the
corresponding Doppler effect grows as the orbital period
increases (Δλ/λ∼ aR∼ P2/3). The magnitude of the Earth
Roemer spectroscopic effect is independent of binary orbital
period and, as such, has a constant magnitude of ∼30 km s−1.
One last property to note is the effect of eccentricity on the

magnitudes of the spectroscopic effects. For any fixed orbital
period, the binary Roemer effect has a span of two orders of
magnitude, the binary Einstein effect ranges around two orders,
the periastron precession stretches almost four orders of
magnitude, the binary Shapiro effect extends over three orders,
and the Kopeikin effect spans one order. The three GR effects
—binary Einstein effect, periastron precession, and binary
Shapiro effect—are most dramatically influenced by changes in
eccentricity. Higher eccentricities bring orbiting stars increas-
ingly closer to the central black hole, resulting in higher
angular momenta of the system (Equation 5(b)–5(c)) and larger
amounts of orbital precession (Δθ), as well as greater Doppler
contributions from the periastron precession effect. Similarly,

Figure 5. Steps for implementing the new 1PN astrometric and spectroscopic model presented in this paper.
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the smaller the periapsis distance is (due to higher
eccentricities), the closer the light from orbiting stars must
pass through the potential well of the central black hole, which
also increases the binary Shapiro effect.

We can reach several significant conclusions from Figure 6.
First, based on the expected sensitivities of ELT-class
telescopes of ∼1 km s−1, we find that the binary Shapiro effect
should be detectable by these telescopes through spectroscopic
observations alone during the next S0-2 periapsis passage in
2034. Second, if observations detect and confirm S stars with
shorter periods (10 yr) and high eccentricities (0.85 for
periods of less than a year and 0.95 for periods of less than
10 yr), existing telescopes with velocity sensitivities of
∼10 km s−1 may already be capable of detecting the first ever
binary Shapiro effect for any S star.

6.2. Fingerprints of Spectroscopic Effects

One of the key advantages of the spectroscopic model we
presented in Section 4 is that each effect has a unique signature
(or “fingerprint”) that we can search for in the data. Figure 7
shows the four binary system spectroscopic effects for the S0-2
star and a hypothetical star with period less than 10 yr, which
we refer to as S0-X. For the sake of illustration, we picked a set
of fiducial parameters similar to those listed in Peißker et al.
(2020a), although such a star has yet to be confirmed

(GRAVITY Collaboration et al. 2022b). Table 3 in Appendix
C lists the parameter values used for the S0-2 and S0-X models.
For S0-2, the binary Roemer effect (left, top) stretches from

−2000 km s−1to +4000 km s−1, whereas the periastron
precession (left, second from top), binary Einstein (left, second
from bottom), and binary Shapiro effects (left, bottom) have
ranges of ∼0 km s−1 to +11 km s−1, 0 to 200 km s−1, and
−0.25 to +0.05 km s−1, respectively. For our hypothetical, sub-
10 yr period star, S0-X, we see very different behaviors, with the
binary Roemer effect (right, top) spanning −15,000 km s−1 to
+3000 km s−1, the periastron precession (right, second from
top) ranging from −2000 km s−1 to ∼0 km s−1, the binary
Einstein effect (right, second from bottom) stretching from 0 to
1400 km s−1, and the binary Shapiro effect (right, bottom)
extending from −40 km s−1 to +60 km s−1.
Clearly, the patterns of the three effects vary greatly, both

with respect to each other and between stars. One of the
primary factors driving this is the orientation of the stellar orbit
with respect to the observer. Both the binary Roemer effect and
the periastron precession relate to the geometry of the orbit
(Newtonian and GR): the binary Roemer effect is the change in
light travel time and the precession of the periapsis point due to
GR results in an additional line-of-sight velocity boost as the
orbit precesses. As a result, both introduce radial-velocity
contributions that have the same signs. For S0-2, the effects are
primarily positive, while for S0-X, they are primarily negative.

Figure 6. Absolute magnitudes of characteristic contributions to the radial-velocity corrections in spectroscopic models of stellar orbits around Sgr A* introduced by
the various Newtonian and PN effects. Each shaded area corresponds to orbital eccentricities in the range 0.7–0.98, with lower limits corresponding to e = 0.7 and
upper limits corresponding to e = 0.98. The orientation angles of the orbits are assumed to be those of the S0-2 star. Horizontal dashed lines show the current
measurement limits for VLT/Keck observations as well as the expected limits for an ELT-class telescope. We see that while the binary Roemer effect (far left, solid
red band) is the dominant velocity contribution, the three GR effects—binary Einstein effect, periastron precession, and binary Shapiro effect—rapidly increase at
smaller semimajor axes/orbital periods. The periastron precession effect (second from right, purple band) has the strongest dependence on eccentricity and spans four
orders of magnitude, overlapping with the binary Einstein effect (second from left, yellow band) and Shapiro effect (far right, light blue band), which span one and
three orders of magnitude, respectively. While the binary system spectroscopic effects—binary Roemer, binary Einstein, periastron precession, and binary Shapiro—
decrease for larger orbital separations (semimajor axes), the Kopeikin effect describes velocity contributions due to parallax and proper motions that are due to the
movement of the observer and, as such, increases for larger orbital separations.
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Figure 7. The contributions of different Newtonian and PN effects to the line-of-sight velocities of (left) the S0-2 star and (right) S0-X, a hypothetical, sub-10 yr
period star, around Sgr A*. Unique functional forms for the different spectroscopic effects make it easy to disentangle geometric, Earth-related, and solar-system-
related effects from true GR phenomena. The eccentricity and orientation of its orbit make PN effects in a star like S0-X potentially detectable even with current
instruments.
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The binary Shapiro effect, on the other hand, is stronger
when emitted light from an orbiting star passes closer to the
black hole en route to the observer. This is the opposite of the
effect that governs the sign of the binary Roemer and periastron
precession effects, and so it primarily has the opposite sign of
the other two. Depending on the orientation of the orbit with
respect to the Earth, the binary Shapiro effect rapidly changes
sign as the star moves behind the black hole.

While the three aforementioned spectroscopic effects all
exhibit sign changes, the binary Einstein effect is always
positive. This is because, by the nature of the gravitational
redshift, the emitted light can only be redshifted.

The net effect of the different behaviors and signs of the
spectroscopic effects is that they act like fingerprints on radial-
velocity observations over time. The spectroscopic signature of
the periapsis precession (panels second from top) cannot be
confused with that of the binary Shapiro effect (bottom panels),
as they exhibit very different functional forms and signs. This
is valuable in the analysis of S-star orbits, as it enables the
identification of both binary system geometric and GR effects
and solar system geometric and GR effects, and also minimizes
the chance of confusing them.

Figure 8 zooms in on the spectroscopic effects shown in
Figure 7 to compare the timings of the maxima and minima of
each of the radial-velocity contribution effects. The velocities
are scaled to similar orders of magnitude to elucidate these
comparisons. We can see that all three effects are offset from
each other. The binary Roemer effect peaks in magnitude first,
the binary Einstein second, the periastron precession third, and
the binary Shapiro fourth. This is crucial, as it demonstrates that
the velocity contributions will not cancel out and, therefore,
fitting spectroscopic effects via the residual method is a viable
way to detect them. Heißel et al. (2022) have come to a similar
conclusion for different effects in the astrometric domain.

7. Conclusions

The results from our astrometric and spectroscopic model have
several key implications. First, calculations using the orbital
parameters of the S0-2 star (GRAVITY Collaboration et al. 2020)
show that the binary Shapiro effect should be detectable

spectroscopically by ELT-class telescopes during its next
periapsis period. For any stars discovered with shorter periods
and/or higher eccentricities, these effects could already
potentially be detected with current instruments. Although stellar
winds result in rotational broadening of lines, winds from B stars
like S0-2 (and other stars in the Galactic center) are weak and not
directly measurable (Martins et al. 2008; Fang & Chen 2021).
Furthermore, since observational studies of the S stars use broad
absorption lines to determine line-of-sight velocities, the
systematic uncertainties of ∼10 km s−1 mean that detecting the
described spectroscopic effects are still realistic. Overall, our
model shows that while astrometric data are crucial for
constraining the orbital parameters (i.e., period, orientation,
eccentricity) of a particular star, they are not essential for detect-
ing GR effects, which can be done entirely via spectroscopy.
Second, the analytic nature of the model allows us to

evaluate directly the various observables at any time without
having to integrate the differential equations of motion for each
star. This results in a remarkable reduction of computational
cost, as it can be easily demonstrated with fiducial values for
the hypothetical S0-X star. For example, due to the S0-X
orbital parameters and orientation, the velocity correction from
the periapsis precession changes dramatically over the course
of one-hundredth of its orbit by 1000 km s−1, i.e., by 100 times
the magnitude of the current measurement uncertainties.
Integrating the geodesic equations with a method of order n
(e.g., such that n= 4 for a fourth-order Runge–Kutta method)
using a time step Δt would introduce a fractional truncation
error in each time step that is ~ D - +( )t P10 n2 1, where we
have used the fact that there is significant evolution over a
fraction 10−2 of the orbital period P. The total accumulated
error after integrating for a single orbit will be
~ D D - +( )( )P t t P10 n2 1. Requiring for this error to be
smaller than the measurement error, i.e., to be ∼10−3, leads to
the conclusion that we would need at least P/Δt∼ 1002+5/n time
steps per orbit, which is 104 for n� 2. With our analytic model,
evaluating the precise correction at any point in time will take only
a handful of floating-point operations. This factor of ∼104

reduction in computational cost of using an analytic model
compared to a numerical one implies that a Bayesian MCMC
statistical study that takes an hour for the analytical model will

Figure 8. Velocity contributions of the binary Roemer effect, binary Einstein effect, periastron precession, and binary Shapiro effect for the periapsis passages of S0-2
(left) and S0-X, a hypothetical, sub-10 yr period star (right), around Sgr A*. Velocities are scaled to better show the unique shapes of the velocity components over
time. Timescale bars in the lower left of both plots show a 1 month period and 1 day period for the S0-2 and S0-X periapsis passages, respectively, as an indicator of
useful observational cadences. The peaks and troughs of the four spectroscopic effects are offset from each other in time. This implies that they will not cancel out,
which means the residual-fitting method is a viable way to attempt to detect GR phenomena with this model.
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need about a year for the numerical one. This allows more efficient
parameter space exploration as well as the possibility of fitting
multiple stellar orbits with simultaneous constraints. Upcoming
ELT-class telescopes will likely be pivotal in producing more data
for stars in the Galactic center over shorter integration times.

While the PN approach has many computational and scientific
advantages, it does not allow for a straightforward incorporation
of the perturbing effects of an extended mass distribution (see,
e.g., Jiang & Lin 1985; Rubilar & Eckart 2001). However, the
current limits on the mass of an unseen perturber are of the order
of ∼3000M☉ (GRAVITY Collaboration et al. 2020, 2022a;
Heißel et al. 2022) for extended mass within the S2 orbit and
∼1000M☉ for a compact mass within the inner arcsecond of Sgr
A* and within or around the orbit of S2 (Merritt et al. 2010;
GRAVITY Collaboration et al. 2020). Given the current
accuracy of the astrometric and spectroscopic data, the presence
of such a perturbing mass is not significant and does not compete
with the effects that we have considered at the 1PN order.
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Appendix A
Order of Magnitude Equations

To estimate the relative strengths of the various velocity
effects, we simplified the equations in Section 4 to scaling
relations, which are given below. These relations were used to
calculate the values in Figure 6.
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(iii) Binary Einstein effect:
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(iv) Binary Shapiro effect:
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Appendix B
Glossary of Parameters

This appendix serves as a glossary and quick-reference for
the many symbols, equations, and parameters used in this
paper. Table 1 lists the observed, free, and derived parameters
for our model, as well as their accompanying equation numbers
and their units. Table 2 lists the timing delays and spectro-
scopic effects discussed and derived in this paper, as well as
their corresponding equation numbers.
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Table 1
Table of Parameters and Symbols

Parameter Symbol Meaning Equation Units
Type

Observed α(t) Right ascension (R.A.) L hms/decimal degr.
δ(t) decl. (Decl.) L dms/decimal degr.
vz(t) Line-of-sight velocity 1 km s−1

Free – System M Total mass of system L M☉

αi Initial R.A. of binary barycenter 9(m) hms/decimal degr.
δi Initial decl. of binary barycenter 9(n) dms/decimal degr.
μα R.A. proper motion L mas yr−1

μδ Decl. proper motion L mas yr−1

μ∥ Line-of-sight proper motion L km s−1

d Distance from solar system barycenter to binary barycenter L kpc

Free – Stellar P Period L s
q Mass ratio, m2 < m1 3(a) L
eR Radial eccentricity L L
i Inclination L °
Ω Argument of ascending node L °
ω0 Initial argument of periapsis L °
t0 Epoch of position L yr

Derived μ Reduced mass 3(b) M☉

ν Dimensionless reduced mass 3(c) L
u Eccentric anomaly 8(a) rad
n Mean motion 4(b) s−1

ω(u) Time-dependent argument of periapsis 8(g) °
E Energy of system (per mass) 5(a) c2

J Angular momentum of system (per mass) 5(b) km2 s−1

K General relativistic correction to J 5(c) L
aR Semimajor axis 4(a) au

a a,r r1 2 Semimajor axes (m1 and m2) 7(a), 7(c) au

et Time eccentricity 6(a) L
eθ Angular eccentricity 6(b) L

e e,r r1 2 Radial eccentricities (m1 and m2) 7(b), 7(d) L
r1(t), r2(t) Radii at time t (m1 and m2) 8(b), 8(c) au

θ(t) Position angle at time t 8(e) rad
Δθ Position angle precession 5(d) rad
α0(t) R.A. of binary barycenter 9(m) hms/decimal degr.
δ0(t) Decl. of binary barycenter 9(n) dms/decimal degr.
μ⊥ Transverse proper motion 15(e) mas yr−1

Table 2
Table of Timing Delay and Effects

Symbol Meaning Equation

ΔRB Binary Roemer delay 10(a)
ΔEB Binary Einstein delay 12(a)
ΔSB Binary Shapiro delay 13(a)
ΔKB Kopeikin delay 14(a)
ΔSR Viewing angle geometry delay (ΔKB) 14(b)
ΔAOP Annual orbital parallax delay (ΔKB) 14(c)
ΔOP Orbital parallax delay (ΔKB) 14(d)
ΔR☉ Earth Roemer delay 15(a)
d ΔRB/dt Binary Roemer effect 10(b)
vω Periastron precession 11(a)
d ΔEB/dt Binary Einstein effect 12(c)
d ΔSB/dt Binary Shapiro effect 13(b)
d ΔKB/dt Kopeikin effect 14(e)
d ΔSR/dt Viewing angle geometry (ΔKB) 14(f)
d ΔAOP/dt Annual orbital parallax (ΔKB) 14(g)
d ΔOP/dt Orbital parallax (ΔKB) 14(h)
d ΔR☉/dt Earth Roemer effect 15(h)
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Appendix C
Parameter Values for S0-2 and S0-X

In Table 3, we list the parameter values used for the S0-2 and
S0-X stars in Section 6. We have also set M= 3.985× 106 M☉
and d= 7.971 kpc (Do et al. 2019).
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