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Abstract

Accretion of magnetized gas on compact astrophysical objects such as black holes (BHs) has been successfully
modeled using general relativistic magnetohydrodynamic (GRMHD) simulations. These simulations have largely
been performed in the Kerr metric, which describes the spacetime of a vacuum and stationary spinning BH in
general relativity (GR). The simulations have revealed important clues to the physics of accretion flows and jets
near the BH event horizon and have been used to interpret recent Event Horizon Telescope images of the
supermassive BHs M87* and Sgr A*. The GRMHD simulations require the spacetime metric to be given in
horizon-penetrating coordinates such that all metric coefficients are regular at the event horizon. Only a few
metrics, notably the Kerr metric and its electrically charged spinning analog, the Kerr–Newman metric, are
currently available in such coordinates. We report here horizon-penetrating forms of a large class of stationary,
axisymmetric, spinning metrics. These can be used to carry out GRMHD simulations of accretion on spinning,
nonvacuum BHs and non-BHs within GR, as well as accretion on spinning objects described by non-GR metric
theories of gravity.

Unified Astronomy Thesaurus concepts: Astrophysical black holes (98); Supermassive black holes (1663);
Accretion (14); Relativistic jets (1390); Non-standard theories of gravity (1118); Gravastars (660);
Magnetohydrodynamical simulations (1966); General relativity (641); Wormholes (1808); Naked singulari-
ties (1087)

1. Introduction

General relativistic magnetohydrodynamic (GRMHD) simu-
lations have emerged as an indispensable tool in modern
astrophysical research, providing a robust framework for
investigating the complex dynamics of magnetized gas within
extreme gravitational environments (e.g., Banyuls et al. 1997;
Koide et al. 1999; De Villiers et al. 2003; Gammie et al. 2003).
By virtue of their ability to simulate diverse accretion regimes
spanning from sub- to super-Eddington rates, GRMHD simula-
tions offer invaluable insights into the structure and evolution of
a variety of black hole (BH) and neutron star systems (e.g.,
Fragile et al. 2007; Narayan et al. 2012; Sadowski &
Narayan 2015; Parfrey & Tchekhovskoy 2017; Liska et al.
2018; Porth et al. 2019; Begelman et al. 2022; Chatterjee &
Narayan 2022), as well as astrophysical phenomena like gamma-
ray bursts (e.g., Gottlieb et al. 2022), tidal disruption events (e.g.,
Curd & Narayan 2019; Andalman et al. 2022), and high-energy
flares from the centers of galaxies (e.g., Chatterjee et al. 2021;
Porth et al. 2021; Ripperda et al. 2022). Furthermore, GRMHD
simulations self-consistently launch powerful jets that can
accelerate to relativistic speeds and extend to galactic scales
and thus are crucial for understanding galaxy evolution (e.g.,
McKinney 2006; Tchekhovskoy et al. 2011; Chatterjee et al.
2019; Narayan et al. 2022; Ricarte et al. 2023). Also, the
predictive capabilities of GRMHD simulations facilitate direct

comparisons with observational data, enhancing their applic-
ability in interpreting real astrophysical systems (e.g., Mości-
brodzka et al. 2009; Dexter et al. 2012; Davelaar et al. 2018;
Chael et al. 2019; Chatterjee et al. 2020; Ricarte et al. 2020;
Cruz-Osorio et al. 2022; Ressler et al. 2023), and have helped
motivate experimental tests of gravitational effects such as frame
dragging (Ricarte et al. 2022) and electromagnetic extraction of
energy from spinning BHs (Chael et al. 2023).
The Event Horizon Telescope (EHT) collaboration recently

demonstrated that it is now possible to “measure” the spacetime
metric of astrophysical BHs. More concretely, we are able to
measure the level of agreement of the spacetime geometry of the
supermassive BHs M87* (The EHT Collaboration et al.
2019a, 2019b; Psaltis et al. 2020) and Sgr A* (The EHT
Collaboration et al. 2022a, 2022b) with that of a Kerr BH
(Kerr 1963), which is a vacuum, stationary solution of general
relativity (GR; see, e.g., Wiltshire et al. 2009). Such investiga-
tions allow us, in principle, to test fundamental aspects of GR
such as the no-hair hypothesis (see, e.g., Carter 1971) and
whether astrophysical BHs truly have no surfaces and are devoid
of matter (The EHT Collaboration et al. 2022b).
It has also been possible to test the level of agreement of

EHT data with non-BH spacetime geometries (such as boson
stars, wormholes, classical naked singularities, etc.) within GR,
as well as both BH and non-BH spacetimes in non-GR theories
(Völkel et al. 2021; Kocherlakota et al. 2021; The EHT
Collaboration et al. 2022b; Vagnozzi et al. 2023). This program
has seen intense activity, and current approaches use a
combination of GRMHD simulations in Kerr BH spacetimes
(see, e.g., The EHT Collaboration et al. 2019b, 2022b) and
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non-GRMHD (xGRMHD) simulations in nonrotating space-
times (Mizuno et al. 2018; Olivares et al. 2020; Fromm et al.
2021; Röder et al. 2023). In addition, a diverse range of
instructive semianalytic accretion flow models have been
considered (see, e.g., Broderick et al. 2014; Shaikh et al.
2019; Shaikh & Joshi 2019; Narayan et al. 2019; Paul et al.
2020; Bauer et al. 2022; Özel et al. 2022; Younsi et al. 2023;
Kocherlakota & Rezzolla 2022; Ayzenberg 2022; The EHT
Collaboration et al. 2022b) to model the physics of accretion
flows and their emission.

Nearly all of the xGRMHD work to date has been restricted
to spherically symmetric “static” spacetime metrics. This is
because, apart from the spinning Kerr metric (Kerr 1963) and
Kerr–Newman metric (Newman et al. 1965), the only metrics
available in the horizon-penetrating Kerr–Schild coordinates
required by current GRMHD codes (see, e.g., Font et al. 1998;
McKinney & Gammie 2004; Sadowski et al. 2014; Porth et al.
2017; for a discussion of representative GRMHD codes) are
static metrics. The one other exception is Nampalliwar et al.
(2022), who used the Kerr–Schild form of the Johannsen
(2013a) stationary metric, which is derived from the well-
known Johannsen & Psaltis (2011) parameterized BH metric.
Astrophysical objects are expected to possess angular

momentum. Hence, their spacetimes will generally be axisym-
metric (not spherically symmetric), and their metrics should be
“stationary” (not static). For a more realistic confrontation of
the underlying effective theory of gravity and fields in the
vicinity of ultracompact objects to current observations, and in
anticipation of future higher-quality data, it is necessary to be
able to model accretion and emission processes in generic
stationary spacetimes. However, other than the aforementioned
Kerr, Kerr–Newman, and Johannsen metrics, no other
stationary spacetime metrics have been written down in the
horizon-penetrating coordinates needed for computer simula-
tions. The goal of the present paper is to eliminate this
roadblock.

We introduce a general family of stationary and axisym-
metric metrics (Azreg-Aïnou 2014a, 2014b) that are derived
from a corresponding family of “seed” spherically symmetric
metrics. We then cast these stationary metrics in horizon-
penetrating Kerr–Schild form. This is the main contribution of
the present paper. Using the results described in this paper, we
will report elsewhere the first high-resolution, 3D GRMHD
simulations in spinning non-Kerr spacetimes (K. Chatterjee
et al. 2023a, 2023b, in preparation).

We begin in Section 2 by introducing the general form of a
(spherically symmetric) static metric. This form includes the
Schwarzschild metric as a special case but covers a wide range
of other models as well. We pick out and discuss a few well-
known examples of the latter.

In Section 3, we introduce the Azreg–Aïnou (AA; Azreg-
Aïnou 2014b) metric, which is a stationary, axisymmetric
generalization of the static metric described in Section 2. The
AA metric was proposed as an ansatz, inspired by the Newman
& Janis (1965) algorithm, to describe generic spinning
spacetimes. This metric has several attractive features, which
we touch on in Section 1.1 and consider in greater detail in
Section 3.

In Section 4, we report the form of the AA metric in horizon-
penetrating coordinates, as needed for most GRMHD codes,
and in Section 5, we write down the 3+1 decomposition of the
metric required for certain other codes. The spherical polar

Kerr–Schild coordinates we use to write the horizon-penetrat-
ing AA metric are adapted to the ingoing principal null
congruence (PNC) of spacetime.
Finally, in Section 6, we summarize our findings and present

a representative list of stationary and axisymmetric metrics that
are obtained from the AA metric for specific choices of its
metric functions. These metrics may be directly used in future
GRMHD simulations. We also describe the steps needed to
generate other stationary metrics in the future. Throughout, we
use geometrized units, G= c= 1, and the metric signature is
(−, +, +, +).
Of necessity, this paper includes a fair amount of technical

discussion about the AA metric and its various forms. A reader
who is interested in utilizing various BH and non-BH metrics
to explore with GRMHD simulations can obtain the main
results directly by reading only Sections 2 and 6, along with
Tables 1 and 2.

1.1. Background on the AA Metric

While in general, the description of an arbitrary stationary
and axisymmetric spacetime requires 10 independent metric
functions, the AA metric remarkably makes use of only three
functions. Furthermore, when considered as a generalization of
a static metric, two of these functions are fixed by the original
static metric functions. The one remaining free function is a
conformal factor that can be fixed by solving the appropriate
field equations. Moreover, as we discuss, there is a naturally
attractive choice for this third function such that it is no longer
a free function. Thus, the AA metric is both a powerful and
surprisingly simple ansatz for spinning spacetimes.

Table 1
Metric Functions of Selected Spherically Symmetric and Static Spacetimes

Object Theory Spacetime f (r) R2(r)

BH GR Schwarzschild 1 M

r

2- r2

BH GR RN 1 M

r

Q

r

2 2

2- + r2

BH GR Modified
Hayward

1 Mr

r L

2

2

3

4 4-
+

r2

BH String GMGHS 1 M

r

2- ( )r r Q

M

2
-

Naked singularity GR JNW ( ) ˆ
1 r

r

1
-

n- ( )ˆ
r 1 r

r
2 -

n

Naked singularity GR JMN-1 ( )( )1 M

R

r

r

2 2

b b
-

s ( )R r

rb
2

2 2

b

s-

Note. We have used the coordinate freedom to set ˆ ˆ ( )g g g r 1tt rr- = = in the
general metric (Equation (1)); hence, we have only two metric functions, f (r)
and R(r). The Schwarzschild and RN spacetimes describe the vacuum and
electrovacuum BH solutions of GR, respectively. The modified Hayward BH
spacetime contains a regular BH and is generated by an anisotropic fluid. The
GMGHS BH metric is a solution to the low-energy theory of the heterotic
string and contains a scalar field (a dilaton, which vanishes asymptotically), as
well as an electromagnetic field. The JNW naked singularity spacetime is
generated by a scalar field. The JMN-1 naked singularity spacetime is an
interior solution to the Schwarzschild spacetime and is generated by an
anisotropic fluid. For easier comparison with the other five models, the JMN-1
metric is presented here with g(r) = 1 (see Appendix A for details), thus
differing from the original form given in Equation (29) of Joshi et al. (2011).
The parameter Q denotes an electromagnetic charge, L denotes a (de Sitter)
length scale, Rb � 2.5M denotes a matching radius (σ = M/(Rb − M) and
rb = (1 − σ)Rb), and n̂ denotes a scalar charge ( ( ˆ )r M2 1 n= - locates the
curvature singularity).
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These simplifications are partly a consequence of the AA
metric describing only circular spacetimes, a particularly
important subfamily of stationary and axisymmetric spacetimes
that require at most five free functions (see, e.g., Section 2.2 of
Gourgoulhon 2010). The further reduction to just three metric
functions (or, indeed, only two functions in the most natural
form of the AA metric) is achieved via a novel modification in
Azreg-Aïnou (2014b) to the original Newman–Janis algorithm,
where the regularity of a coordinate transformation is used to
eliminate the ad hoc “decomplexification step” that was
required in Newman & Janis (1965; see also Rajan 2016).

Circular spacetimes have been of central interest in
explorations of non-Kerr spacetimes, and several popular
parameterized metrics have been constructed to characterize
and study their varied properties. The Johannsen–Psaltis
(JP; Johannsen & Psaltis 2011; Johannsen 2013a) framework
has had success, e.g., in establishing tests of the no-hair
conjecture (Johannsen & Psaltis 2010) and the post-Newtonian
structure of astrophysical BH spacetimes (Psaltis et al. 2020).
The Konoplya–Rezzolla–Zhidenko (KRZ; Rezzolla &
Zhidenko 2014; Konoplya et al. 2016) framework has been
used, e.g., to map well-known static metrics onto a single low-
dimensional space with high accuracy to enable comparisons
between spacetimes (Kocherlakota & Rezzolla 2020) and test
BH metrics with gravitational-wave, as well as X-ray,
observations (Völkel & Barausse 2020; Cardenas-Avendano
et al. 2020). The current (Völkel et al. 2021; Kocherlakota &
Rezzolla 2022; Younsi et al. 2023) and future
(Ayzenberg 2022; Kocherlakota et al. 2023) ability to use
BH images to test gravity has also been demonstrated using
both of these frameworks.

We note that while the JP and KRZ parametric metrics allow
detailed explorations of BH spacetimes, the AA ansatz metric
can also characterize non-BH objects such as naked singula-
rities, wormholes, boson stars, etc. Furthermore, it is clear to
see from Johannsen (2013a) that the JP metric uses a
fundamentally different ansatz compared to the AA metric to
describe circular spacetimes, requiring four metric functions
(see their Equation (51)) and motivated by imposing that
geodesics be Liouville-separable (their Equation (10)), i.e., that

they possess a Carter constant. This is similarly true for the
KRZ metric, where five free functions are permitted (see their
Equation (7)). Konoplya & Zhidenko (2021) explored a
subclass of the KRZ metric that admits a Carter constant. As
we show later, null geodesics in the AA metric always possess
a Carter constant, and in the simplest form of the AA metric
(which we favor), time-like geodesics also have a Carter
constant. We note that several other parameterization frame-
works have been constructed and used successfully to
investigate observable effects due to modifications of the
spacetime metric in the strong-field regime (see, e.g., Vigeland
et al. 2011; Carson & Yagi 2020). For the status of
parameterizations of noncircular spacetimes, we direct the
reader to Delaporte et al. (2022).
In addition to its simplicity and appealing properties

discussed above, our choice to use the class of AA metrics is
further motivated by the knowledge that nearly all well-known
solution metrics across various theories of gravity can be cast in
this form. This metric, therefore, presents an excellent starting
point for a broad forward-modeling study of the effect of the
spacetime metric on various observables of interest. The
Liouville separability of the null geodesic equations makes
computing various characteristic features of the spacetime,
such as the location of the photon shell or the shape of the
shadow boundary (see, e.g., Shaikh 2019; Kocherlakota et al.
2021; Solanki et al. 2022), analytically tractable. Similarly, the
separability of the time-like orbits facilitates a study of, e.g.,
equatorial Keplerian orbits and allows us to go one step further
with semianalytic techniques. Details regarding geodesic orbits
can be found in Appendix C.

2. General Class of Static Metrics

The line element ˆs g x xd d d2 = mn
m n of an arbitrary static and

spherically symmetric metric ĝmn can be written in spherical
polar coordinates, xμ= (t, r, ϑ, j), in the form

( ) ( )
( )

( ) ( )s f r t
g r

f r
r R rd d d d , 12 2 2 2

2
2= - + + W

Table 2
Metric Functions for the Stationary and Axisymmetric Generalizations of the Static and Spherically Symmetric Spacetimes Given in Table 1

Spacetime 2F = (1 − f )R2 Δ = fR2 + a2 X R a cos2 2 2JS = = +

Kerr 2Mr r2 − 2Mr + a2 r a cos2 2 2J+
Kerr–Newman 2Mr − Q2 r2 − 2Mr + Q2 + a2 r a cos2 2 2J+
Kerr–Hayward Mr

r L

2

2

5

4 4+
r aMr

r L
2 2

2
2

5

4 4- +
+

r a cos2 2 2J+

Kerr–Sen 2Mr − 2Q2 ( )r M r Q a2 2Q

M
2 2 2

2
- + + + ( )r r a cosQ

M
2 2

2
J- +

Spinning JNW ( ) ( )ˆ
⎡
⎣

⎤
⎦

r 1 1r

r

r

r
2 - - -

n 
ˆ

r aMr2 2

1
2- +

n- ( )ˆ
r a1 cosr

r
2 2 2J- +

n

Spinning JMN-1 ( ) ( )( )
⎡
⎣

⎤
⎦

1r r

r

M

r1

2 22

2 b b
- -

s

s

-

- ( ) ( )
a1 M

R

r2

1
2

b

2

2- +
s- ( )R a cosr

rb
2

2 2
2 2

b
J+

s-

Note. The spinning generalizations of a nonspinning seed metric (Equation (1)) are given in BL coordinates in Equation (2) and horizon-penetrating spherical ingoing
Kerr–Schild coordinates in Equation (23). These involve five stationary metric functions {F, Δ, Σ, Π, X}, the first four of which are related to f and R via
Equation (24). We show above the spinning generalizations of the specific static solutions listed in Table 1. Since we used coordinates for the static metrics in which g
(r) = 1, g does not appear in the expressions below. For brevity, we only show the four metric functions 2F, Δ, Σ, and X above. The fifth metric function is given by

( )R a a sin2 2 2 2 2JP = + - D . All of the spacetime models listed here are asymptotically flat, and a denotes the usual spin parameter. A variety of physical scenarios
are captured by the exemplary set listed here: the vacuum Kerr BH, the electromagnetically charged Kerr–Newman BH, the (modified) Kerr–Hayward spinning BH,
the spinning Janis–Newman–Winicour (JNW) naked singularity, and the spinning JMN-1 naked singularity are solutions of GR, whereas the Kerr–Sen spacetime
describes the electromagnetically charged BHs of string theory, which are also charged under a dilaton field, as well as an axion field.
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where d d sin d2
2 2 2 2J J jW = + is the standard line element on

a unit 2-sphere. This form of the metric involves three
functions of the coordinate r: f (r), g(r), and R(r). However,
an arbitrary static metric can be defined using only two metric
functions; i.e., any one of the metric functions, f, g, and R, can
be eliminated by an appropriate change of coordinates (see,
e.g., Chapter 14 of Plebanski & Krasinski 2012). For example,
it is possible to find a different radial coordinate r in which

ˆ ˆ ( )g g g r 1tt rr- = = (as we do in Table 1 and discuss further in
Appendix A). However, the required coordinate transformation
does not always lead to analytically convenient metric
functions. We therefore keep an arbitrary g(r)> 0 in
Equation (1)).

The function R(r) gives the curvature radius or areal radius
as a function of the radial coordinate r. In simple models, R
(r)= r (see Table 1). When this is the case, the coordinate
radius r of a 2-sphere is its curvature radius,

( ) ( )( )r r r2 1G
2 2k = =R , as well as its areal radius,

( )r r4 2p= . Here we have used κG, ( )2R , and  to denote
the Gaussian curvature, the Ricci scalar, and the area of a
2-sphere, respectively. While it is always possible to find a
coordinate transformation to curvature coordinates in which R
(r)= r, this again may only be tractable numerically for some
models. Finding simple analytic forms for all of the metric
functions in such coordinates is not generally possible (see,
e.g., Section IV D of Kocherlakota & Rezzolla 2020). Thus, for
general convenience, we will leave R(r) free.
When the metric (Equation (1)) describes a BH spacetime, its

event horizon is a null, stationary surface. The normal to such a
constant-r surface satisfies ˆ ·g r r 0¶ ¶ =mn

m n , from which we
find that the horizon is located at the outermost root of ĝ 0rr = ,
i.e., at the outermost root of f (r).

In Table 1, we list the metric functions corresponding to six
well-known and representative spherically symmetric static
solutions in GR and string theory. For uniformity, we have
written all of the metrics in coordinates such that g(r)= 1. The
first two solutions listed are the canonical nonrotating BH
solutions of GR, namely, the Schwarzschild BH and the
charged Reissner–Nordström (RN) BH, which contain, respec-
tively, a space-like and a time-like curvature singularity (see,
e.g., Poisson 2004). Several regular BH spacetime models have
been proposed to mimic the desired effect of singularity-
resolving physics (see, e.g., Bardeen 1968; Ayón-Beato &
García 1998; Bronnikov 2001; Dymnikova 2004; Hay-
ward 2006). The modified Hayward BH (Zhou &
Modesto 2023a; n= 4) spacetime included in Table 1 is
generated by an anisotropic fluid with a radial equation of state,
ωr= pr/ρ=− 1, where ρ is the total energy density, and pr is
the radial pressure in the fluid rest frame. The fluid is dark
energy–like, producing the pressure necessary to avoid a
singularity. The charged Gibbons–Maeda–Garfinkle–Horo-
witz–Strominger (GMGHS) BH (Gibbons & Maeda 1988;
Garfinkle et al. 1991) is different from the RN BH of GR
because of the presence of a dilaton (a scalar field) that
mediates the interaction between electromagnetism and gravity
in the low-energy effective action of string theory. In particular,
the central singularity of the GMGHS BH remains space-like.

In addition to the above four BH solutions, Table 1 lists two
other non-BH models. Over the years, non-BH solutions to
various theories have been discussed in the literature, and
significant progress has been made to determine ways in which

such objects can be distinguished from BHs using observations
(see, e.g., Shaikh et al. 2019; Kocherlakota et al. 2021; The
EHT Collaboration et al. 2022b). The Janis–Newman–
Winicour naked singularity (JNW; Janis et al. 1968) spacetime
is a static solution generated by a minimally coupled, massless
scalar field in GR. Indeed, this is also a solution to string theory
when an electromagnetic field is absent (Virbhadra 1997), and,
in addition, it is a solution to the Brans–Dicke theory with the
parameter ω= −1 (Kar 1997). Finally, the Joshi–Malafarina–
Narayan-1 naked singularity (JMN-1; Joshi et al. 2011) is
constructed in GR using an anisotropic fluid with vanishing
radial pressure, pr= 0.

3. Generalization to Stationary Metrics

Inspired by the Newman & Janis (1965) algorithm, Azreg-
Aïnou (2014b) proposed a stationary and axisymmetric
generalization of the spherically symmetric metric
(Equation (1)) described in Section 2. We will refer to this
stationary metric as the AA metric and denote it by gμν (to
distinguish it from the ĝmn of the spherically symmetric metric).
In Boyer–Lindquist (BL; Boyer & Lindquist 1967) coordinates,
xμ= (t, r, ϑ, j),6 the AA metric is given by

( )

⎡
⎣

⎛
⎝

⎞
⎠

⎤
⎦

s
X F

t
F
a t

r

d 1
2

d 2
2

sin d d

d d sin d . 2

2 2 2

2 2 2 2

J j

J J j

=
S

- -
S

-
S

+
S
D

+ S +
P
S

Here the parameter a is the spin of the central object, and the
stationary metric functions {F, Δ, Σ, Π} can be related to the
static metric functions {f, g, R} in Equation (1), as discussed
below. This then leaves only the metric function X= X(r, ϑ) to
be fixed by the field equations (Azreg-Aïnou 2014b).
While we focus in this paper on the AA metric, we note that

different generalizations of the static metric (Equation (1)) are
possible, in principle, and can be achieved by modifying the
complex coordinate transformation involved in the Newman &
Janis–type (1965) solution-generating technique (see, e.g.,
Azreg-Aïnou 2014a). It is important to note, however, that the
particular transformations used in Azreg-Aïnou (2014a, 2014b)
send the Schwarzschild, RN, and GMGHS metrics to their
appropriate spinning generalizations, namely, the Kerr,
Kerr–Newman, and Kerr–Sen metrics, respectively. We direct
the reader to Erbin (2017) for a review of such solution-
generating techniques and Section 7.1 of Wald (1984) for a
general discussion of stationary, axisymmetric spacetimes and
the construction of BL-like coordinates.
Expressions for the metric functions {F, Δ, Σ, Π} in the AA

metric (Equation (2)) are most conveniently written by first
defining two auxiliary functions that are specific combinations
of the original static metric functions, f (r), g(r), and R(r),

( ) ( ) ( )A r R g B r f g R, ,2 2= =

6 Note that we do not distinguish between the labels for the radial coordinates
used to write the nonspinning (Equation (1)) and spinning (Equation (2))
metrics to avoid a proliferation of symbols. Furthermore, while the metric
signature here (−, +, +, +) differs from that in Azreg-Aïnou (2014b), it can be
checked that Equation (2) corresponds to Equation (16) there.
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which can be written even more transparently as

ˆ
ˆ ˆ

ˆ
ˆ

ˆ ˆ ( )A
g

g g
B

g

g
g g; . 3

tt rr rr

rr=
-

= =JJ JJ
JJ

Here A and B are each functions of r alone, and in terms of
them, the functions {F, Δ, Σ, Π} in the AA metric
(Equation (2)) take the remarkably simple form

( ) ( )
( )

( )
( ) ( ) ( )

F r A B

r B a

r A a

r A a a

2,

,

, cos ,

, sin . 4

2

2 2

2 2 2 2

J J
J J

= -
D = +

S = +
P = + - D

Note that F and Δ depend only on r, while Σ and Π are
functions of r and ϑ. The spinning AA metric gμν
(Equation (2)) reduces to the nonspinning metric ĝmn
(Equation (1)) in the limit of vanishing spin (a= 0) for
appropriate choices of X (see Azreg-Aïnou 2014a for a
discussion of conformal versus normal fluids).

The determinant [ ]gdet mn of the AA metric and its

tj− sector [ ] ≔g g g gdet t tt t
2-j jj j are given in BL coordinates

by

[ ] ( ) ( )g Xdet sin , 54 2 2 J= - Smn

[ ] ( ) ( )g Xdet sin . 6t
2 2 2 J= - S Dj

The AA metric can also be expressed in the closely related
quasi-isotropic (QI) coordinates (see, e.g., Section 2.3.2 of
Gourgoulhon 2010), ( ˜ )˜x t r, , ,J j=m , as

˜
( ˜ ˜ )

( ) ( )

⎡
⎣

⎤
⎦

s
X X

t
r

r r

t

d d d d

sin d d , 7

2 2
2

2 2 2

2
Z

2

J

J j

=
S

-
D
P

+
S

+

+
P
S

- W

where we have introduced the angular velocity of the zero angular
momentum observer (ZAMO), ΩZ=− gtj/gjj= 2aF/Π (see
Equations (2.4) and (2.5) of Bardeen et al. 1972). The form above
(Equation (7)) can be obtained from Equation (2) by transforming
the radial coordinate, ˜r r , via ˜( ) [ ( )]r r rexp dò= D . The
rϑ− sector of the AA metric in these QI coordinates is clearly
conformally flat, as desired. The related cylindrical coordinates,

( )x t z, , ,r j=m¢ , with ≔ r̃ sinr J and ≔ ˜z r cosJ, are called
the Lewis–Papapetrou coordinates (Lewis 1932; Papapetrou 1966).

We now briefly illustrate how the remaining metric function
X can be fixed by considering, as an example, the case when
the background matter is an anisotropic fluid in GR that flows
around the spin axis. Since, in its own rest frame,
{ ( )}( )e a 0 3a = -m , the fluid stress–energy–momentum tensor
is diagonal, the Einstein equations imply that the Einstein
tensor in this frame, ( )( ) ( ) ( )e ea b a b= mn

m nG G , must also be
diagonal. However, it can be shown that two of the off-
diagonal elements of the Einstein tensor, ( )( )r JG and ( )( )t jG , will
generally be nonzero. Demanding that these two terms vanish
yields one nonlinear partial differential equation (PDE) and one
linear PDE, each of which involves the free metric function X,
the auxiliary function A(r), and the fluid angular velocity Ω.
These PDEs are given in Equations (15) and (18) of Azreg-
Aïnou (2014a), respectively, where the fluid angular velocity
was chosen to be Ω= a/(A+ a2) (see et

m in their Equation

(16)). It is interesting to note that this angular velocity does not
correspond to the ZAMO angular velocity introduced above,
ΩZ= 2aF/Π. It matches, however, the angular velocity of the
PNCs of the spacetime introduced below (see Equation (8)).
For nonfluid matter models, additional equations of motion for
the matter fields must be solved. For example, if the matter is a
scalar field, the associated Klein–Gordon equations must
additionally be solved. Similarly, if the matter is an electro-
magnetic field, the Maxwell equations have to be accounted for
as well. We will not enter into a discussion of this topic but
refer the reader to Erbin (2017).
For the purposes of the present paper, it suffices to note that

the subclass of AA metrics with X=Σ is particularly
interesting, as it corresponds to spacetimes that are asympto-
tically flat (see Appendix B for further details). Furthermore, it
can be checked that this choice for the conformal factor X
always solves the ( )( ) 0r =JG equation for axially spinning
matter. Finally, all of the BH solutions discussed in this paper
have X=Σ, whether they are vacuum or contain scalar,
electromagnetic, and/or axion fields. Even though these
spacetimes arise as “solution metrics” to a variety of field
equations, ( )X A r a cos2 2 J= S = + consistently remains a
valid choice. For this subclass of AA metrics, the possibly
divergent behavior of the Ricci R and Kretschmann K scalars
can be seen from the behavior of their denominators, which go
roughly as ∼Σ−3 and ∼Σ−6, respectively. Thus, when this
metric describes a singular spacetime, the curvature singularity
is located at r= rå, such that Σ(rå, π/2)= 0, which
corresponds to a ring singularity located in the equatorial
plane. This last equation is equivalent to R(rå)= 0.
When the general AA metric (Equation (2)) describes a BH

spacetime, as above, a horizon is present at every location,
r= rH> rå, where grr=Δ/Σ= 0. Equivalently, horizons are
located at the real, positive (R(rH)> 0) roots of Δ(r). Conversely,
if no such roots exist, then the AA metric does not correspond to a
BH spacetime (e.g., the a>M Kerr metric). The event horizon
in particular is located at the largest such root. Since Δ is a
function of r alone, it is reassuring to find that the event horizon
is indeed a round sphere in BL coordinates. Furthermore, the
horizon angular velocity, ΩH≔ ΩZ(rH), is simply given as HW =

( ) ( ( ) ) ( ( ) )/ /aF r A r a a A r a2 H H
2 2

H
2+ = + . Clearly, ΩH is

independent of ϑ, i.e., an AA BH rotates like a rigid body, as a
consequence of the weak rigidity theorem (see, e.g., Section 8.4.4
of Straumann 2013). These desirable properties, which are well
known for the Kerr and Kerr–Newman metrics, are now seen to be
true for the very wide class of AA stationary BH metrics.
It is interesting to note that the general AA metric

(Equation (2)) can also describe spacetimes that contain
regions that admit closed time-like curves. In such regions,
gjj< 0 (see, e.g., Section V.B of Johannsen 2013b), i.e.,
Π< 0 (e.g., the a>M Kerr metric).
We show in Appendix C that the null geodesic equations are

Liouville-separable. Thus, the AA metric always admits a
Carter constant for null geodesics. Furthermore, we also
identify a subclass of AA metrics that additionally admit
separable time-like geodesic equations. These require the
conformal factor to take the form X(r, ϑ)= Xr(r)+ Xϑ(ϑ). For
this subclass, a Carter constant exists for all geodesics.
Concomitantly, arbitrary geodesics of all AA metrics with
X=Σ possess Carter constants.
The rr-component of the AA metric (Equation (2)) in BL

coordinates diverges at the horizon (Δ(r)= 0). The Ricci and
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Kretschmann scalars, however, reveal this to be merely a
coordinate singularity, an artifact of the choice of coordinates.
The singularity can be eliminated by a change of coordinates,
and this is the topic we turn to next.

4. Horizon-penetrating Coordinates

In this section, we convert the AA metric, which is written in
BL coordinates in Equation (2), to a horizon-penetrating form
in which no coordinate singularity is present at the horizon.
This is the form that is most useful for GRMHD and xGRMHD
simulations of astrophysical accretion flows.

The ingoing (−) and outgoing (+) PNCs of the AA
spacetime consist of null geodesics xμ(λ) whose tangents
ℓ x xd d l= =m m m
 satisfy ℓ 0J= =J

 and ̈ 0J = (see, e.g.,
Misner et al. 1973; Hioki & Miyamoto 2008 for further
details). The 1− form fields ( )l m associated with the PNCs in
an AA spacetime can be expressed elegantly as7

( ) ( )⎡
⎣

⎤
⎦

ℓ E a1, , 0, sin , 92 J= - 
S
D

m

where E is some constant.
We now define the spherical polar ingoing Kerr–Schild

(siKS) coordinates, ( )¯x r, , ,t J f=m , as those in which the
ingoing PNC takes the form

( ) [ ] ( )¯ℓ E a1, 1, 0, sin . 102 J= - -m-

To distinguish between the BL (xμ) and siKS ( ¯xm) coordinate
systems, we will use a bar for the indices of the latter. We are
interested in the ingoing PNC because our coordinate system
should penetrate the future horizon +H when one exists and
cover patches I and II of the Kruskal (Kruskal 1960) or
Penrose–Carter (Penrose 1963; Carter 1966) diagrams. The
Jacobian ¯ ¯xL = ¶m

m
m

m for the coordinate transformation from

BL to siKS coordinates (i.e., ¯ ¯x xd d= Lm
m
m m) can be inferred

from Equations (9) and (10) to be

( )¯
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

F

a

1 2 0 0
0 1 0 0
0 0 1 0
0 0 1

. 11L =

D

D

m
m

The time coordinate τ is then clearly a “tortoise” time
coordinate (see, e.g., Blau 2023),

( ) ( )t F r2 d , 12òt = + D

and we recognize immediately that, in the limit of vanishing
spin (a→ 0), the siKS coordinates are analogous to the
coordinates presented in Eddington (1924) and Finkel-
stein (1958).

Using the above coordinate transformation, we can write the
AA metric in siKS coordinates as

( )

¯ ¯

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

13

g
X

F F F
a

F F
a

1
2 2

0
2

sin

1
2

0 1
2

sin

0

sin

,

2

2

2

J

J

J

=
S

- -
S S

-
S

+
S

- +
S

S
P
S

mn
*

* *

* * *

where the asterisks denote components that are fixed by
symmetry, ¯ ¯ ¯ ¯g g=mn nm. Notice that the metric components now
diverge only at the spacetime/curvature singularity, present at
Σ= 0. The inverse AA metric in siKS coordinates is

( )¯ ¯

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎛
⎝

⎞
⎠

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

g
X

F F

a

1
2 2

0 0

0

1
0

1

sin

. 14

2 J

=
S

- +
S S

D
S S

S

S

mn
*

* *

* * *

For completeness, we cast the general AA metric into its
“classic” Kerr–Schild form in Equation (B2) of Appendix B.
In siKS coordinates, the event horizon is still located at the

outermost root of ¯ ¯g g 0rr11 = = , i.e., Δ(r)= 0 (Equation (14)),
but as we can see from Equation (13), the metric components

¯ ¯gmn no longer diverge atΔ= 0. Thus, the coordinate singularity
at the horizon has been removed by changing from BL to siKS
coordinates, showing that the latter are horizon-penetrating
coordinates. Furthermore, a comparison of the Kerr metric in
particular, in these coordinates, with that reported in Font et al.
(1998), with k= 1 there, and in McKinney & Gammie (2004),
shows that these are the horizon-penetrating coordinates
canonically used in the context of GRMHD simulations.
Note that the original set of Kerr–Schild coordinates used to

describe the Kerr spacetime (Kerr 1963; Kerr & Schild 2009)
are adapted to the outgoing PNC in which l r

 dµm m
+ (see, e.g.,

Wiltshire et al. 2009; Azreg-Aïnou 2014b). The corresponding
time coordinate u is the retarded time, as well as a null affine
parameter that parameterizes the outgoing PNC on future null
infinity +I . Equivalently, the ingoing version of the original set
of Kerr–Schild coordinates would be adapted to the ingoing
PNC in which l r

 dµm m
- , with the corresponding time coordinate

v being the advanced time, as well as a null affine parameter
that parameterizes the ingoing PNC on past null infinity -I .
Clearly, the “original” ingoing Kerr–Schild system is quite
different from the spherical ingoing Kerr–Schild coordinates
that we use in this section and that are matched to current
GRMHD codes. From Equation (10), the tangent to the ingoing
PNC in our coordinates is given as

[ ] ( )¯ℓ E
X

1, 1, 0, 0 . 15=
S

-m
-

7 See Appendix C. For completeness, the PNC vector fields are (see Equation
(33.39) of Misner et al. 1973 for the Kerr metric)

( )⎡
⎣

⎤
⎦

ℓ E
X

A a a
, 1, 0, . 8

2
=

S +
D


D

m

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5. Horizon-penetrating 3+1 Form

We can cast the AA metric when written in horizon-
penetrating siKS coordinates into its associated 3+1 form
(Arnowitt et al. 2008) by introducing a foliation into space-like
hypersurfaces Στ that are isosurfaces of the scalar time function
τ (see, e.g., Poisson 2004; Gourgoulhon 2007; Alcubierre 2008;
Rezzolla & Zanotti 2013). The unit time-like normal to these
hypersurfaces is

≔ ( )¯ ¯ ¯n , 16a t ad-  = -m m m
t

where ≔ g1a - tt is called the lapse function and, from
Equation (14), is given by

[ ( )] ( )X F2 . 171 2a = S +

The four-vector that is dual to the normal, i.e., ¯ ¯ ¯
¯n g n= =m mn
n

[ ( ) ]¯g F X1 , 2 , 0, 0a a a- = -mt , corresponds to the four-
velocity of the local time-like Eulerian observer. We note that,
due to Frobenius' theorem, the rotation or vorticity tensor for this
congruence of Eulerian observers vanishes identically since it is
hypersurface-orthogonal or hypersurface-forming (see, e.g.,
Section 2.3.3. of Poisson 2004). The four-velocity of this observer
in BL coordinates can be obtained as ¯

¯n n= Lm
m
m m, where

( )¯
¯ 1L = Lm

m
m
m - . It is straightforward to then check that the angular

velocity of the Eulerian observer in BL coordinates ΩE≔ nj/nt

matches the angular velocity of the ZAMO introduced above,
ΩZ=− gtj/gjj= 2aF/Π, exactly. However, the Eulerian obser-
ver has nonzero BL radial velocity, i.e., ( )¯n F X n2r ra= - = .

With Equation (16), the induced (Riemannian) metric γ on
the space-like hypersurfaces can now be introduced as

≔ ( )¯ ¯ ¯ ¯ ¯ ¯g n n . 18g +mn mn m n

The projection tensor, which is used to obtain the spatial
components of any four-vector or tensor, is simply

¯
¯ ¯ ¯

¯ ¯ ¯
¯ ¯

¯g n ng g d= = +n
m ma

an n
m m

n , since ¯
¯ ¯n 0g =n
m n .

Although the 1-form ¯
¯n xdm m is collinear with dτ (see

Equation (16)), the dual four-vector ¯
¯n ¶m m is not, in general,

collinear with ∂τ (since ¯ ¯ga d- µmt
t
m). Indeed, this noncolli-

nearity is typically captured via a four-vector ¯bm, which is
defined such that ¯

¯n 0b =m
m :

≔ ( ) ( )¯ ¯ ¯ ¯ ¯n n . 19b a d a¶ - = -m
t

m m
t
m m

Since, by construction, βτ= 0, it is convenient to work instead
with the space-like three-vector (see, e.g., McKinney &
Gammie 2004; Porth et al. 2017),

≔ [ ( )] ( )g g g F F2 2 , 20i i i
r
i2b a d= - = + St t tt

where the index i takes values i= 1, 2, and 3. This three-vector
measures the shift of the isolines of the three spatial coordinates
with respect to the normal to the hypersurfaces and is therefore
called the shift vector (see, e.g., Section 1.3 of Gourgoulhon 2010).

The desired 3+1 form of the AA metric can now be written
using the lapse function α (Equation (17)), the shift vector β i

(Equation (20)), and the components γij (Equation (18)) of the
induced metric on the hypersurfaces Στ as

( )( ) ( )s x xd d d d d d . 21ij
i i j j2 2 2a t g b t b t= - + + +

For completeness, we demonstrate how the temporal u τ and
spatial u i components of a vector ( )¯u u u, i=m t can be
obtained using the unit normal and the projection tensor,

respectively. First, with ¯
¯n uG = - m
m, we have u τ = Γ/α.

Second, introducing the purely spatial vectors (v0 = 0)
≔ ( )¯

¯v ui ig Gm
m , we obtain u i = Γ(v i − β i/α). One also

finds that v1 1 2G = - , where v2 = viv
i. When u

corresponds to the four-velocity of a fluid element, Γ has
the significance of being the fluid Lorentz factor with
respect to the Eulerian observer. An excellent summary of
the 3+1 treatment relevant for GRMHD can be found in
Gammie et al. (2003).

6. Summary and Conclusions

We have presented in Equation (13) in Section 4 a horizon-
penetrating Kerr–Schild form of the rather general stationary
and axisymmetric Azreg–Aïnou (AA) metric. This form of the
metric can be used as an input when performing general
relativistic (GR), as well as non-GR, magnetohydrodynamics
simulations of accretion flows onto compact objects in arbitrary
metric theories of gravity. The AA metric can be used to
generate a number of popular metrics that describe the
stationary spacetimes in GR corresponding to electrovacuum
black holes (BHs; Kerr 1963; Newman et al. 1965), regular
BHs such as the Kerr–Hayward models (Hayward 2006; Bambi
& Modesto 2013; Zhou & Modesto 2023a, 2023b), naked
singularities such as the spinning Janis–Newman–Winicour
spacetime (Solanki et al. 2022), etc. It can also be used to
describe BH solutions arising in alternative theories of gravity
(e.g., Sen 1992).
To illustrate the ease of generating the Kerr–Schild forms of

new stationary metrics, we now summarize the steps involved.
We start with an arbitrary static and spherically symmetric seed
metric, e.g., the ones listed in Table 1, in standard spherical
polar coordinates, xμ= (t, r, ϑ, j),

( ) ( )
( )

( ) ( )s f r t
g r

f r
r R rd d d d . 222 2 2 2

2
2= - + + W

As we noted in Section 2, it is always possible to find a radial
coordinate r in which g(r)= 1. Since this reduces the number
of free functions, we used such coordinates for the static
models listed in Table 1. However, the required transformation
may not always lead to simple analytical forms for f (r) and R
(r). When it does not, it is preferable to use the more general
form (Equation (22)).
The AA stationary generalization of the metric

(Equation (22)) in spherical polar ingoing Kerr–Schild
coordinates, ( )¯x r, , ,t J f=m , takes the form

( )

⎡
⎣

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦

s
X F F

r

F
a

F
r

F
r

d 1
2

d 1
2

d

d sin d 2
2

sin d d

2
2

d d 2 1
2

d d , 23

2 2 2

2 2 2 2

t

J J f J t f

t f

=
S

- -
S

+ +
S

+ S +
P
S

-
S

+
S

- +
S

where the stationary metric functions {F,Δ, Σ, Π} are fixed by
the static metric functions {f, g, R} in the seed metric

7

The Astrophysical Journal Letters, 956:L11 (11pp), 2023 October 10 Kocherlakota et al.



(Equation (22)) as

( ) ( )
( ) ( )

( )
( ) ( ) ( )

F r R g f g R

r f g R a

r R g a

r R g a a

2 ,

,

, cos ,

, sin . 24

2 2

2 2

2 2 2

2 2 2 2 2

J J

J J

= -

D = +
S = +

P = + - D

The parameter a describes the spin of the spacetime. The only
remaining freedom is the stationary metric function X(r, ϑ).
If the background matter in the stationary spacetime is a fluid

flowing around the spin axis (ϑ= 0) in GR, the unknown
function X= X(r, ϑ) is fixed by solving two Einstein equations,

( )( ) 0r =JG and ( )( ) 0t =jG , in the fluid rest frame (the energy–
momentum–stress components T(r)(ϑ) and T(t)(j) of the fluid
vanish in this frame). We will not enter into the detailed
implications of these equations here but note that X=Σ is
always a solution of the first equation, ( )( ) 0r =JG . The choice
X=Σ is additionally appealing because spacetimes with this
property are asymptotically flat (provided, of course, that the
original seed static metric is also asymptotically flat). Verifying
that X=Σ also solves the second Einstein equation,

( )( ) 0t =jG , in the fluid frame, and that the resulting energy–
momentum–stress tensor is physically valid, i.e., satisfies
various energy conditions, is an involved calculation and
beyond the scope of this paper. However, if one merely wants a
novel stationary metric in which to carry out GRMHD
simulations, and if one is not necessarily too concerned about
satisfying energy conditions, then the metric (Equation (23))
with X=Σ and a suitable choice of the seed functions f (r), g
(r), and R(r) would be a reasonable choice.
We should note that, for nonfluid models, additional

equations of motion for the fields (e.g., the Klein–Gordon or
Maxwell equations) must be solved. The status and successes
of such metric solution–generating techniques in being able to
also yield solutions to the nongravitational field equations is
discussed in Erbin (2017).
Table 2 presents a compilation of the metric functions of the

stationary AA spacetimes corresponding to the six static seed
models listed in Table 1. These are all models for which the
choice X=Σ is valid. The stationary Kerr (1963) metric arises
naturally as the AA generalization of the static Schwarzschild
metric. It describes vacuum, spinning BHs in GR and has been
used extensively in GRMHD simulations. Similarly, the AA
transformation automatically generates the Kerr–Newman
metric (Newman et al. 1965), which describes electromagne-
tically charged, spinning BHs in GR, as the spinning general-
ization of the nonspinning Reissner–Nordström BH. The
Kerr–Hayward model proposed here (the third model in
Table 2) is expected to describe spinning regular (i.e., no
singularities) BHs in GR (see, e.g., Bambi & Modesto 2013;
Zhou & Modesto 2023b). The spinning equivalent of the
GMGHS BH solution in string theory is given by the Kerr–Sen
metric (Sen 1992). The form of the Kerr–Sen metric shown in
Table 2 can be put into the form presented in Equation (20) of
Xavier et al. (2020) by replacing r with r+Q2/M. It is worth
noting that the spacetime of Kerr–Sen BHs contains not just
electromagnetic fields but also a scalar field (dilaton), as well as
an axion field. All of the BH solutions in Table 2 reduce to the
Kerr BH in appropriate limits (Q→ 0, L→ 0).

The spinning JNW spacetime (the fifth model in Table 2)
was proposed in Solanki et al. (2022) and is expected to
describe a spinning naked singularity spacetime containing

scalar field matter. Finally, the spinning JMN-1 metric
proposed here is expected to describe a spinning naked
singularity spacetime containing an anisotropic fluid in GR.
Careful explorations of these spacetimes, especially with a
focus on the physicality of the underlying matter (e.g., how
well energy conditions are satisfied), is left for future work.
Vagnozzi et al. (2023) gave an immense compilation of

spacetime metrics, including those corresponding to static and
spherically symmetric spacetimes. These metric functions
describe alternative nonspinning BHs, which are of consider-
able interest and can be studied using simulations. More
importantly, each static model could potentially be used as a
seed metric to obtain the horizon-penetrating form of the
stationary metric that it may belong to via Equations (23) and
(24). The only open issue, which needs to be checked in each
case, is whether the choice of X=Σ is physically valid.
We conclude on an optimistic note, envisioning the wide-

spread adoption of GRMHD simulations facilitated by our
easy-to-use metric formulation. A Kerr simulation library has
recently been used successfully to infer the properties of
plasma present in the close vicinity of Sgr A*, as well as the
spacetime geometry of this supermassive BH (The EHT
Collaboration et al. 2022a, 2022b). While it might be a
challenging endeavor in the near future to construct similar
libraries of fully 3D simulations in the other stationary
spacetimes described in this paper (because of the many
additional spacetime parameters in these models, such as Q, L,
n̂ , and σ), it should at least be possible to build extensive 2D
GRMHD simulation libraries for these spacetimes. This will
enable valuable exploration of magnetized relativistic gas
dynamics in diverse spacetimes.
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Appendix A
Alternative Form for Arbitrary Static and Spherically

Symmetric Metrics

Given an arbitrary spherically symmetric and static metric
ĝmn in arbitrary spherical polar coordinates of the form
(Equation (1))

( ) ( )
( )

( ) ( )s f r t
g r

f r
r R rd d d d , A12 2 2 2

2
2= - + + W

we can put it into the form where g(r)= 1 as

( ) ( )
( )

( ) ( )

( )
( )

( ) ( )

s f r t
g r

f r
r R r

f t
f

R

d d d d ,

d
d

d , A2

2 2 2 2 2
2
2

2
2

2
2
2

r

r
r
r

r

=- + ¶ + W

=- + + W

r
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where, in writing the last equality, we have imposed the
condition that r(ρ) satisfies the ordinary differential equation,

( ) ( )g r r 1, A3¶ =r

and f (ρ)= f (r(ρ)). Note that the above equation can be
rewritten as

ˆ ( ) ˆ ( ) ( )g r g r r 1. A4tt rr- ¶ =r

Relabeling ρ by r in Equation (A2), we have

( )
( )

( ) ( )s f r t
r

f r
R rd d

d
d . A52 2

2
2

2
2= - + + W

We now demonstrate how we can straightforwardly obtain
the JMN-1 naked singularity metric in the form given above
(Equation (A5)), where ˆ ˆg g 1tt rr- = . Its original form, as given
in Equation (29) of Joshi et al. (2011), uses areal radial
coordinates, xμ= (t, R, ϑ, j), in which ˆ ˆg g 1tt RR- ¹ . From the
original form,

( )
( )

⎜ ⎟
⎛
⎝

⎞
⎠

s M
R

R
t

R

M
Rd 1 d

d

1
d ,2

0
b

2
2

0

2
2
2

M
M
0

1 0

= - - +
-

+ W
-

where the compactness parameter M0 is given in terms of the
Arnowitt–Deser–Misner (ADM)mass M and the physical
boundary or matching areal radius Rb is M0= 2M/Rb, we can
write the desired equation (Equation (A4)) to put it in the g
(r)= 1 coordinates (Equation (A5)) used in Table 1 as

( )⎜ ⎟
⎛
⎝

⎞
⎠

R

R
R rd d , A6

b
=

a

where α=M0/(2− 2M0), not to be confused with the lapse
function, which yields the solution

( )⎜ ⎟
⎛
⎝

⎞
⎠

R R

R
r k

1
. A7b

b

1

a +
= +

a+

The integration constant k above can be set to zero so that at
R= 0, we also have r= 0. The above equation is easily
invertible as

( ) ( )⎜ ⎟
⎡
⎣⎢
⎛
⎝

⎞
⎠
⎤
⎦⎥

R r R
R

r
1

. A8b
b

1
1a

=
+ a+

Now, with M0= 2α/(1+ 2α) and

( ) ( )⎜ ⎟
⎡
⎣⎢
⎛
⎝

⎞
⎠
⎤
⎦⎥

R r
R

r
1

, A9r
b

1a
¶ =

+
a

a
-
+

we can rewrite the metric given in Equation (A6) as

( )

( )

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠
⎡
⎣⎢
⎛
⎝

⎞
⎠
⎤
⎦⎥

⎡
⎣⎢
⎛
⎝

⎞
⎠
⎤
⎦⎥

⎡
⎣⎢
⎛
⎝

⎞
⎠
⎤
⎦⎥

s
R

r t

R
r r

R
R

r

d
1

1 2

1
d

1 2
1

d

1
d . A10

2

b

2

b

2

b
2

b
2
2

2
1

2
1

2
1

a
a

a
a

a

=-
+

+

+ +
+

+
+

W

a
a

a
a

a

+

-
+

+

Introducing σ and rb,

( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠

M

R M

r R
R M

R M
R

1
,

1
2

, A11

b

b b
b

b
b

s
a

a

s

=
+

=
-

= - =
-
-

so that α= σ/(1− σ), and we can simplify Equation (A10) and
instead write

( )

⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

s
M

R

r

r
t

M

R

r

r
r

R
r

r

d 1
2

d

1
2

d

d . A12

2

b b

2
2

b

1

b

2
2

b
2

b

2 2

2
2

=- -

+ -

+ W

s

s

s

- -

-

This is the form of the JMN-1 metric reported in Table 1. We
note that while inverting r(R), given in Equation (A7), to R(r),
given in Equation (A8), was trivial in this case, this step might
not be analytically feasible in general (assuming Equation (A4)
admits a closed-form solution in the first place). Therefore, it is
convenient to use three metric functions, f, g, and R, in general,
as in Equation (1).

Appendix B
A Subclass of Asymptotically Flat Stationary Metrics

Since we are focused here on asymptotically flat spacetimes
(see, e.g., Adamo et al. 2009), let us note first that for the seed
metric (Equation (1)) to be asymptotically flat, its metric
functions must become R(r)= r, f (r)= 1, and g(r)= 1 in the
limit r→∞ . Then, if we define ˜ ¯ ¯hmn as

˜

( )
( )

¯ ¯

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

a
A a

a A a

1 0 0 0
0 1 0 sin
0 0 cos 0
0 sin 0 sin

,

B1

2

2 2

2 2 2

h
J

J
J J

=

-
-

+
- +

mn

we will find that as r→∞ , the Riemann tensor associated with
h̃ vanishes identically for such asymptotically flat seeds. Thus,
asymptotically, h̃ is the flat Minkowski metric η in disguise,
i.e., ˜limr h h=¥ . We stress that the Riemann tensor does not
generally vanish at finite coordinate radii r for the metric
tensor h̃.
Now, the AA metric in the siKS coordinates (Equation (13))

can be expressed in terms of h̃ and the tangent to the ingoing
PNC ℓ- (Equation (10)) everywhere as

˜ ( ) ( ) ( )¯ ¯ ¯ ¯ ¯ ¯⎡
⎣

⎤
⎦

g
X F

ℓ ℓ
2

. B2h=
S

+
Smn mn m n- -

We note further that ℓ- is null with respect to both g and h̃. We
refer to the form of the metric above as the generalized
(spherical ingoing) Kerr–Schild form of the AA metric (see
Section 32.5 of Stephani et al. 2009 for related discussion).
This can be seen to be conformally related to the classic Kerr–
Schild form, as given in Equation (1.1) of Kerr &
Schild (2009).
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Therefore, for the AA metric itself to be asymptotically flat,
we require (a) ( )Flim 2 0r S =¥ , and (b) ( )Xlim 1r S =¥ .
The first of these conditions is met due to the properties of the
asymptotically flat seed metric functions,

( )
( )

( )r
F

r
g f g R

f g R a
lim

2
lim

1

cos
0, B3

2

2 2 2 J ¥ S
=  ¥

-

+
=

whereas the second is trivially met when X=Σ. Thus,
asymptotically flat seed metrics admit asymptotically flat
stationary generalizations when X=Σ. Note that this latter
condition (X=Σ) is a sufficient but not necessary condition. It
is instructive to compare the asymptotically Minkowski metric
in our siKS coordinates (Equation (B1)) with the analogous
form of the Minkowski metric in the original (outgoing) Kerr–
Schild coordinates for the Kerr metric, as given, e.g., in
Equations (1.7) and (1.13) of Wiltshire et al. (2009).

Appendix C
Separability of the Geodesic Equation for the Stationary

Metric

The Lagrangian L describing a geodesic orbit xμ(λ) is given
as u u2 = m

mL , where u x xd d l= =m m m is the four-velocity
along the geodesic, and λ is an affine parameter along it.
Working now in BL coordinates (Equation (2)) due to the two
Killing symmetries of the spacetime that are generated by T= ∂t
and Φ= ∂j, we can find momenta, p ux u= ¶ = ¶ =m mm mL L ,
that are conserved, corresponding to the two cyclic variables.
These are identified as being the energy E= −uμT

μ and
azimuthal angular momentum L= uμΦ

μ of the orbit, respec-
tively,8 which can be used to obtain

[ ]
[ ]

[ ]
[ ( ) ] ( )

t

E

X

g
Fa

E

X

g
Fa F

det
2 sin ,

det
2 sin 2 , C1

t

t

2
2

2
2





x J

j
J x

=-
S

P -

=-
S

+ S -

j

j

where we have introduced the first impact parameter, ξ≔ L/E,
and the determinant of the tj− sector of the AA metric tensor
in BL coordinates (Equation (2)),

[ ] ≔ ( )g g g g Xdet sint tt t
2 2 2 2J- = - S Dj jj j .

Now, with Equation (C1), we can write

( )

( ) ( )

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢

⎤

⎦
⎥

X

E
X

r

E
F a

X
E

a

2
2

sin csc . C2

2
2

2

2
2

2
2

2
2





x

J
J x J

D = - D + -

+ D + -

L

It is easy to see then that the geodesic equation for null
geodesics (2 0=L ) is fully separable,

( ) ≕ ( ) ( )X
E

a sin csc , C32
2

2
2 2

0

J
h J x J J= - - Q

( ) ≕ ( ) ( )X
r

E
F a r2 , C42

2

2
2 2

0


x h= D + - - D R

where we have introduced a separation constant η2, which is
related to the Carter constant C through η2= C/E2. The Carter
constant, in turn, can be used to demonstrate the existence of a
Killing–Yano tensor and an associated hidden symmetry of the
motion.
The fundamental PNCs of the AA spacetime consist of null

geodesics that satisfy 0J = and ̈ 0J = (see, e.g., Misner et al.
1973; Hioki & Miyamoto 2008; see also Section 2.3 of Adamo
et al. 2009). This is equivalent to requiring that Θ0= 0 and
∂ϑΘ0= 0, which yields a solution η= 0 and a sin2x J= . On a
related note, the Newman & Penrose (1962) complex null
tetrad adapted to the outgoing (r 0 > ) PNC for the AA metric
can be found in Azreg-Aïnou (2014a).
If X(r, ϑ) is of the form X(r, ϑ)= Xr(r)+ Xϑ(ϑ), then the

geodesic equation is separable even for non-null orbits,

( ) ≕ ( )

( ) ≕ ( )

( )

X
E

a
E

X

X
r

E
mr a

E
X r

sin csc
2

,

2
2

.

C5

r

2
2

2
2 2

2

2
2

2
2 2

2





J
h J x J J

x h

= - - + Q

= D + - - D + D

J
L

L
R

For the special case where X=Σ, these are given simply as
Xr(r)= A(r) and ( )X a cos2 2J J=J .
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