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Abstract
Memory is the bottleneck resource in today’s datacenters

because it is inflexible: low-priority processes are routinely

killed to free up resources during memory pressure. This

wastes CPU cycles upon re-running killed jobs and incen-

tivizes datacenter operators to run at low memory utilization

for safety. This paper introduces soft memory, a software-
level abstraction on top of standard primary storage that,

under memory pressure, makes memory revocable for re-

allocation elsewhere. We prototype soft memory with the

Redis key-value store, and find that it has low overhead.
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1 Introduction
Memory is the bottleneck resource in many of today’s data

centers [22, 24]. This is because memory is in high demand,

but also inflexible, satisfying developer expectations of per-

sistent allocations during program execution. Processes may

consume large amounts of memory and must explicitly free

memory before the OS can re-assign it to another process.

However, typical processes only actively use a small fraction

of their allocated memory at any time; many of them have

cold memory or extensive application-specific caches [12].

The inflexibility ofmemory allocationmeans that infrequently-

accessed or unimportant memory can’t be re-purposed to

needier applications.

A common way to make memory flexible is to swap out

memory content to more abundant, higher-latency storage,
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such as flash or disk. This temporarily frees up space for

new allocations until the program swaps old memory back

when accessing its content. However, swapping is transpar-

ent to the application, so it introduces performance non-

determinism because developers cannot detect when the

program has swapped out pages and, e.g., follow a less ag-

gressive caching strategy.

This paper proposes soft memory, an opt-in software-

level abstraction on top of standard primary storage, which

makes memory allocations revocable under memory pres-

sure for reallocation in other applications. Softmemory inves-

tigates what would happen if memory was a more fungible

resource—like CPU or I/O time, resources that OS kernels

reallocate dynamically between processes—andwhat abstrac-

tions are needed to make this work. Soft memory differs from

swapping by actually revoking and dropping memory con-

tents, rather thanmoving them to slower storage. This makes

sense when the data stored loses its utility once no longer in

memory, as, e.g., with in-memory caches.

Soft memory has two major benefits. First, it reduces the

number of low-priority job terminations due to memory

pressure. Such evictions waste cluster resources on incom-

plete executions, including resources scarcer than memory,

such as accelerators (e.g., GPUs, TPUs). Second, rather than

failing malloc when there is insufficient memory on a ma-

chine, soft memory allows an allocator to retrieve it from

other processes. Since most applications cannot handle failed

memory allocations gracefully, soft memory avoids crashes

by satisfying the immediate memory need.

In a data center that deploys soft memory, a developer

uses soft memory for caches, look-up tables, temporary re-

quests queues, and data structures with similar non-essential

purposes. They continue to use standard memory to store

critical state that enables the correct functioning of the appli-

cation (i.e., authentication records, data structure metadata,

etc.). For example, the entries in database caches may employ

soft memory, but table schemas and active user metadata

would remain in traditional memory.

In large-scale computing clusters, jobs typically have a

memory limit above which they get terminated by the sched-

uler. Granting a soft memory budget on top of the traditional

memory limit achieves two goals: first, it allows productive

use of memory left idle because other jobs are operating

below their limit; and second, it incentivizes the use of soft

memory, which provides additional, free resources to an ap-

plication. The scheduler can continue to constrain traditional
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memory by maintaining limits on it, but developers are en-

couraged to use soft memory to take maximum advantage

of extra available resources.

We build a prototype Soft Memory Allocator (SMA) that

manages soft memory on an application level, Soft Data

Structures (SDSs) that take care of soft allocation and freeing

under the hood and offer familiar data structure APIs, and

a Soft Memory Daemon (SMD) that serves as a machine-

wide memory manager for soft memory requests. We add

soft memory support to the Redis key-value store to investi-

gate the practicality and performance of soft memory. Pre-

liminary results show comparable allocation performance

to traditional allocators without memory pressure and low

memory reclamation overheads during memory pressure.

2 Why Soft Memory
Soft memory presents an opportunity to improve resource

management under widespread data center characteristics.

Memory Under-utilization. Cluster schedulers allocate
initial resources to jobs in response to requirements spec-

ified by the developer or to predicted peak load. However,

engineers are notoriously bad at estimating actual resource

consumption and workload requirement estimation remains

fairly conservative in data centers as deployments provi-

sion for peak load [3, 19]. This leads to widespread resource

under-utilization, as identified in large computing cluster

traces [4, 14, 22]. At the core of the problem, there is a trade-

off between maximizing the use of hardware resources and

avoiding performance degradation and disruption when re-

quests exceed availability. Large-scale schedulers such as

Google’s Borg decide to terminate lower-priority jobs when

they receive memory requests that cannot be satisfied other-

wise [23]. This is undesirable, as often work completed by

the evicted job must be recomputed at a later time. Soft mem-

ory eliminates the utilization-performance trade-off for the

memory resource, opening the doors to maximizing memory

utilization without risking process terminations. A soft mem-

ory allocator can allocate memory even when the memory

on a machine is fully utilized, because it can revoke older soft

memory allocations, transferring allocated memory between

jobs without triggering evictions.

ShiftingResourceConsumptionPatterns. Even though
compute clusters run many heterogeneous workloads, some

universal resource consumption patterns exist in most large

data centers. For example, low nocturnal user interaction

with web services leads to reduced utilization of pre-assigned

resources [1, 24]. In particular, spare CPU resources exist

when the load on long-running services is low, even though

their memory footprint remains the same. Soft memory helps

applications and datacenter operators scale out during low-

utilization periods. Extra workloads can reclaim the soft

memory in under-utilized services and use it productively,

which reduces CPU stranding. This suggests a two-level

memory scheduling strategy: a cluster scheduler primarily

decides a-priori on traditional resource memory allocations,

while a lower-level soft memory scheduler redistributes re-

vocable memory while jobs run. This increased fungibility

allows reclaimed softmemory to be repurposedwhen needed,

and we expect that jobs employing soft memory will benefit

from higher likelihood of being scheduled.

Example Use-case: Key-Value Store. Consider a data-
center where a long-running web service uses Redis [16] as

an in-memory cache to reduce tail-latency. During nocturnal

lulls in traffic, the web service can operate on a much smaller

cache footprint without harming tail latency. Redis can put

the cache in soft memory, so that when batch jobs in the

datacenter scale up at night, they can reclaim part of the

cache memory. The cache can be scaled back up during the

day when latency is critical and batch jobs have finished.

ExampleUse-case:Machine LearningTrainingCache.
The input data pipeline is a bottleneck in machine learn-

ing (ML) training jobs as accelerators process data faster

than a dataset batch gets loaded into memory [10]. Storage

caches for deep learning maintain a partial set of the training

dataset in memory and provide significant speedups through

informed replacement policies (i.e., guaranteeing the ran-

domness and uniqueness properties of batches of training

data) [11]. Increasing cache size via soft memory can provide

performance gains while productively using otherwise idle

memory. Once this memory is needed again, the soft memory

subsystem re-configures the cache to its original size. This

slows down the ML training, but makes memory available

for other workloads like latency-critical service jobs.

3 Design
We now explore one possible design for soft memory. A cus-

tom Soft Memory Allocator (SMA) manages soft memory

on an application level. Developers can opt-in to using soft

memory by using API calls soft_malloc and soft_free.
We imagine that, in practice, many applications will use soft

memory through pre-provided Soft Data Structures (SDSs),

which hide the details of soft memory behind a familiar data

structure API. A Soft Memory Daemon (SMD) is a machine-

wide memory manager for soft memory requests, and arbi-

trates soft memory requests across applications.

3.1 Soft Memory Allocator

The main contribution of the Soft Memory Allocator is its

ability to reclaim memory upon a demand by the Soft Mem-

ory Daemon. Figure 1 illustrates soft memory reclamation.

The Soft Memory Allocator provides each SDS with its own

heap and set of memory pages. Each SDS has a context in
charge of tracking the SDS’s heap and a user-defined prior-

ity. The SMA manages a global free pool of free pages that it
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assigns to SDS heaps upon memory requests and replenishes

when a SDS transfers pages back to the pool after freeing

allocations. The SMA has a soft memory budget assigned
by the SMD upon startup. When an application makes soft

memory requests to the SMD, its budget maintained in the

SMA increases, while fulfilling soft memory reclamation de-

mands from the SMD decreases the budget. Soft memory

reclamation within an application is two-tiered—the SMA

chooses SDSs and the SDSs choose allocations to give up.

The goals of the SMA design are the flexibility, efficacy,

and non-disruptiveness of memory reclamation.

Flexibility. Soft memory is opt-in; developers can choose

to allocate soft memory or traditional memory depending on

application semantics. A developer might use soft memory

for caches, lookup tables, request queues, etc., asmemory loss

may impact performance but will not affect correctness in

these use-cases. The developer would use traditional memory

where reclamation is not tolerable, e.g., when storing crucial

application state. The developer is most knowledgeable about

the semantics of allocated soft memory blocks, so we allow

them to communicate semantic information to the SMA in

the form of a user-defined SDS priority. A SDS’s priority

influences the likelihood that it will be instructed to reclaim

memory by the SMA during soft memory reclamation.

Efficacy. Memory must be returned to the operating sys-

tem at page granularity, but applications think in terms of

allocations; once all allocations in a page are freed, the page

can be returned. Accordingly, the SMA faces a trade-off be-

tween space and the number of allocation frees required

to free up entire pages for reclamation. A policy where al-

locations are freed arbitrarily from the heap until enough

entire pages are free would result in large numbers of allo-

cation frees to fulfill a reclamation quota. A policy where

each allocation gets its own page permits straightforward

reclamation (an entire page is freed by one allocation free)

but wastes copious amounts of space if most allocations are

small (as is commonly the case [13]). We manage memory

on the level of data structures to balance this trade-off; a SDS

receives pages from the SMA and manages its own mem-

ory within these pages. During soft memory reclamation,

the SMA distributes a reclamation quota among its SDSs. A

SDS frees allocations from its own heap until it has satisfied

the SMA’s reclamation demand. Localizing allocation frees

within a SDS’s pages increases the likelihood of producing

the required number of entirely-free pages for reclamation

from the least amount of data structures. The downside is

possible heap fragmentation. Such fragmentation will be pro-

portional to the number of soft data structures (each with

their own heap); recent work on sharded data structures

that give a separate heap to each shard (a quantity much

larger than the number of data structures) suggests that this

overhead is acceptable in practice [17].

reclamation command

Soft Memory 
Allocator

Soft Data Structure API
User Application

transfer 
pages

unbacked virtual pagesrelease
pages to OS shared free pool

Soft Data Structure

process ID            reclamation weightSoft Memory 
Daemon

insert element

PROCESS B

soft memory request

PROCESS A

successful reclamation

    increase soft memory
                budget

Figure 1: Soft Memory Reclamation: Process B requests
soft memory from the SMD when the system is under
memory pressure. The SMD selects ProcessA as a target
for reclamation.

Non-Disruptiveness. Freeing a block of allocated mem-

ory is disruptive. Depending on the role of the memory, data

may need to be re-fetched or recomputed down the line. We

design our SMA’s reclamation protocol to avoid freeing in-

use blocks when possible and, if impossible to avoid, freeing

low-priority blocks first. Consider an application with two

soft linked lists that each have hundreds of 2 KB elements.

Suppose the application receives a 12 KB reclamation de-

mand (roughly three pages). If the application has excess

soft budget or pages in its global free pool, it first exhausts

these. If not, it begins with the lowest priority soft linked list

and frees list elements from oldest to newest until the page

quota is fulfilled. In our example application, two 2 KB list

elements fit in a 4 KB page, so the quota is fulfilled by freeing

the first six list elements. Before a list element is freed, the

SMA invokes a developer-defined callback on the memory.

This is a last-chance for the developer to interact with the

memory before it is given up, e.g., to tag the data for future

re-computation or store the data elsewhere.

3.2 Soft Data Structures

Soft data structures provide a familiar API for utilizing soft

memory and handle details such as soft memory contexts and

reclamation under the hood. SDSs are required to implement

a reclaim method to handle reclamation demands from the

SMA. Protocols for SDS reclamation are designed by data

structure engineers. Our prototype, for example, provides

implementations of a SoftArray and SoftLinkedList (see

Listing 1). Our soft array gives up all of its soft memory upon
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typedef void (∗reclaim_callback_t)(void∗);

class SoftLinkedList {
SoftLinkedList(size_t priority ,

reclaim_callback_t callback);
size_t reclaim(size_t sz); // callback invoked here

// standard linked list API...
}

Listing 1: Sketch of a SoftLinkedList SDS API.

a reclamation demand because an array is a single, contigu-

ous memory block. Our soft linked list prioritizes newer en-

tries over older entries when giving up list elements to fulfill

a reclamation demand. A SDS engineer may choose a dif-

ferent policy, e.g., one that prioritizes infrequently-accessed

elements for reclamation. As part of the SDS’s reclaim logic,

the SDS optionally invokes an application-provided callback

to allow the application to react to reclamation.

3.3 Soft Memory Daemon

The Soft Memory Daemon manages soft memory resources

across processes on a single machine. Soft memory differs

from a world where applications individually free memory

because the SMD helps the system escape memory pres-

sure by maintaining global state and making informed recla-

mation decisions for in-use memory. The SMD tracks each

process’s soft memory budget and utilization. The SMD in-

creases a process’s soft memory budget by approving a soft

memory request by that process and decreases a process’s

soft memory budget by issuing a reclamation demand to

that process. Our SMD is designed to almost never deny a

process’s soft memory request, while not unfairly burdening

other processes with reclamation demands.

When there is excess unassigned soft memory or excess

soft memory budget in any process, the SMD can approve

a soft memory request with minimal disturbance. When

there is memory pressure and no excess soft pages exist, the

SMD must demand the reclamation of allocated pages from

SMAs on the machine. In this scenario, the SMD selects a

capped number of processes in decreasing order of reclama-
tion weight until it fulfills its reclaim page quota or hits the

cap on the number of processes to consider. If the SMD does

not reach the page quota, it denies the soft memory request

that triggered the reclamation. This limits the number of

applications that can be disturbed by a soft memory request.

The metric for calculating a process’s reclamation weight

should be designed to incentivize soft memory use. In partic-

ular, (i) the larger the (soft and traditional) memory footprint

of the process, the higher its reclamation weight should be;

and (ii) soft memory usage should increase the reclamation

weight proportional to the traditional memory usage of a

process. The latter criterion is important, as it ensures that

processes with high soft-to-traditional memory ratio avoid

getting disturbed disproportionally often, which would be a

disincentive for soft memory use. The higher the reclama-

tion weight of a process, the more likely it becomes that the

SMD picks that process as a reclamation target. For example,

suppose applications 𝐴 and 𝐵 each use the same number of

soft memory pages and 𝑇𝐴 and 𝑇𝐵 pages of traditional mem-

ory, respectively. If 𝑇𝐴 < 𝑇𝐵 then 𝐴 has a lower reclamation

weight than 𝐵 because its soft memory footprint is the same

as 𝐵’s but the proportion of soft to traditional memory is

greater in 𝐴 than 𝐵. Application 𝐴 chose to put more of its

data into soft memory, which increases flexibility of the over-

all system, so it has a lower chance of receiving a reclamation

demand than application 𝐵, which tied up more memory.

Soft memory is a reactive abstraction because the SMD

coordinates the reallocation of in-use memory once under

memory pressure. The SMD would ideally distribute recla-

mation requests across processes so that the re-computation

cost of such entries is less than the cost of killing a process

and restarting it, which incurs the cost of recomputing its en-

tire state in traditional and soft memory. The SMD does not

manage traditional memory and leaves satisfying the tradi-

tional memory amount required to achieve application goals

(i.e., performance, liveness, etc.) to the data center scheduler.

4 Prototype
We implemented a prototype memory allocator and daemon

in 3,031 lines of C++. Each SDS has an isolated heap and

periodically transfers free pages back to the global free pool

of transferable, on-demand soft memory. When the memory

allocator releases pages back to the operating system upon

a reclamation demand, it tracks the released virtual pages to

re-back them with physical pages before extending the heap.

When a soft memory request requires reclamation, the

SMD considers different processes as possible reclamation

targets. The daemon has an upper bound on the number of

reclamation targets and selects them in descending reclama-

tion weight, but biases towards targets that will experience

little or no disturbance from the reclamation. Suppose a recla-

mation target has allocated all its memory to SDSs. In that

case, the daemon will try other reclamation targets to find a

process in a more flexible memory state (i.e., with an unused

memory budget); only when the SMD cannot find a better

option, it will return to the first target and trigger reclama-

tion. The SMD demands a fixed memory percentage upon

reclamation, which may exceed the immediate soft memory

request, in order to amortize reclamation costs.

5 Preliminary Results
We use our prototype to investigate the practicality and

performance of soft memory. To do so, we added soft memory

support to the popular Redis key-value store [16]. Redis is a
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Figure 2: Under memory pressure, reclaiming soft
memory from the Redis key-value store reduces its
memory footprint and moves memory to another pro-
cess without crashing either application.

single-threaded application, and stores data in an in-memory

hash table. We modified this hash table to store the elements

of its buckets in soft memory, turning it into an SDS. We

added 25 lines of code to Redis (out of 258K LoC total).

We investigate Redis’s response to memory pressure and

soft memory reclamation. We set up the Redis server with

130K key-value pairs all allocated in soft memory (10 MiB

total). We then simulate another process that allocates 12

MiB of soft memory, which exceeds the 20 MiB available soft

memory on the machine, requiring the SMD to reclaim soft

memory from Redis. Figure 2 shows a timeline of events: at

𝑡 = 10.13s, the test process makes a request that exceeds its

budget. The SMD detects memory pressure and initiates a

reclamation. At 𝑡 = 13.88s, the reclamation finishes and Redis

has relinquished 2 MiB of soft memory.

We find that the reclamation time of 3.75s is spent al-

most exclusively in Redis code, invoked via the callback, that

cleans up associated traditional memory for the reclaimed

entries. Requests for the key-value pairs removed from Redis

will now return “not found” to the client; in a caching setup,

the client would re-fetch these entries from a database if

it needed them. Without soft memory, Redis would crash

under memory pressure. The cost of such a termination is a

minimum of 12ms of downtime for Redis to restart, with an

additional, load-dependent period of increased tail latency

while the cache refills.

To understand our prototype’s performance in more de-

tail, we stress-test the SMA and SMD in three settings with 1

KiB allocation size: (1) one process makes 977K soft memory

allocations with sufficient budget from the SMD; (2) one pro-

cess makes the same number of soft memory allocations, but

the SMA grows its soft memory budget by communicating

with the SMD; and (3) two processes each make 977K soft

memory allocations, then one process makes another 500k

allocations that require reclaiming and moving soft memory

from the other process.

We measure the total time to make all allocations (cases

(1) and (2)) and the time taken to make the additional 500k

allocations (case (3)) under memory pressure. We also mea-

sure, for each test case, the time it takes to create the same

number and size of allocations using the system allocator,

and compare our SMA’s performance to this baseline. A good

result would show competitive performance when the SMA

allocates available soft memory, and low overhead when it

reclaims soft memory from another process. Making 977K

allocations with the SMA (case (1)) takes 1.22× as long as

with the system allocator. The communication needed for

managing the soft memory budget has negligible effect on

performance (case (2)): the SMA still takes 1.23× as long as

the baseline, as communication with the memory daemon

to increase resource budget is amortized over many alloca-

tions. Finally, reclamation—which requires extra work to

redistribute memory among processes—is still fast, making

the 500k allocations under memory pressure take 1.44× as

long as making 500k allocations without memory pressure.

It is worth noting that our current prototype SMA is a

simple textbook memory allocator without optimizations;

adding soft memory functionality to a state-of-the-art alloca-

tor such as jemalloc [6] or TCMalloc [9] would likely further

improve performance.

6 Related Work

Soft memory is closely related to work on far memory [8,

12, 18, 25], and our approach applies many techniques in-

spired by recent far memory systems. AIFM [18] supports

far data structures that swap part of their memory into far

memory, with APIs similar to our soft data structures. The

main difference between AIFM and soft memory is that AIFM

is a swapping mechanism that stores data remotely to be

swapped back in the future, while soft memory deletes re-

claimed memory content after invoking a callback. Soft mem-

ory works well for caching use cases, whereas AIFM targets

applications that prioritize returning the data to the program.

zswap [12] proactively compresses coldmemory pages and

maintains their compressed version in DRAM. This transfer

from near to far memory is transparent to the application. By

contrast, soft memory is explicit about memory reclamation

via its callback mechanism and SDSs reactively reclaim pages

under memory pressure to avoid process disruption. Soft

memory also allows developers to opt into using it selectively,

while zswap is an OS-level solution and may swap out any
cold memory pages.

VM ballooning [20] involves redistributing free memory

resources amongmultiple VMs. This operation is comparable
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to process-level soft memory reclamation of unused mem-

ory budget, which precedes the reclamation of in-use data

structure memory. However, VM ballooning cannot reclaim

in-use memory. Memory-harvesting VMs (MHVMs) [7] and

Deflatable VMs [21] are a new type of elastic VM that can

have its memory size reduced under pressure. But MHVMs

reclaim memory at the granularity of entire containers run-

ning inside the VM, and terminate containers if insufficient

reclaimable memory exists, which replicates precisely the job

eviction situation that soft memory tries to avoid. Deflatable

VMs trigger existing application-level mechanisms (JVM GC,

memcached cache eviction) when deflating memory, rather

than co-designing the memory allocator with the deflation

mechanism (as in soft memory).

Under memory pressure, managed language garbage col-

lectors free inaccessible objects to make space for new al-

locations [5]. By contrast, the SMA may revoke live alloca-

tions when free memory is unavailable. Prioritized garbage

collection realizes space-aware caches (“Saches”) via a soft-

reference-style API that allows the garbage collector to ea-

gerly reclaim objects in caches [15]. This realizes one key

use case for soft memory, but realizes it in the context on a

managed language with GC.

7 Open Questions
Integrating soft memory across the systems stack raises inter-

esting questions for research that touches application APIs,

language runtimes, OS abstractions, and hardware features.

Handling Reclamation.When a soft allocation gets re-

claimed, all pointers into it become invalid. Our prototype

handles reclamation by invoking an application-specific call-

back, which gives the application a chance to remove such

pointers (e.g., by rewriting them to NULL). But finding all

pointers into an allocation is difficult in an unmanaged lan-

guage like C/C++, as the pointers could be anywhere and

there could be any number of them. Even though approaches

to locating all pointers, e.g., by scanning the whole heap [2]

exist, they are prohibitively expensive, particularly at the

timescales on which soft memory reclamation needs to hap-

pen. This could be solved by requiring pointers into soft

memory to be created via a runtime that keeps track of these

pointers, an approach that requires code changes, but may

work within SDS implementations.

Concurrency. With concurrency, the SMA’s reclamation

of a soft allocation can race with another thread that is ac-

cessing the memory. We expect that ideas from far mem-

ory systems, such as the thread-safe smart far pointers in

AIFM [18], could help realize safe soft memory abstractions

under concurrency with reasonable cost. AIFM’s smart point-

ers impose a cost of only five x86-64 instructions per pointer

dereference on the fast path, but require developers to wrap

their accesses to the data pointed to into dereference scopes,

custom syntactic constructs that notify a runtime that a

thread is currently accessing an allocation. Like with AIFM’s

far-memory data structures, we imagine that much of this

complexity can be hiddenwithin the soft datastructure imple-

mentation, and that application developers need not worry

about it for the most part.

Language Integration.Managed language runtimes could

leverage soft memory in effective ways, since they often al-

ready have ways of locating all pointers to an object for

garbage collection (GC). We believe that co-designing a lan-

guage runtime with a soft memory system could be a fruitful

direction for future research; indeed, soft-memory-like ab-

stractions already exist in some managed languages, e.g.,

in the form of Java’s WeakReference. Managed language

runtimes with GC also already have means of handling race

conditions between the runtime and application threads,

such as read/write barriers.

Policies for Soft Memory. Our design has the SMD arbi-

trate between different applications’ soft memory needs by

managing their budgets. Many different policies are imag-

inable, and the question of what soft memory reclamation

strategy is fair or desirable is itself challenging. Should pro-

cesses that have a larger soft memory footprint, and thus

benefit the most from soft memory, be called upon to give

up more soft memory when memory is tight? While doing

so intuitively seems fair, it also provides a disincentive from

using soft memory. Similarly, there are open questions about

whether a good policy should take into account a process’s

total memory footprint, and whether the SMD should let a

process reclaim its own (older) soft memory. We expect the

answers to these questions to be determined empirically for

different use cases and applications of soft memory.

Soft Data Structures. Nailing down the right APIs for

soft data structures is an important challenge, particularly if

SDSs are used in composition. For example, in our prototype

Redis integration, we changed the hashtable’s per-bucket soft

linked lists to store their list elements in soft memory. These

elements then themselves point to dynamically-allocated

heap memory for storing the key and value. If these alloca-

tions were also soft, reclamation might reclaim only a key or

value, or both key and value, but leave the (now-incomplete)

list element in place. In our prototype, this worked out be-

cause we left the keys and values in traditional memory and

de-allocate them via the reclamation callback function. Bet-

ter APIs for composition, for grouping soft allocations, and

for prioritizing soft allocations would be desirable.
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