Hamiltonian reconstruction as metric for variational studies
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Variational approaches are among the most powerful techniques to approximately solve quantum
many-body problems. These encompass both variational states based on tensor or neural networks,
and parameterized quantum circuits in variational quantum eigensolvers. However, self-consistent
evaluation of the quality of variational wavefunctions is a notoriously hard task. Using a recently
developed Hamiltonian reconstruction method, we propose a multi-faceted approach to evaluating

the quality of neural-network based wavefunctions.

Specifically, we consider convolutional neu-

ral network (CNN) and restricted Boltzmann machine (RBM) states trained on a square lattice
spin-1/2 Ji-J> Heisenberg model. We find that the reconstructed Hamiltonians are typically less
frustrated, and have easy-axis anisotropy near the high frustration point. In addition, the recon-
structed Hamiltonians suppress quantum fluctuations in the large J2 limit. Our results highlight
the critical importance of the wavefunction’s symmetry. Moreover, the multi-faceted insight from
the Hamiltonian reconstruction reveals that a variational wave function can fail to capture the true
ground state through suppression of quantum fluctuations.

Introduction — The Hamiltonian is the defining object
that governs the dynamics of a physical system. For a
quantum mechanical system, it defines the Schrédinger
equation to be solved to obtain the energy spectrum and
the wavefunction. However, the approach of “exact di-
agonalization” is constrained to small system sizes due
to the exponential growth of the Hilbert space upon in-
creasing the system size. An alternative to exact diago-
nalization is the Quantum Monte Carlo technique using
a stochastic approach to model the probability distribu-
tion associated with the thermal density matrix associ-
ated with a given Hamiltonian. These approaches, how-
ever, suffer from the sign-problem [I], which limits their
applicability to a restricted class of Hamiltonians, or to
high temperature properties only. These challenges moti-
vated variational wavefunction approaches to start from
many-body wave functions that are parameterized within
a given functional form. In variational approaches, the
Hamiltonian is referenced for optimizing the wavefunc-
tion within the chosen functional form (see the blue ar-
row in. Since the resulting best wavefunction is
constrained to lie within limited variational spaces such
as tensor network states [2], neural network states [3] [],
and parametrized quantum circuits [5, 6] (see [Figure 1)),
significant effort has been put into having sufficiently
general variational classes that can capture the actual
ground state. However, assessing how close a given vari-
ational parameterization is to the target ground state is,
in general, a hard task.

At present, the standard metrics for assessing the qual-
ity of a wavefunction that cut across different variational
forms are the energy and the energy variance. Reliance
on these measurements, however, leaves the compari-
son between constructions a case-by-case trial exercise.
Much needed are alternative metrics to assess the quality
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FIG. 1: In a typical variational algorithm, a wavefunction
is obtained through variational optimization within a given
variational form such as CNN, RBM, tensor product state
(TPS), or a parametrized quantum circuit (QC). In this work,
we study CNN and RBM quantum states, marked with green
stars. A blue arrow is shown to represent variational optimiza-
tion of the CNN construction as an example. The Hamilto-
nian reconstruction works in the opposite direction to map a
variational wavefunction to a Hamiltonian H[{c,}] (red ar-
row). The bias between the original Hamiltonian and the re-
constructed Hamiltonian (purple arrow) provides insight into
the nature of the variational wavefunction.

of a given variational state. Interestingly, recent works
have proposed methods to reconstruct Hamiltonians from
wavefunctions using measurements of correlators [7THIZ]
or single operator measurements [I3] [14] (see the red ar-
row in . These reconstruction processes have
been tested on Hamiltonians with known exact solutions,
but their applicability to challenging open problems has
yet to be demonstrated.



In this Letter, we employ Hamiltonian reconstruc-
tion to investigate how frustration affects the bias
between reconstructed and target Hamiltoni-
ans for neural-network wavefunctions. We search for
energy-minimizing wavefunctions in the space of con-
volutional neural network (CNN) and restricted Boltz-
mann machine (RBM) architectures, with the spin-1/2
J1-Jo Heisenberg model on a square lattice [4] as a tar-
get Hamiltonian. On this poster-child frustrated spin
model, deep neural network-based wavefunctions have
obtained highly accurate results for the J;-J5 model away
from the high frustration point, showing the potential
of these variational constructions. However, these same
states showed limitations near J/J; = 0.5, which is the
point of high frustration [4]. To probe features of these
wavefunctions, we construct subspaces of Hamiltonians
that accommodate different “deformations” of the target
Hamiltonian. For each subspace, we use the reconstruc-
tion method to retrieve the Hamiltonian that best fits
the trained wavefunction. We then discuss insights from
the reconstruction.

Hamiltonian reconstruction — For our goal of assess-
ing variational wavefunctions, we chose to implement the
approach of [7, [§]. The procedure starts with the wave-
function of interest ¥, which is energy-optimized within
a given variational form. We then define the Hamiltonian
subspace to be searched by a spanning set of operators
O = {O;}. Any Hamiltonian that is an element of this
subspace, i.e., H € H, can be expressed in the form

dim({Ox})
H[{c,}]= €nOn, (1)

n

where ¢,’s are real parameters. The aim of reconstruc-
tion is to find the dim({O, })-dimensional vector {c,}
such that the wavefunction of interest |¥) is most nearly
an eigenstate of the corresponding Hamiltonian H[{c, }].
For this, we construct the quantum covariance matrix )
associated with the wavefunction and the Hamiltonian
subspace

QLU = 5 (10200) +(0000)) = (0u) O} (2)

which is a dim({O0,, }) xdim({O,, }) positive semi-definite
matrix where expectation values are evaluated with re-
spect to the wavefunction |¥) (also see Figure [I). The
number of expectation values to be measured for @ is
quadratic in the number of operators dim({0,}), and
therefore quadratic in the system size [46].

Hamiltonians that correspond to eigenvectors of
Q[¥;H] with small eigenvalues would all accept |¥) as
an approximate eigenstate. To see this, note that the
variance of the Hamiltonian H[{c,}] in the state |¥) is

given by

(AH[{ca}])?* = (H[{ea}]?) - (H[{cn}])?
= Z cnCm ({OnOm) = {On)(On)) (3)

=¢ TQ[Y; H]e.

By diagonalizing Q[VU;#], the Hamiltonians H[{c,}]
which have the lowest variance under |¥) can be found,
and the associated eigenvalues will be the variances of
those Hamiltonians. If |¥) is an exact ground state of
the original parent Hamiltonian H*, and H* is within
the Hamiltonian search space H[O], then H* will lie in
the nullspace of Q[¥;H].

The expectation values of many-body operators in
Eq. need to be evaluated by performing high-
dimensional integrals. Typically, these integrals can be
approximated via Monte Carlo (MC) sampling, but we
found that the Hamiltonian reconstruction is sensitive
to noise in the correlation functions (see Supplemental
Material I1.B). This sensitivity restricts the procedure to
systems where the correlation functions can be evaluated
accurately. Indeed, previous applications of Hamiltonian
reconstruction [8, [I5] have only treated well-understood
states in which correlation functions can be evaluated
exactly. In our case, this restricted our study to small
system sizes in which the correlation functions could be
evaluated explicitly.

The antiferromagnetic J;-Jo model for spin 1/2 [16}[17]
is defined by the following Hamiltonian

HJIJQEJlZSi'Sj-FJQZgi'gj, (4)
(ij) (g

where (ij) and (7)) denote nearest and next-nearest
neighbours respectively. We set J; = 1 and consider an-
tiferromagnetic interactions J; > 0 for the 4 x 4 periodic
2D square lattice. The exact ground states of the Hamil-
tonian in the limits Jy < J; and Jy > J; are well un-
derstood, since geometric frustration is absent in both
limits: the ground state is a Néel antiferromagnet for
Jy « J1 and a stripe antiferromagnet for J, > J;. How-
ever, the nature of the ground state in the vicinity of the
maximally frustrated point of Jo/J; = 0.5 is the subject
of much debate [I8H27].

Hamiltonian space and wavefunction space — We con-
sider three Hamiltonian subspaces that allow the recon-
structed Hamiltonian to deviate from the target Hamil-
tonian Eq. in physically meaningful ways. We chose
the three two-operator parametrizations

H[a]:HJ1J2+a(Z SZZSJZ+£ Z SZZS]Z)a
(i) T (i)
H[(SJQ]:HJIJ2+(5J2 Z 5’13’] (5)
(G
H[Jg] :HJ1J2 +J3 Z 5’15']
<i’j>3



where « represents easy-axis anisotropy, and J.Jy and
Js modify the next-nearest neighbor and longer range
spin couplings. The coefficients of the original J;-Jo
Hamiltonian are normalized to 1. For each possible two-
dimensional Hamiltonian space, we constructed the ma-
trix @ independently, allowing us to study effects of in-
dividual perturbations. However, we found the results
of higher-dimensional reconstructions allowing simulta-
neous perturbations of « and J> to be consistent with
those of individual reconstructions; see Results below.
We specify technical details and metrics of the recon-
struction quality in SM II.

Seeking further understanding of the challenges under-
lying the maximally frustrated point, we focus on neu-
ral network based wavefunctions that outperformed (i.e.,
had lower energy than) leading variational constructions,
away from the high frustration point [4]. Neural net-
works can be universal approximators of complex func-
tions [28] 29] and thus have the potential to allow more
efficient exploration of the wavefunction space compared
to traditional constructions [30]. The initial proposal of
using restricted Boltzmann machines (RBM) to repre-
sent many-body wavefunctions [3] generated much ex-
citement and spurred extensive investigations of RBM-
based wavefunctions and their variants [31H42]. More re-
cently, Levine et al. [43] showed that the more expressive
convolutional neural network (CNN) architecture can en-
code volume-law entangled states more efficiently. In-
deed, CNN wavefunctions improved on energy compared
to state-of-the-art methods for the J;-J5 model, but only
in the parameter regime away from the high frustration
point of Jy/J; =0.5 [E].

In this work, we examine CNN and RBM many-body
wavefunctions. Both architectures preserve the transla-
tional invariance of the system, and the wavefunctions
were further symmetrized to respect time reversal and
point group symmetries, i.e., translation and rotation.
The wavefunctions were not symmetrized with respect
to the SU(2) spin rotation symmetry of the Hamilto-
nian. Our restriction to the total S, = 0 sector entails
a residual U(1) in-plane rotation symmetry, permitting
easy-axis anisotropy in our trained wavefunctions. We
trained wavefunctions for values of J5 ranging between 0
and 2, and their optimization was done using the NetKet
package [44]. For implementation, training, and sym-
metrization details, see SM 1.

Results — The conventional measure for a wavefunc-
tion’s quality is its variational energy. The energies of
our trained wavefunctions, compared to the exact ground
state energies, are shown in a); the high frus-
tration region around Js = 0.5 is marked by a sharp peak
in energy difference. The energy difference also remains
large in the J2 > 0.5 regime. The non-trivial dependence
of the energies on the Jy/J; ratio implies multiple tenden-
cies at play, yet no information is revealed about which
factors affect the wavefunctions’ performance for specific

regions of parameter space. We therefore compare re-
construction results shown in[Figure 2|(b-d) to the varia-
tional energy to gain much needed insight.

The comparison between the reconstructed anisotropy
« and the energy difference reveals two important fea-
tures. The anisotropy is sharply peaked near Jo/J; = 0.5,
indicating that anisotropy may hold the key to solving
the high frustration point. This reinforces the impor-
tance of enforcing spin rotation symmetry on the wave-
functions, as was suggested by the performance of SU(2)
symmetric RBM wavefunctions for the 1D Heisenberg
model [45]. However, the errors in energy away from the
vicinity of Jy/Jy = 0.5 arise from different sources. Also,
despite significant energy differences between the RBM
and CNN wavefunctions at the peak, they are on par with
each other in terms of anisotropy. While « is consistent
with a conventional measure of correlator anisotropy (see
SM I1.D), and is seemingly the most important barrier
against solving the high frustration point, the compari-
son reveals that other factors might also be important.

The reconstructed interaction strengths dJo and Js
present complementary information. They show devia-
tions from the target Hamiltonian in two regions: near
the high frustration point Jy/J; = 0.5, and the large Jo
region (see [Figure 2(c-d)). In the vicinity of the high
frustration point, 0J> tends to avoid Jo/J; = 0.5. This is
shown by negative §J, below the high frustration point.
In the large Js region, both §Jo and J3 imply strengthen-
ing of the stripe order and reduction of quantum fluctu-
ations. Specifically, positive dJo and negative J3 would
both favor classical stripe order as we show explicitly in
SM ILE. Successful implementation of SU(2) symmetry
would likely resolve these issues by reflecting the true
quantum fluctuations in the state.

Finally, we present results for a multi-dimensional re-
construction space in[Figure 3|that shows agreement with
the two-dimensional reconstructions. This space is de-
fined by

H[8Jy,a] = Hy, g, + a( >, SiS;+ =5 5555)
(7 T (i) (6)
+ 5J2 Z Sz : S1j'
(i)

Here we are allowing 0J; and « to vary simultaneously
[417]. Due to the larger dimensionality, the reconstructed
Hamiltonians from this space will have lower variance
than those obtained in two-dimensional reconstructions,
and are therefore better parent Hamiltonians. Still, we
find that the results in are consistent with our
results from individual two-dimensional spaces.

We have compiled the results for the two-dimensional
reconstructions of dJo and J3 into one plot, to
present a birds-eye view of the results. This demonstrates
the tendency of the reconstructions to “push away from”
the high frustration point, as well as suppress quantum
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FIG. 2: Various metrics for the CNN and RBM wavefunctions. The vertical broken line marks J2/J1 = 0.5, which is the high
frustration point. a) Ground state energy difference (relative to exact ground state) per site. The shaded area is a guide to
the eye that outlines the range in which the energy difference is attributable to the wavefunction anisotropy (see panel b). The
unshaded energy difference in the large Js regime is associated with errors in the reconstructed spin couplings, panels ¢ and
d. b) The reconstructed easy-axis anisotropy «/Ji, which is peaked at the classical high frustration point and tapers off in
the small J2 and large J limits. ¢) The reconstructed difference in the nearest-neighbor coupling, §J2/Ji. The reconstruction
deviates from 0 around J> = 0.5, as well as in the large J2 regime. d) The reconstructed longer-range interaction parameter
Js3/J1. Together with 0.J2/J1, these parameters are associated with the energy differences for large Js.

fluctuations via ferromagnetic Js at large Js. In other
words, the reconstructions explaining the large energy
differences for large Jo (Figure 2{a)) can be summarized
as a general tendency to suppress quantum fluctuations.

Conclusions — We have proposed Hamiltonian recon-
struction as a method to probe many-body variational
wavefunctions beyond their energies. Taking on the
J1 — J3 model and two neural network variational wave-
functions, RBM and CNN, we investigated the Hamilto-
nian spaces parametrized by three channels of deviations
from the target model: «, §Jo, and J3. Our results dis-
sect the Jo/J; parameter space into two regimes: the
regime dominated by frustration (Jz/J1 » 0.5) and the
regime dominated by classical stripe order (Jo/Jy > 0.5).
We found the anisotropy « to be the dominant cause of
error near the high-frustration point. Moreover, we found
dJ> and J3 reconstruction to both indicate suppression
of quantum fluctuation through artificial enhancement of
classical order in the large J5 regime. Overall, the Hamil-
tonian reconstruction revealed multiple ways for a varia-
tional wavefunction to fail in capturing highly frustrated
ground states steeped in quantum fluctuations.

Looking ahead, we expect that Hamiltonian recon-
struction can be an effective means to refine variational
constructions in both classical and quantum (such as
variational quantum eigensolver) platforms. With this
method, specific areas of improvement for variational
wavefunctions can be identified, informing future selec-
tion of variational constructions. Exploring reconstruc-
tions from wavefunctions of larger systems might also
reveal new insights. Further, our results concerning the
Ji-J2 model may serve as guidelines for designing future
neural network wavefunctions of similar frustrated spin
systems.
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defined by with (a) reconstructed easy-axis
anisotropy «/J; and (b) difference in the nearest-neighbor
coupling, dJ2/J1. The trends in the parameters are consis-
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