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Abstract

Memory is the bottleneck resource in today’s datacenters
because it is inflexible: low-priority processes are routinely
killed to free up resources during memory pressure. This
wastes CPU cycles upon re-running killed jobs and incen-
tivizes datacenter operators to run at low memory utilization
for safety. This paper introduces soft memory, a software-
level abstraction on top of standard primary storage that,
under memory pressure, makes memory revocable for re-
allocation elsewhere. We prototype soft memory with the
Redis key-value store, and find that it has low overhead.
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1 Introduction

Memory is the bottleneck resource in many of today’s data
centers [22, 24]. This is because memory is in high demand,
but also inflexible, satisfying developer expectations of per-
sistent allocations during program execution. Processes may
consume large amounts of memory and must explicitly free
memory before the OS can re-assign it to another process.
However, typical processes only actively use a small fraction
of their allocated memory at any time; many of them have
cold memory or extensive application-specific caches [12].
The inflexibility of memory allocation means that infrequently-
accessed or unimportant memory can’t be re-purposed to
needier applications.

A common way to make memory flexible is to swap out
memory content to more abundant, higher-latency storage,
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such as flash or disk. This temporarily frees up space for
new allocations until the program swaps old memory back
when accessing its content. However, swapping is transpar-
ent to the application, so it introduces performance non-
determinism because developers cannot detect when the
program has swapped out pages and, e.g., follow a less ag-
gressive caching strategy.

This paper proposes soft memory, an opt-in software-
level abstraction on top of standard primary storage, which
makes memory allocations revocable under memory pres-
sure for reallocation in other applications. Soft memory inves-
tigates what would happen if memory was a more fungible
resource—like CPU or I/O time, resources that OS kernels
reallocate dynamically between processes—and what abstrac-
tions are needed to make this work. Soft memory differs from
swapping by actually revoking and dropping memory con-
tents, rather than moving them to slower storage. This makes
sense when the data stored loses its utility once no longer in
memory, as, e.g., with in-memory caches.

Soft memory has two major benefits. First, it reduces the
number of low-priority job terminations due to memory
pressure. Such evictions waste cluster resources on incom-
plete executions, including resources scarcer than memory,
such as accelerators (e.g., GPUs, TPUs). Second, rather than
failing malloc when there is insufficient memory on a ma-
chine, soft memory allows an allocator to retrieve it from
other processes. Since most applications cannot handle failed
memory allocations gracefully, soft memory avoids crashes
by satisfying the immediate memory need.

In a data center that deploys soft memory, a developer
uses soft memory for caches, look-up tables, temporary re-
quests queues, and data structures with similar non-essential
purposes. They continue to use standard memory to store
critical state that enables the correct functioning of the appli-
cation (i.e., authentication records, data structure metadata,
etc.). For example, the entries in database caches may employ
soft memory, but table schemas and active user metadata
would remain in traditional memory.

In large-scale computing clusters, jobs typically have a
memory limit above which they get terminated by the sched-
uler. Granting a soft memory budget on top of the traditional
memory limit achieves two goals: first, it allows productive
use of memory left idle because other jobs are operating
below their limit; and second, it incentivizes the use of soft
memory, which provides additional, free resources to an ap-
plication. The scheduler can continue to constrain traditional
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memory by maintaining limits on it, but developers are en-
couraged to use soft memory to take maximum advantage
of extra available resources.

We build a prototype Soft Memory Allocator (SMA) that
manages soft memory on an application level, Soft Data
Structures (SDSs) that take care of soft allocation and freeing
under the hood and offer familiar data structure APIs, and
a Soft Memory Daemon (SMD) that serves as a machine-
wide memory manager for soft memory requests. We add
soft memory support to the Redis key-value store to investi-
gate the practicality and performance of soft memory. Pre-
liminary results show comparable allocation performance
to traditional allocators without memory pressure and low
memory reclamation overheads during memory pressure.

2  Why Soft Memory

Soft memory presents an opportunity to improve resource
management under widespread data center characteristics.

Memory Under-utilization. Cluster schedulers allocate
initial resources to jobs in response to requirements spec-
ified by the developer or to predicted peak load. However,
engineers are notoriously bad at estimating actual resource
consumption and workload requirement estimation remains
fairly conservative in data centers as deployments provi-
sion for peak load [3, 19]. This leads to widespread resource
under-utilization, as identified in large computing cluster
traces [4, 14, 22]. At the core of the problem, there is a trade-
off between maximizing the use of hardware resources and
avoiding performance degradation and disruption when re-
quests exceed availability. Large-scale schedulers such as
Google’s Borg decide to terminate lower-priority jobs when
they receive memory requests that cannot be satisfied other-
wise [23]. This is undesirable, as often work completed by
the evicted job must be recomputed at a later time. Soft mem-
ory eliminates the utilization-performance trade-off for the
memory resource, opening the doors to maximizing memory
utilization without risking process terminations. A soft mem-
ory allocator can allocate memory even when the memory
on a machine is fully utilized, because it can revoke older soft
memory allocations, transferring allocated memory between
jobs without triggering evictions.

Shifting Resource Consumption Patterns. Even though
compute clusters run many heterogeneous workloads, some
universal resource consumption patterns exist in most large
data centers. For example, low nocturnal user interaction
with web services leads to reduced utilization of pre-assigned
resources [1, 24]. In particular, spare CPU resources exist
when the load on long-running services is low, even though
their memory footprint remains the same. Soft memory helps
applications and datacenter operators scale out during low-
utilization periods. Extra workloads can reclaim the soft
memory in under-utilized services and use it productively,
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which reduces CPU stranding. This suggests a two-level
memory scheduling strategy: a cluster scheduler primarily
decides a-priori on traditional resource memory allocations,
while a lower-level soft memory scheduler redistributes re-
vocable memory while jobs run. This increased fungibility
allows reclaimed soft memory to be repurposed when needed,
and we expect that jobs employing soft memory will benefit
from higher likelihood of being scheduled.

Example Use-case: Key-Value Store. Consider a data-
center where a long-running web service uses Redis [16] as
an in-memory cache to reduce tail-latency. During nocturnal
lulls in traffic, the web service can operate on a much smaller
cache footprint without harming tail latency. Redis can put
the cache in soft memory, so that when batch jobs in the
datacenter scale up at night, they can reclaim part of the
cache memory. The cache can be scaled back up during the
day when latency is critical and batch jobs have finished.

Example Use-case: Machine Learning Training Cache.
The input data pipeline is a bottleneck in machine learn-
ing (ML) training jobs as accelerators process data faster
than a dataset batch gets loaded into memory [10]. Storage
caches for deep learning maintain a partial set of the training
dataset in memory and provide significant speedups through
informed replacement policies (i.e., guaranteeing the ran-
domness and uniqueness properties of batches of training
data) [11]. Increasing cache size via soft memory can provide
performance gains while productively using otherwise idle
memory. Once this memory is needed again, the soft memory
subsystem re-configures the cache to its original size. This
slows down the ML training, but makes memory available
for other workloads like latency-critical service jobs.

3 Design

We now explore one possible design for soft memory. A cus-
tom Soft Memory Allocator (SMA) manages soft memory
on an application level. Developers can opt-in to using soft
memory by using API calls soft_malloc and soft_free.
We imagine that, in practice, many applications will use soft
memory through pre-provided Soft Data Structures (SDSs),
which hide the details of soft memory behind a familiar data
structure API. A Soft Memory Daemon (SMD) is a machine-
wide memory manager for soft memory requests, and arbi-
trates soft memory requests across applications.

3.1 Soft Memory Allocator

The main contribution of the Soft Memory Allocator is its
ability to reclaim memory upon a demand by the Soft Mem-
ory Daemon. Figure 1 illustrates soft memory reclamation.
The Soft Memory Allocator provides each SDS with its own
heap and set of memory pages. Each SDS has a context in
charge of tracking the SDS’s heap and a user-defined prior-
ity. The SMA manages a global free pool of free pages that it
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assigns to SDS heaps upon memory requests and replenishes
when a SDS transfers pages back to the pool after freeing
allocations. The SMA has a soft memory budget assigned
by the SMD upon startup. When an application makes soft
memory requests to the SMD, its budget maintained in the
SMA increases, while fulfilling soft memory reclamation de-
mands from the SMD decreases the budget. Soft memory
reclamation within an application is two-tiered—the SMA
chooses SDSs and the SDSs choose allocations to give up.

The goals of the SMA design are the flexibility, efficacy,
and non-disruptiveness of memory reclamation.

Flexibility. Soft memory is opt-in; developers can choose
to allocate soft memory or traditional memory depending on
application semantics. A developer might use soft memory
for caches, lookup tables, request queues, etc., as memory loss
may impact performance but will not affect correctness in
these use-cases. The developer would use traditional memory
where reclamation is not tolerable, e.g., when storing crucial
application state. The developer is most knowledgeable about
the semantics of allocated soft memory blocks, so we allow
them to communicate semantic information to the SMA in
the form of a user-defined SDS priority. A SDS’s priority
influences the likelihood that it will be instructed to reclaim
memory by the SMA during soft memory reclamation.

Efficacy. Memory must be returned to the operating sys-
tem at page granularity, but applications think in terms of
allocations; once all allocations in a page are freed, the page
can be returned. Accordingly, the SMA faces a trade-off be-
tween space and the number of allocation frees required
to free up entire pages for reclamation. A policy where al-
locations are freed arbitrarily from the heap until enough
entire pages are free would result in large numbers of allo-
cation frees to fulfill a reclamation quota. A policy where
each allocation gets its own page permits straightforward
reclamation (an entire page is freed by one allocation free)
but wastes copious amounts of space if most allocations are
small (as is commonly the case [13]). We manage memory
on the level of data structures to balance this trade-off; a SDS
receives pages from the SMA and manages its own mem-
ory within these pages. During soft memory reclamation,
the SMA distributes a reclamation quota among its SDSs. A
SDS frees allocations from its own heap until it has satisfied
the SMA’s reclamation demand. Localizing allocation frees
within a SDS’s pages increases the likelihood of producing
the required number of entirely-free pages for reclamation
from the least amount of data structures. The downside is
possible heap fragmentation. Such fragmentation will be pro-
portional to the number of soft data structures (each with
their own heap); recent work on sharded data structures
that give a separate heap to each shard (a quantity much
larger than the number of data structures) suggests that this
overhead is acceptable in practice [17].
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Figure 1: Soft Memory Reclamation: Process B requests
soft memory from the SMD when the system is under
memory pressure. The SMD selects Process A as a target
for reclamation.
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Non-Disruptiveness. Freeing a block of allocated mem-
ory is disruptive. Depending on the role of the memory, data
may need to be re-fetched or recomputed down the line. We
design our SMA’s reclamation protocol to avoid freeing in-
use blocks when possible and, if impossible to avoid, freeing
low-priority blocks first. Consider an application with two
soft linked lists that each have hundreds of 2 KB elements.
Suppose the application receives a 12 KB reclamation de-
mand (roughly three pages). If the application has excess
soft budget or pages in its global free pool, it first exhausts
these. If not, it begins with the lowest priority soft linked list
and frees list elements from oldest to newest until the page
quota is fulfilled. In our example application, two 2 KB list
elements fit in a 4 KB page, so the quota is fulfilled by freeing
the first six list elements. Before a list element is freed, the
SMA invokes a developer-defined callback on the memory.
This is a last-chance for the developer to interact with the
memory before it is given up, e.g., to tag the data for future
re-computation or store the data elsewhere.

3.2 Soft Data Structures

Soft data structures provide a familiar API for utilizing soft
memory and handle details such as soft memory contexts and
reclamation under the hood. SDSs are required to implement
a reclaim method to handle reclamation demands from the
SMA. Protocols for SDS reclamation are designed by data
structure engineers. Our prototype, for example, provides
implementations of a SoftArray and SoftLinkedList (see
Listing 1). Our soft array gives up all of its soft memory upon
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typedef void (#reclaim_callback_t) (void=);

class SoftLinkedList {
SoftLinkedList(size_t priority,
reclaim_callback_t callback);
size_t reclaim(size_t sz); // callback invoked here

// standard linked list API...

Listing 1: Sketch of a SoftLinkedList SDS APL

a reclamation demand because an array is a single, contigu-
ous memory block. Our soft linked list prioritizes newer en-
tries over older entries when giving up list elements to fulfill
a reclamation demand. A SDS engineer may choose a dif-
ferent policy, e.g., one that prioritizes infrequently-accessed
elements for reclamation. As part of the SDS’s reclaim logic,
the SDS optionally invokes an application-provided callback
to allow the application to react to reclamation.

3.3 Soft Memory Daemon

The Soft Memory Daemon manages soft memory resources
across processes on a single machine. Soft memory differs
from a world where applications individually free memory
because the SMD helps the system escape memory pres-
sure by maintaining global state and making informed recla-
mation decisions for in-use memory. The SMD tracks each
process’s soft memory budget and utilization. The SMD in-
creases a process’s soft memory budget by approving a soft
memory request by that process and decreases a process’s
soft memory budget by issuing a reclamation demand to
that process. Our SMD is designed to almost never deny a
process’s soft memory request, while not unfairly burdening
other processes with reclamation demands.

When there is excess unassigned soft memory or excess
soft memory budget in any process, the SMD can approve
a soft memory request with minimal disturbance. When
there is memory pressure and no excess soft pages exist, the
SMD must demand the reclamation of allocated pages from
SMAs on the machine. In this scenario, the SMD selects a
capped number of processes in decreasing order of reclama-
tion weight until it fulfills its reclaim page quota or hits the
cap on the number of processes to consider. If the SMD does
not reach the page quota, it denies the soft memory request
that triggered the reclamation. This limits the number of
applications that can be disturbed by a soft memory request.

The metric for calculating a process’s reclamation weight
should be designed to incentivize soft memory use. In partic-
ular, (i) the larger the (soft and traditional) memory footprint
of the process, the higher its reclamation weight should be;
and (ii) soft memory usage should increase the reclamation
weight proportional to the traditional memory usage of a
process. The latter criterion is important, as it ensures that
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processes with high soft-to-traditional memory ratio avoid
getting disturbed disproportionally often, which would be a
disincentive for soft memory use. The higher the reclama-
tion weight of a process, the more likely it becomes that the
SMD picks that process as a reclamation target. For example,
suppose applications A and B each use the same number of
soft memory pages and T4 and Tp pages of traditional mem-
ory, respectively. If Ty < Tp then A has a lower reclamation
weight than B because its soft memory footprint is the same
as B’s but the proportion of soft to traditional memory is
greater in A than B. Application A chose to put more of its
data into soft memory, which increases flexibility of the over-
all system, so it has a lower chance of receiving a reclamation
demand than application B, which tied up more memory.
Soft memory is a reactive abstraction because the SMD
coordinates the reallocation of in-use memory once under
memory pressure. The SMD would ideally distribute recla-
mation requests across processes so that the re-computation
cost of such entries is less than the cost of killing a process
and restarting it, which incurs the cost of recomputing its en-
tire state in traditional and soft memory. The SMD does not
manage traditional memory and leaves satisfying the tradi-
tional memory amount required to achieve application goals
(i.e., performance, liveness, etc.) to the data center scheduler.

4 Prototype

We implemented a prototype memory allocator and daemon
in 3,031 lines of C++. Each SDS has an isolated heap and
periodically transfers free pages back to the global free pool
of transferable, on-demand soft memory. When the memory
allocator releases pages back to the operating system upon
a reclamation demand, it tracks the released virtual pages to
re-back them with physical pages before extending the heap.

When a soft memory request requires reclamation, the
SMD considers different processes as possible reclamation
targets. The daemon has an upper bound on the number of
reclamation targets and selects them in descending reclama-
tion weight, but biases towards targets that will experience
little or no disturbance from the reclamation. Suppose a recla-
mation target has allocated all its memory to SDSs. In that
case, the daemon will try other reclamation targets to find a
process in a more flexible memory state (i.e., with an unused
memory budget); only when the SMD cannot find a better
option, it will return to the first target and trigger reclama-
tion. The SMD demands a fixed memory percentage upon
reclamation, which may exceed the immediate soft memory
request, in order to amortize reclamation costs.

5 Preliminary Results

We use our prototype to investigate the practicality and
performance of soft memory. To do so, we added soft memory
support to the popular Redis key-value store [16]. Redis is a
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Figure 2: Under memory pressure, reclaiming soft
memory from the Redis key-value store reduces its
memory footprint and moves memory to another pro-
cess without crashing either application.

single-threaded application, and stores data in an in-memory
hash table. We modified this hash table to store the elements
of its buckets in soft memory, turning it into an SDS. We
added 25 lines of code to Redis (out of 258K LoC total).

We investigate Redis’s response to memory pressure and
soft memory reclamation. We set up the Redis server with
130K key-value pairs all allocated in soft memory (10 MiB
total). We then simulate another process that allocates 12
MiB of soft memory, which exceeds the 20 MiB available soft
memory on the machine, requiring the SMD to reclaim soft
memory from Redis. Figure 2 shows a timeline of events: at
t = 10.13s, the test process makes a request that exceeds its
budget. The SMD detects memory pressure and initiates a
reclamation. At t = 13.88s, the reclamation finishes and Redis
has relinquished 2 MiB of soft memory.

We find that the reclamation time of 3.75s is spent al-
most exclusively in Redis code, invoked via the callback, that
cleans up associated traditional memory for the reclaimed
entries. Requests for the key-value pairs removed from Redis
will now return “not found” to the client; in a caching setup,
the client would re-fetch these entries from a database if
it needed them. Without soft memory, Redis would crash
under memory pressure. The cost of such a termination is a
minimum of 12ms of downtime for Redis to restart, with an
additional, load-dependent period of increased tail latency
while the cache refills.

To understand our prototype’s performance in more de-
tail, we stress-test the SMA and SMD in three settings with 1
KiB allocation size: (1) one process makes 977K soft memory
allocations with sufficient budget from the SMD; (2) one pro-
cess makes the same number of soft memory allocations, but
the SMA grows its soft memory budget by communicating
with the SMD; and (3) two processes each make 977K soft
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memory allocations, then one process makes another 500k
allocations that require reclaiming and moving soft memory
from the other process.

We measure the total time to make all allocations (cases
(1) and (2)) and the time taken to make the additional 500k
allocations (case (3)) under memory pressure. We also mea-
sure, for each test case, the time it takes to create the same
number and size of allocations using the system allocator,
and compare our SMA’s performance to this baseline. A good
result would show competitive performance when the SMA
allocates available soft memory, and low overhead when it
reclaims soft memory from another process. Making 977K
allocations with the SMA (case (1)) takes 1.22X as long as
with the system allocator. The communication needed for
managing the soft memory budget has negligible effect on
performance (case (2)): the SMA still takes 1.23% as long as
the baseline, as communication with the memory daemon
to increase resource budget is amortized over many alloca-
tions. Finally, reclamation—which requires extra work to
redistribute memory among processes—is still fast, making
the 500k allocations under memory pressure take 1.44X as
long as making 500k allocations without memory pressure.

It is worth noting that our current prototype SMA is a
simple textbook memory allocator without optimizations;
adding soft memory functionality to a state-of-the-art alloca-
tor such as jemalloc [6] or TCMalloc [9] would likely further
improve performance.

6 Related Work

Soft memory is closely related to work on far memory [8,
12, 18, 25], and our approach applies many techniques in-
spired by recent far memory systems. AIFM [18] supports
far data structures that swap part of their memory into far
memory, with APIs similar to our soft data structures. The
main difference between AIFM and soft memory is that AIFM
is a swapping mechanism that stores data remotely to be
swapped back in the future, while soft memory deletes re-
claimed memory content after invoking a callback. Soft mem-
ory works well for caching use cases, whereas AIFM targets
applications that prioritize returning the data to the program.

zswap [12] proactively compresses cold memory pages and
maintains their compressed version in DRAM. This transfer
from near to far memory is transparent to the application. By
contrast, soft memory is explicit about memory reclamation
via its callback mechanism and SDSs reactively reclaim pages
under memory pressure to avoid process disruption. Soft
memory also allows developers to opt into using it selectively,
while zswap is an OS-level solution and may swap out any
cold memory pages.

VM ballooning [20] involves redistributing free memory
resources among multiple VMs. This operation is comparable
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to process-level soft memory reclamation of unused mem-
ory budget, which precedes the reclamation of in-use data
structure memory. However, VM ballooning cannot reclaim
in-use memory. Memory-harvesting VMs (MHVMs) [7] and
Deflatable VMs [21] are a new type of elastic VM that can
have its memory size reduced under pressure. But MHVMs
reclaim memory at the granularity of entire containers run-
ning inside the VM, and terminate containers if insufficient
reclaimable memory exists, which replicates precisely the job
eviction situation that soft memory tries to avoid. Deflatable
VMs trigger existing application-level mechanisms (JVM GC,
memcached cache eviction) when deflating memory, rather
than co-designing the memory allocator with the deflation
mechanism (as in soft memory).

Under memory pressure, managed language garbage col-
lectors free inaccessible objects to make space for new al-
locations [5]. By contrast, the SMA may revoke live alloca-
tions when free memory is unavailable. Prioritized garbage
collection realizes space-aware caches (“Saches”) via a soft-
reference-style API that allows the garbage collector to ea-
gerly reclaim objects in caches [15]. This realizes one key
use case for soft memory, but realizes it in the context on a
managed language with GC.

7 Open Questions

Integrating soft memory across the systems stack raises inter-
esting questions for research that touches application APIs,
language runtimes, OS abstractions, and hardware features.

Handling Reclamation. When a soft allocation gets re-
claimed, all pointers into it become invalid. Our prototype
handles reclamation by invoking an application-specific call-
back, which gives the application a chance to remove such
pointers (e.g., by rewriting them to NULL). But finding all
pointers into an allocation is difficult in an unmanaged lan-
guage like C/C++, as the pointers could be anywhere and
there could be any number of them. Even though approaches
to locating all pointers, e.g., by scanning the whole heap [2]
exist, they are prohibitively expensive, particularly at the
timescales on which soft memory reclamation needs to hap-
pen. This could be solved by requiring pointers into soft
memory to be created via a runtime that keeps track of these
pointers, an approach that requires code changes, but may
work within SDS implementations.

Concurrency. With concurrency, the SMA’s reclamation
of a soft allocation can race with another thread that is ac-
cessing the memory. We expect that ideas from far mem-
ory systems, such as the thread-safe smart far pointers in
ATFM [18], could help realize safe soft memory abstractions
under concurrency with reasonable cost. AIFM’s smart point-
ers impose a cost of only five x86-64 instructions per pointer
dereference on the fast path, but require developers to wrap
their accesses to the data pointed to into dereference scopes,

132

Megan Frisella, Shirley Loayza Sanchez, and Malte Schwarzkopf

custom syntactic constructs that notify a runtime that a
thread is currently accessing an allocation. Like with AIFM’s
far-memory data structures, we imagine that much of this
complexity can be hidden within the soft datastructure imple-
mentation, and that application developers need not worry
about it for the most part.

Language Integration. Managed language runtimes could
leverage soft memory in effective ways, since they often al-
ready have ways of locating all pointers to an object for
garbage collection (GC). We believe that co-designing a lan-
guage runtime with a soft memory system could be a fruitful
direction for future research; indeed, soft-memory-like ab-
stractions already exist in some managed languages, e.g.,
in the form of Java’s WeakReference. Managed language
runtimes with GC also already have means of handling race
conditions between the runtime and application threads,
such as read/write barriers.

Policies for Soft Memory. Our design has the SMD arbi-
trate between different applications’ soft memory needs by
managing their budgets. Many different policies are imag-
inable, and the question of what soft memory reclamation
strategy is fair or desirable is itself challenging. Should pro-
cesses that have a larger soft memory footprint, and thus
benefit the most from soft memory, be called upon to give
up more soft memory when memory is tight? While doing
so intuitively seems fair, it also provides a disincentive from
using soft memory. Similarly, there are open questions about
whether a good policy should take into account a process’s
total memory footprint, and whether the SMD should let a
process reclaim its own (older) soft memory. We expect the
answers to these questions to be determined empirically for
different use cases and applications of soft memory.

Soft Data Structures. Nailing down the right APIs for
soft data structures is an important challenge, particularly if
SDSs are used in composition. For example, in our prototype
Redis integration, we changed the hashtable’s per-bucket soft
linked lists to store their list elements in soft memory. These
elements then themselves point to dynamically-allocated
heap memory for storing the key and value. If these alloca-
tions were also soft, reclamation might reclaim only a key or
value, or both key and value, but leave the (now-incomplete)
list element in place. In our prototype, this worked out be-
cause we left the keys and values in traditional memory and
de-allocate them via the reclamation callback function. Bet-
ter APIs for composition, for grouping soft allocations, and
for prioritizing soft allocations would be desirable.
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