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Efficientoptimizationwithhigher-order ising
machines
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A prominent approach to solving combinatorial optimization problems on
parallel hardware is Ising machines, i.e., hardware implementations of net-
works of interacting binary spin variables. Most Ising machines leverage
second-order interactions although important classes of optimization pro-
blems, such as satisfiability problems, map more seamlessly to Ising networks
with higher-order interactions. Here, we demonstrate that higher-order Ising
machines can solve satisfiability problems more resource-efficiently in terms
of the number of spin variables and their connections when compared to
traditional second-order Ising machines. Further, our results show on a
benchmark dataset of Boolean k-satisfiability problems that higher-order Ising
machines implemented with coupled oscillators rapidly find solutions that are
better than second-order Isingmachines, thus, improving the current state-of-
the-art for Ising machines.

An Ising machine is a type of parallel computer utilizing energy
relaxation in a network of interacting binary variables. Ising machines
have been proposed as efficient methods for finding optimal or near-
optimal solutions to hard combinatorial optimization problems1–6. For
a given combinatorial optimization problem, the network interactions
are shaped so that the energy minima correspond to the problem
solutions. Formapping a given combinatorial optimization problem to
a network, a common strategy is to formulate the objective as the
energy function of an Ising model, an abstract network of coupled
bipolar variables originally proposed tomodel ferromagneticmaterial.
The Ising model can then be implemented on hardware, referred to as
an Isingmachine. Isingmachines implementedonquantumcomputers
promise optimal solutions3,7–9. However, due to the challenges of
constructing them, Ising machines based on classical physics are ree-
merging and new technologies are being developed. There is a large
variety of possibilities for implementing classical Ising machines,
including coupled electrical oscillators6,10–12, optical parametric
oscillators13, stochastic circuits (probabilistic bits)14, and neuro-
morphic hardware1,15,16. Here, we focus on classical Ising machines for
approximately solving combinatorial optimization problems at scale
and extremely fast.

Casting a combinatorial optimization problem as an Ising model
usually takes two or three steps. The first step is to express the com-
binatorial optimization problem objective as a polynomial in the bin-
ary variables. The second step ismapping the polynomial to the energy
function of an Ising model. For many combinatorial optimization
problems, step one results in a higher-order polynomial2,17–21, i.e., a
polynomial with terms that contain products of more than two binary
variables. However, most Ising machines utilize second-order poly-
nomial interactions between variables. In this case, a third step, called
quadratization2,17,18,20,22–25, is applied for reducing higher-order terms in
the polynomial to second-order. The resulting second-order poly-
nomial represents the energy function of a classical Ising model, i.e., a
second-order network in which each interaction just couples a pair of
variables26. Quadratization increases the network size by adding aux-
iliary variables and it requires increased precision and range of the
second-order interaction coefficients compared to higher-order
interactions18,19.

Higher-order Ising models—models that include polynomial
interactions of a degree greater than two—have received little atten-
tion because the possible number of interactions grows exponentially
with the interaction order. Thus, the training and implementation of
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higher-order Ising models seemed intractable and impractical27. Here,
we propose to skip the step of quadratization and instead use higher-
order Ising models that directly implement the higher-order poly-
nomials describing the combinatorial optimization problems.
Although this proposal seemsdaunting atfirst glance, we show that for
important classes of combinatorial optimization problems, the corre-
sponding higher-order Ising machines require fewer variables and
connections than the second-order Ising machines resulting from the
quadratization approach.

Among the proposed Ising machines, coupled electrical oscilla-
tors are promising for combinatorial optimization problems28 in terms
of solution quality29, and the ability to leverage existing technologies
such as complementary metal-oxide-semiconductor (CMOS) ring
oscillators30,31. Further, the multiplication and routing of electrical
signals that are required to implement a k-th-order interaction for an
arbitrary order k can be realized with existing technologies commonly
used in devices such as phase detectors and mixers32–34, offering
advantages over other physical systems35. To build an oscillator Ising
machine, the continuous phases of oscillator variables have to be
biased towards two anti-symmetric states, for example, by sub-
harmonic injection locking29,36,37. To demonstrate a concrete higher-
order Ising machine, we investigate a network of coupled Hopf oscil-
lators with sub-harmonic injection locking, referred to as a higher-
order oscillator Isingmachine. Results from our simulations show that
the higher-order oscillator Ising machine not only uses fewer network
resources compared to the second-order oscillator Ising machine but,
importantly, achieves better solutions. All told, our results suggest
that, against common beliefs, optimization with higher-order Ising
machines can outperform traditional Ising model approaches.

Results
Mapping constraint satisfaction problems to Ising models
A broad class of combinatorial optimization problems are constraint
satisfaction problems, including invertible logic circuits, Boolean
satisfiability (SAT) problems, and Boolean maximum satisfiability
(MaxSAT) problems. SAT solvers have many direct applications in
areas, such as artificial intelligence38, electronic design automation39,
cryptography40, andmanymore. Many Boolean constraint satisfaction
problems naturally map to higher-order polynomials2,17. The most
common approach for solving constraint satisfaction problems with
Ising machines has been first to apply quadratization for translating
problems to second-order polynomials, and then use second-order
Ising machines to solve them efficiently2,18,19,22,24,26. However, optimi-
zation can also be performed in higher-order Ising machines without
quadratization21,41,42. Here, we aim to construct higher-order Ising
machines for Boolean constraint satisfaction problems which are
simple, yet, scale to large problems and quickly find near-optimal
solutions.

In Boolean constraint satisfaction problems, the Boolean variables
must take a state which satisfies a set of pre-defined constraints. For
the h-th constraint containing k variables, the state space, Sh = {−1, 1}k,
can be partitioned into two sets. Let Ch = {c∈ Sh : c = satisfied state} be
the set of valid states, i.e., that satisfy the constraint, and �Ch = Sh n
Ch = fc 2 Sh : c= unsatisfied state g be the set of invalid states which
do not satisfy the constraint. Any logic function can be expressed by a
constraint for which the set Ch represents the truth table of the func-
tion. An objective or energy function of the h-th constraint, Eh, can be
written as the characteristic function of its set of invalid states2:

EhðsÞ=
X
c2�Ch

Yk
i= 1

ð1 + cisiÞ=2 ð1Þ

or, equivalently (Methods, Equivalence of higher-order Ising energy
formulations), as one minus the characteristic function of its set of

valid states:

EhðsÞ= 1�
X
c2Ch

Yk
i = 1

ð1 + cisiÞ=2: ð2Þ

Thus, the sizes of the sets of valid and invalid states may determine
which of the two equations is preferable. Let NCh

= jChj and N �Ch
= j�Chj

denote the size of the set Ch and �Ch, respectively. Then, Eqs. (1) and (2)
contain a sum with N �Ch

and NCh
terms, respectively. Note that both

energies contain higher-order interactions of the order of the size of
the constraint.

The total energy for a constraint satisfaction problem is the
weighted sum of the individual constraints, Eq. (3):

EðsÞ=
X
h2Γ

whEhðsÞ: ð3Þ

Equation (3) generalizes our method to weighted MaxSAT pro-
blems, which have many applications43. In MaxSAT, each constraint is
assigned a weight, wh, representing the relative importance of satis-
fying the h-th constraint. Here, Γ is the set of indices for the problem
constraints, Eh is the energy function for theh-th constraint formulated
according to either Eq. (1) or (2).

Equation (1) or (2) are higher-order interactions represented as
factored polynomials. Equation (3) can be expanded to coincide with
the common formulation of a higher-order Ising model

EðsÞ= � Jð0Þ +
X
i1

Jð1Þi1
si1 +

X
i1<i2

Jð2Þi1i2
si1si2 + ::: +

X
i1<:::<ik

JðkÞi1 :::ik
si1 :::sik + ::: +

X
i1<:::<in

JðnÞi1 :::in
si1 :::sin

0
@

1
A:

ð4Þ
Here the real-valued variable J(k) represents the k-th order interaction
between k spin variables and n is the total number of spin variables in
the Ising model. The first three terms with 0-th to 2-nd order
interactions of (4) form the energy function of the traditional Ising
model. Only small subsets of all possible interactions will be present
for a particular optimization problem. Either the factored or expanded
parameterization may be preferred depending on the problem and
which form results in the fewest number of terms in the energy. In
general, the expanded energy may contain 2k − 1 terms or parameters.
However, formany practical problems, each clause contains only a few
literals, hence, k is small. The factored representations require NCh

k
and N �Ch

k parameters for Eqs. (2) and (1), respectively. Thus, when k is
large or the expanded form does not simplify to a few terms, the
factored representation is preferable.

The derivation of Ising models is first explained for two small
examples of combinatorial optimization problems, the exclusive OR
(XOR) invertible logic gate, and a small SAT problem. The XOR pro-
blem can be depicted by the XOR gate symbol (Fig. 1a), and its state
table (Fig. 1b). The expanded and simplified energy polynomial of XOR
contains only one interaction (Fig. 1c), resulting in a very simple
hypergraph of the corresponding third-order Ising network (Fig. 1d).
The quadratization of the third-order XOR polynomial produces a
second-order Ising network with one additional auxiliary variable, six
second-order interactions, and four biases (Fig. 1e). The additional
network resources required after quadratization may be negligible for
small problems but significantly change the scaling behavior of
required resources for larger problems (Fig. 2).

Any SAT problem can be written as the product (conjunction or
AND) of clauses (constraints) where each clause is the Boolean sum
(OR) of literals. A literal is a variable or its negation. This form is known
as conjunctive normal form (CNF). For a particular 3 clause SAT pro-
blem, theCNF (Fig. 1f) corresponds to a logic gate circuit (Fig. 1g), and a
factored higher-order energypolynomial (Fig. 1h). The factored energy
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Fig. 2 | Comparing second-order to third-order model parameters on bench-
mark kSAT problems. a, b, d The ratio between the number of second-order
parameters to higher-order parameters are plotted as a function of the number of
variables per constraint in the kSAT problem and different values of ΔEmin. Colors
represent reductions with a different minimum energy gap, ΔEmin. The bars are
grouped by k, the number of variables per clause. a The ratio of the number of

variables required for second-order networks compared to higher-order networks.
c A higher-order interaction implemented with all-to-all connectivity. e A higher-
order interaction is implemented with a computational node for each constraint.
b, d The ratio of the number of connections required for second-order networks
compared to higher-order networks implemented with all-to-all connectivity (c)
and intermediate computational nodes (e).
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Fig. 1 |Mappingoptimizationproblems to Isingmodels.Twoexampleproblems.
Left: XOR circuit. a Circuit schematic for the XOR. The XOR gate has two inputs, s1
and s2, and one output, s3. b The state table has eight lines. Four lines are input
configurations for valid/true output, the other four are input configurations for
invalid/false output. c The higher-order energy function for the XOR in both the
factored and simplified form. d Energy and corresponding hypergraph of third-
order XOR Ising network, variables nodes, depicted as circles, connected by one
interaction, depicted as a square. e Energy and corresponding graph of second-

order XOR Ising network, resulting from quadratization. The graph contains four
variable nodes (one auxiliary variable), six second-order interactions, and four first-
order interactions (biases). Right: SAT problem. f SAT problem in CNF. The SAT
function is written with binary variables, xi∈ {0, 1}, where �xi denotes the variable
negation. g The SAT problem in CNF has an equivalent circuit representation
consisting of k-input OR gates which output to one AND gate. h The energy can be
succinctly formulated with one term per clause using Eq. (1).
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polynomial of a SAT problem corresponds to Eq. (3) with wh = 1 ∀ h.
Therefore, any SAT problem in CNF maps directly to a higher-order
Isingmodel inwhich eachhigher-order interaction represents a clause.
The order of an interaction corresponds to the size of the corre-
sponding clause.

Model scaling of higher-order and traditional Ising models
Quadratization of higher-order interactions introduces auxiliary vari-
ables and adds second-order interactions (XOR example in Fig. 1),
thereby potentially increasing the total resources required by the cor-
responding Ising machine. To quantify this effect, Fig. 2 compares the
resource use of higher-order models versus second-order models on
kSATbenchmarks44,45. kSAT is a SATproblemwhere each clause involves
maximally k variables.QuadratizationofkSATproceedsfirst by reducing
a kSAT problem to 3SAT for k> 3, which can always be done46, and then
quadratization of the 3SATproblem.Weuse theD-WaveOcean software
package for quadratization (Methods, Excess resource use by different
quadratization methods), which accepts the minimum classical energy
gap, ΔEmin, as an input parameter. ΔEmin is the difference in energy
between satisfied states and the lowest energy unsatisfied state. The
choice of minimum energy gap value influences the annealing time in
quantum adiabatic annealing3 and the state acceptance probability in
simulated annealing47. Increasing the minimum energy gap for an Ising
machine may improve the optimization, however, it tends to increase
the number of auxiliary variables and interactions required (Meth-
ods, Excess resource use by different quadratization methods). We
compare higher-order to second-order models in terms of the number
of variables in the energy function and the number of connections
needed to implement all interactions.We consider second-ordermodels
withdifferentminimumenergygapvalues.Nearby values ofΔEmin result
in the same quadratization, therefore, we investigate ΔEmin settings of 1,
5, 10, and 13 where 1, 2, 3, and 5 auxiliary variables are introduced per
clause, respectively. In addition, we found that the method used to
performquadratization increases the required precision or resolution of
coupling coefficients from one bit for factored higher-order Ising
models to at most six bits. This is another significant difference in
resource requirements, as hardware typically offer limited resolution
precision for representing interactions31.

To compare the resource use of interactions of different orders
we consider the number of connections between nodes that are
required for their implementation. The required number of connec-
tions depends on the way a higher-order interaction is implemented,
here we compare twomethods of implementation. The first method is
bidirectional connections between all variables participating in the
higher-order interaction—a kth-order interaction requires k(k − 1)
connections (Fig. 2c). The second method uses an intermediate com-
putational node that receives input from all other variables partici-
pating in the interaction and sends output back to all other variables—a
kth-order interaction requires 2k connections (Fig. 2e).

Our comparison shows that second-order models based on
quadratization of higher-ordermodels require amuchgreater number
of variables and connections compared to higher-order models for
kSAT benchmarks Fig. 2. In particular, second-order models require
three orders ofmagnitudemore variables and one order ofmagnitude
more connections compared to higher-order models. In addition, the
number of variables obtained from the D-Wave Ocean software pack-
age for ΔEmin = 1 is the same as another method of quadratization
based on a circuit decomposition of SAT clauses48 which introduces
one auxiliary variable per clause (Methods, Excess resource use by
different quadratization methods).

Solving SAT problems with a higher-order oscillator Ising
machine
Wecomparedhigher-order and second-order oscillator Isingmachines
in their ability to solve kSATproblems fromabenchmarkdataset44,45. In

these kSAT problems, the number of clauses scales linearly with the
number of variables and solutions are hard to find because the satis-
fying states occupy only a tiny fraction of the state space. For addi-
tional details about the kSAT benchmark dataset, see Methods
section, Resource calculations.

Our networks for implementing Ising machines use the Hopf
oscillator, an oscillator model that includes amplitude dynamics. Such
network models reflect the behavior of oscillator hardware more
accurately than models with fixed oscillator amplitudes such as Kur-
amoto models34. In addition, our choice is motivated by simulation
experiments indicating that Hopf oscillators with dynamic amplitudes
provide far better solutions to the kSAT benchmark problems than
Kuramoto networks (Fig. S2 of the Supplementary Information file).
Following previous work on oscillator Ising machines with the Kur-
amoto model10 our model uses sub-harmonic injection locking10,37. In
the resulting higher-order oscillator Ising machine, the amplitude and
phase of an oscillator are described by a complex variable zi 2 C,
which evolves according to:

_ziðtÞ= f ðziðtÞÞ � riðtÞ
∂EðgðzðtÞÞÞ

∂zi
+qiðtÞ lðziðtÞÞ: ð5Þ

On the right-hand side, f(zi) (Eq. (15) inMethods, Oscillator model
and simulation details) is the local oscillator dynamics, and ∂EðgðzðtÞÞÞ

∂zi
the

partial derivative of the Ising energy with respect to oscillator zi, with
time-dependent coupling coefficient ri(t), and optional element-wise
non-linearity, g(z(t)) = z(t)/∣z(t)∣ for normalizing the amplitude of each
oscillator. Further, lðziÞ= �zi is the phase quantization signal driving the
phase of oscillator zi to discrete states, with time-dependent “anneal-
ing” coefficient, qi(t). The phase quantization signal is equivalent to
sub-harmonic injection locking (Methods, Oscillator model and
simulation details).

Higher-order oscillator Ising machines achieve better solutions
than second-order oscillator Ising machines on all 3SAT benchmark
problems, asmeasured bymean energy at the solution points (Fig. 3a).
Only for the smallest problem instances (20variables), thedifference is
small. For larger problems, a substantial gap in energy appears and
increases with problem size. Interestingly, even second-order oscilla-
tor Ising machines with large minimum energy gaps and, corre-
spondingly, high resource use cannot close the performance gap to
higher-order oscillator Ising machines. The performance gap amounts
to about 0.75 percent of constraints satisfied for the large 3SAT pro-
blems (Fig. 3b). Finding optimal solutions, i.e., states that satisfy all the
constraints, is a hard problem as there could be very few satisfying
states in the entire state space. Nevertheless, for larger problemsof the
3SAT benchmarks, higher-order oscillator Ising machines tend to find
solutions that satisfy all constraints with greater probability than the
second-order oscillator Ising machines, Fig. 3c. In fact, the higher-
order oscillator Isingmachine is thefirst reported Isingmachine tofind
satisfiable solutions to the largest 3SAT problems (250 variables) since
the previous efforts with second-order Ising machines have been
unable to find solutions satisfying all clauses48, note the missing bars
in Fig. 3c.

Annealing typically improves the quality of solutions found by
Ising machines20,21,29,48. In both our higher-order oscillator Ising
machine and existing second-order oscillator Ising machines, a pro-
cess analogous to adiabatic and simulated annealing is achieved by
gradually increasing the coefficient in the sub-harmonic injection
locking term, qi10. We investigated linear annealing schedules with
different duration, measured by the number of cycles of the resonant
frequencies of the oscillators. The percentage of constraints satisfied
at the end of the annealing schedule improves with the duration of the
annealing schedule (Fig. 3d). The time-to-solution for reaching a fixed
target of 95% of constraints satisfied (TTS95) scales linearly with the
slope in the annealing schedule (Fig. 3e). For large slopes, the TTS95
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can be a fraction of a cycle, consistent with previous findings that
oscillator Ising machines rapidly find low energy states29. In fact,
higher-order oscillator Isingmachines can satisfymore than95% in less
than one cycle for all problems (for comparisons of TTS values for
higher target percentages, see Fig. S1 of the Supplementary
Information file).

Many studies on solving kSAT problems for k > 3, first use an
efficientmethod for reducing the problem to 3SAT46 and then focus on
solving the resulting 3SAT problem. Here, we use a benchmark dataset
of 5SAT and 7SAT problems49 to assess this strategy for the higher-
order oscillator Ising machine in terms of resource efficiency and
solution quality (Methods, Method for reducing kSAT to 3SAT). First,
we find that the reduction to 3SAT increases the number of problem
variables by one or two orders of magnitude, and there is approxi-
mately a 3 and 6 times increase in the number of clauses for 5SAT and
7SAT, respectively (left two columns in Fig. 3f). Second, we observe
that the direct solution of the 5SAT and 7SAT problems satisfy a
greater fraction of constraints compared to solutions of correspond-
ing 3SAT reductions (right column in Fig. 3f). It would be interesting to
compare the 5th- and 7th-order oscillator Ising machines to second-
order oscillator Ising machines but we were unable to test second-
order oscillator Ising machines on these problems due to the large
number of auxiliary variables introduced via quadratization.

Hardware implementations of high-order oscillator Ising
machines
The results presented so far suggest that higher-order oscillator Ising
machinesmay have computational advantages over current hardware,
and extending hardware implementations of oscillator Ising machines
beyond second-order interactions is promising. Computing with
higher-order interactions requires a state variable to form and

accumulate the partial derivatives of all terms in the total energy it
participates in. Depending on the formulation of the total energy,
individual terms can pertain to individual higher-order interactions
JðkÞi1 :::ik

; k >2 as in (4), or pertain to factored higher-order interactions
representing constraints in the optimization problem (3). Regardless
of which decomposition of the total energy is used, computing the
derivative of an individual energy term will require information from
more than one other state variable. Herewe considered twooptions to
solve this communication problem, though, others are possible. In the
first option the state of each variable in a term is sent to every other
variable node involved in the term, Fig. 2c. Conversely, in the second
option, the states of variables participating in an energy term are first
sent to an additional node in which the partial derivatives are com-
puted. The result is communicated back to the variable nodes where
the partial derivatives are accumulated Fig. 2e—for details, see Meth-
ods section, Computing derivatives of the higher-order Ising energy
function.

Discussion
Much of the existing literature on optimization with Ising machines
have focused on second-order Ising networks. Such models were first
proposed in ref. 2 for solving constraint satisfaction problems. The
authors in ref. 2 originally proposed mapping a SAT problem to a
higher-order polynomial but then applied quadratization to map to a
second-order Isingmodel. Our first contribution is to directly compare
the resource use of second- and higher-order Ising models for solving
SATproblems.Defying common intuition, the comparison reveals that
higher-order Ising machines are more resource-efficient than second-
order Ising machines for solving large combinatorial optimization
problems. The resource efficiency of higher-ordermodels results from
the fact that no auxiliary variables are required and many

Fig. 3 | Second-order versus higher-order networks when solving kSAT pro-
blems. a The mean higher-order energy at the end of the simulation is plotted
against the number of problem variables for hard instances of 3SAT problems. As
the problem size increases, the difference in energy between the second-order
oscillator Ising machines and the higher-order oscillator Ising machines increases.
b The mean percent of constraints satisfied at the end of simulation versus the
problem size for 3SAT problems. c The probability of satisfying all constraints for
different problem sizes and models for 3SAT problems. d The mean percent of
constraints satisfied at the end of simulation versus the problem size for higher-
order oscillator Ising machines for 3SAT problems. e The mean time to satisfy 95%

of constraints for higher-order Ising machines for 3SAT problems. d, e Lines indi-
cate different linear annealing schedules for the sub-harmonic injection locking
coefficients, qi. In all plots, error bars represent the sample standard deviation
computedoverproblem instances and trial simulations. fComparing resources and
solutions of 5SAT and 7SAT problems to their 3SAT reductions. Reducing kSAT
problems to 3SAT for k > 3 increases the number of variables and connections (left
two columns). The 5th-order and 7th-order Isingmachines find lower energy states
corresponding to a greater fraction of constraints satisfied compared to the 3rd-
order Ising machine (right two columns).
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combinatorial optimization problems map to polynomials which cor-
respond to a very sparse higher-order interaction graph. Thus, the
savings in higher-order models are in the number of Ising variables, as
well as in the number of connections (Fig. 2).

Our second contribution is to build a resource-efficient higher-
order Ising machine with coupled oscillators and test it on benchmark
datasets of SAT problems. Motivated by other recent work21,41,42,50, we
investigated the implementation of a higher-order oscillator Ising
machine in a coupled oscillator network. Ourmodel resembles the one
in ref. 50, but still differs in several ways. First, we use Hopf oscillators
which include amplitude dynamics and capture the dynamics of
oscillator hardware34 more closely than the oscillators modeled by the
Kuramotomodel in ref. 50. Second, we introduce a form of annealing,
specifically, the gradual increase of the sub-harmonic injection locking
coefficient following a linear annealing schedule. Third, our model
uses the simplest energy function resulting from themappingmethod
in ref. 2 (Eqs. (1) or (2)), a sum of all constraint terms where each
constraint term is a product of binary values. In principle, themapping
method specifies an entire family of valid energy functions inwhich the
products in the constraint energy are raised by any positive exponent
before summing them. For example, in4,50 the constraint terms are
squared before summing. Our model choice results in gradient com-
putations with the lowest possible complexity, and, moreover,
achieves better solutions on the benchmark problems than a model
with squared constraints (Methods, Comparing higher-order con-
straint energy functions with different exponents).

Higher-order oscillator Ising machines converge to optimal or
near-optimal solutions in very few cycles, and importantly, con-
vergence time does not increase with problem size (Fig. 3e). In some
practical cases, solutions are reached in less than one cycle. Further,
higher-order oscillator Ising machines outperform second-order Ising
machines in solution quality and in some cases find optimal solutions
to Boolean constraint satisfaction problems. To our knowledge, this
study is the first to report an Ising machine that finds optimal satisfi-
able solutions for the large 3SAT problems in the benchmark data-
set (Fig. 3c).

It has to be emphasized that our study focuses on optimization
methodswith a basic Isingmodelwhose onlydynamic variables are the
spin variables. These methods are extremely fast and resource-effi-
cient, but they sometimes find only near-optimal solutions. Another
type of Ising machine with higher-order interactions implements the
Lagrange method4,51,52, consisting of two types of dynamic variables,
spin variables and Lagrange multipliers. In these models, each con-
straint term in the objective function is multiplied with a nonnegative
variable, the Lagrange multiplier. If a constraint is unsatisfied, the
corresponding Lagrange multiplier grows dynamically, until the con-
straint is satisfied4,51,52. In theory, the Lagrangemodels can find optimal
solutions in polynomial time but the multipliers can grow exponen-
tially large as a function of time4. Further, the time to solution in
Lagrange models increases with problem size4,52. The systematic
comparison of Lagrange methods with higher-order versus second-
order interactions is an interesting topic for future research.

The reported benefits of higher-order Isingmachines, and higher-
order oscillator Ising machines, in particular, are practically relevant
because today many technologies exist for their realization. For
example, higher-order interactions require the multiplication of the
variables involved in the interaction. The multiplication of coupled
electrical ring oscillator voltages can be implemented in the analog
domain using existing CMOS technologies33. Further, the k-th-order
interactions of electrical oscillators can be implemented in log2ðkÞ
stages using a cascade of two-input multipliers or in one stage by a
sequence consisting of element-wise log transform, summation, and
anti-log transform. Another interesting technology is translinear elec-
tronic circuits which make use of the translinear principle32. Finally,
existing methods for implementing real-valued analog higher-order

interactions53 may be modified for use in higher-order oscillator Ising
machines.

Methods
Mapping optimization problems to higher-order Ising models
To express the objective function of a combinatorial optimization
problem as the energy function of an Ising model, binary variables in
the optimization problem must be mapped to the spins of the Ising
model. In this study, the transformation between problem variables,
xi∈ {0, 1}, and spins, si∈ { − 1, 1}, uses the standard transformation:
si = 2xi − 1.

Equivalence of higher-order Ising energy formulations
It is easy to see that Eqs. (1) and (2) are equivalent. For constraint h, the
corresponding sets �Ch or Ch partition the state space. Therefore, any
state, s, is an element of one of the two sets and we have:

X
c2�Ch

Yk
i= 1

ð1 + cisiÞ=2 = 1�
X
c2Ch

Yk
i = 1

ð1 + cisiÞ=2,

with Eq. (1) on the LHS and Eq. (2) on the RHS. The product terms
evaluate to 1 when s = c and 0 otherwise. If s 2 �Ch, both sides equal 1, if
s∈Ch, both sides equal 0. Therefore, Eqs. (1) and (2) represent the
same objective function and can be used interchangeably.

Computingderivatives of the higher-order Ising energy function
If the number of terms in the sum in equation (1) is small, it is efficient
to compute the partial derivative of the total energy as a sum of
derivatives of individual unsatisfied constraint terms:

∂EhðzÞ
∂zi

= �
X
c2�Ch

ci
Y
j≠i

ð1 + cjzjÞ=2: ð6Þ

Conversely, if the number of terms in the sum of (2) is small, it is
efficient to compute the partial derivative of the total energy as a sum
of derivatives of individual satisfied constraint terms:

∂EhðzÞ
∂zi

=
X
c2Ch

ci
Y
j≠i

ð1 + cjzjÞ=2 ð7Þ

Alternatively, if the number of terms in the energy expansion (4) is
small, it is efficient to compute the partial derivatives of individual
JðlÞi1 :::il -terms which a variable interacts with:

∂EðzÞ
∂zi

=
X
�
JðlÞi1 :::il

� ∂
∂zi

EJðlÞi1 :::il
ðzÞ=

X
�
JðlÞi1 :::il

�
: i2fi1 :::il g

JðlÞi1 :::il
Y

v2fi1 :::il gnfig
zv: ð8Þ

Method for reducing kSAT to 3SAT
In this study, we also investigate a polynomial-timemethod46 to reduce
kSAT to 3SATwhen k > 3. Themethodworks as follows. Let∨ ,∧, and ~
denote the logical OR, AND, and NOT operations, respectively. Con-
sider a clause with 5 binary variables, (x1∧ x2∧ x3∧ x4∧ x5). Introduce
auxiliary variables y1 and y2. Introduce new clauses and insert auxiliary
variables as:

ðx1 _ x2 _ ~y1Þ ^ ðx3 _ x4 _ ~y2Þ ^ ðy1 _ y2 _ x5Þ:

The problem is 3SAT as no clause has greater than three variables.
Reducing one 5SAT clause to 3SAT form results in 3 clauses and 7
variables.

Consider a clause with seven variables, (x1∧ x2∧ x3∧ x4
∧ x5∧ x6∧ x7). Introduce auxiliary variables y1, y2, and y3. Introduce
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new clauses and insert auxiliary variables:

ðx1 _ x2 _ ~y1Þ ^ ðx3 _ x4 _ ~y2Þ ^ ðx5 _ x6 _ ~y3Þ ^ ðx7 _ y1 _ y2 _ y3Þ:

The last clause contains four variables so it has to be reduced further.
Introduce auxiliary variables l1 and l2. Introduce new clauses and insert
auxiliary variables:

ðx1 _ x2 _ ~y1Þ ^ ðx3 _ x4 _ ~y2Þ ^ ðx5 _ x6 _ ~y3Þ ^ ðx7 _ y1 _~l1Þ ^ ðy2 _ y3 _~l2Þ ^ ðl1 _ l2Þ:

The problem is 3SAT as no clause has greater than three variables.
Reducing one 7SAT clause to 3SAT results in six clauses and 12
variables.

Excess resource use by different quadratization methods
Numerous quadratization methods have been proposed for reducing
objectives with higher-order interactions to energy functions of
second-order Ising energies2,17,22,24,48. In general, the number of aux-
iliary variables introduced by quadratization depends on the particular
combinatorial optimization problem and the method of quadratiza-
tion. In this study, quadratization was performed with the D-Wave
Ocean software package (https://docs.ocean.dwavesys.com/en/
stable). With the quadratization method in D-Wave Ocean one can
adjust the minimum energy gap, ΔEmin, for controlling the tradeoff
between excess resource use and computation performance of the
resulting second-order Ising machine.

With the parameter choice of ΔEmin = 1, one auxiliary variable is
introduced per 3SAT clause, the same number as with some other
quadratization methods48. Thus, the excess resource use of quad-
ratization we report for this parameter choice generalizes to other
methods in the literature. In addition, we also assess the resource use
with parameter settings ofΔEmin > 1 inD-WaveOcean. These results are
specific to the D-Wave Ocean quadratization method, but informative
for exploring whether increased excess resource use could potentially
close the performance gap between second-order and higher-order
oscillator networks.

Benchmark datasets
We assess the performance of higher-order Isingmachines on Boolean
satisfiability (k-satisfiability, kSAT) problems, a well-known class of
hard combinatorial optimization problems. Specifically, the 3SAT
problems used in our experiments were obtained from the SATLIB
collection44 (https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html). We
selected instances of sizes 20, 50, 100, and 250 variables. The first
sixteen instances were selected from each problem size to run the
simulations. The dynamic variables in the oscillator networks were
randomly initialized for each trial simulation. 64 trial simulations were
performed for each instance.

To demonstrate the performance of higher-order Ising machines
on 5SAT and 7SAT problems, we selected an instance of each problem
from the 2018 SAT Competition49 (https://satcompetition.github.io/
2018/). The 5SAT and 7SAT problems were also reduced to 3SAT using
the method described in the Section “Method for reducing kSAT
to 3SAT”.

Resource calculations
We use benchmark kSAT problems to demonstrate the advantages of
higher-order Ising models compared to second-order Ising models in
terms of resource utilization. The chosen benchmark problems are
considered hard because they possess only a few satisfying states in a
vast state space. Such hard problems are found amongst random
instances that are sampled with a specific clause-to-variable ratio,
αk
clause:v for each value of k49. The results in Figs. 2 and 3usedproblems

with clause sizes of k equal to 3, 5, and 7, and αk
clause:v equal to 4.267,

21.117, and 87.79, respectively.

In order for a problem to be solved by a second-order Ising
machine the kSAT problems must first be reduced to 3SAT for k > 3,
which introduces auxiliary variables and additional clauses. LetNk,k

v be
the number of variables for a kSAT problem represented with kth-
order interactions. Then,

Nk,k
clause =α

k
clause:vN

k,k
v ð9Þ

is the number of kSAT clauses. After reducing kSAT to 3SAT, the
number of third-order clauses is

N3,k
clause =N

k,k
clauseα

3:k
clause:clause, ð10Þ

where α3:k
clause:clause is the clause-to-clause ratio stemming from

reducing kSAT to 3SAT. The number of variables in the reduced
3SAT problem is

N3,k
v =Nk,k

v +Nk,k
clauseN

3:k
v:clause, ð11Þ

where N3:k
v:clause is the expected number of auxiliary variables intro-

ducedwhen reducing a kSATclause to a 3SAT clause. For second-order
Ising machines, the 3SAT problem needs to be reduced further to a
second-order MAXSAT problem. The number of variables in the
second-order Ising model is

N2,k
v =N3,k

v +N3,k
clauseN

2:3
v:clause, ð12Þ

where N2:3
v:clause is the expected number of auxiliary variables intro-

duced during quadratization when reducing a 3SAT clause to second-
order interactions.

For a kSAT problem implemented in an lth-order interactions
Ising model, the number of connections is:

Nl,k
conn =N

l,k
clauseN

l
conn:clause: ð13Þ

Here,Nl
conn:clause is the number of connections for an lth-order clause,

which depends on the method for implementing higher-order
interactions. Two methods are compared. The first method uses
l(l − 1) connections and the second 2l connections for implementing
one lth-order interaction.

The number of connections in the second-order model is

N2,k
conn =N

3,k
clauseN

2:3
conn:clause, ð14Þ

whereN2:3
conn:clause is the numberof second-order connections required

to implement the 3SAT clause. The number of second-order connec-
tions depends on the number of auxiliary variables introduced during
quadratization, which, in turn, depends on ΔEmin. For a 3SAT clause
implemented by n variables with second-order interactions, n(n − 1)
connections are required.

Oscillator model and simulation details
In higher-order oscillator Isingmachines, eachoscillator is represented
by the complex Van der Pol or Hopf oscillator as described in Eq. (15):

f ðziÞ= ðλi + iωiÞzi +ρizijzij2: ð15Þ

Here, ωi is the center frequency for the ith oscillator, λi is a parameter
determining the oscillator quality, and ρi controls the degree of
nonlinearity.

In our simulations, the network coupling, ri(t), was the same for
all oscillators and was held constant for the duration of the simula-
tion. The center frequency was held constant at zero for all oscilla-
tors, ωi = 0∀ i. The parameters λi and ρi were set to produce limit-
cycle oscillations with unit amplitude. We used a linear annealing
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schedule, qiðtÞ=qmax
t

tend
. The phase quantization signal, l(zi) is

equivalent to sub-harmonic injection locking. We show this by
representing each oscillator, zi, with a real and imaginary part
(ai + ibi). By adding the conjugate of zi to the dynamics, the real part
grows and the imaginary part decays to zero. The solutions to the
dynamics for each uncoupled oscillator including the limit-cycle
dynamics, f(zi), are ai =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhi + λiÞ=ρi

p
The results reported in Fig. 3 were obtained using a parameter

search to find the optimal values of λ, ρ, qmax, tend, and r individually for
both the higher-order and second-order models. The best candidates
were selected based on the lowestmean energy and the greatest mean
probability of satisfying problem instances. The mean energy and
percent of constraints satisfiedwere computed based on the final state
of the network after simulation. The mean was computed across ran-
dom network initializations for all trail simulations across problem
instanceswithin eachproblem size. Tables S1–S3 in the Supplementary
Information file contain the 10 best parameter configurations for each
problem size for the higher-order and the second-order models. The
error bars in Fig. 3 represent the sample standard deviation. Integra-
tion of the dynamical system was performed using an adaptive step-
size RK4/5 method (https://github.com/google/jax). The computer
code used to produce the results reported in this study is available
online at https://github.com/connorbybee/hoim.

Comparing higher-order constraint energy functions with dif-
ferent exponents
For a kSAT problem, the objective for clause h in our method (1)
simplifies to:

EhðsÞ=
Yk
i= 1

ð1� cisiÞ=2: ð16Þ

with ci = 1 if a literal is TRUE and ci = − 1 if a literal is FALSE. Since Eh(s)
evaluates to either one or zero for all bipolar state vectors, s, an
obvious generalization of the clause objective (16) is to exponentiate
the RHS by a positive number. In4,50, the objective of kSAT problems
with a higher-order energy functionof this typewasproposed,with the
specific setting of the exponent set to a value of two:

EhðsÞ=
Yk
i = 1

ð1� cisiÞ=2
 !2

: ð17Þ

We compared the solution quality of higher-order oscillator Ising
machines implementing objective (16) vs. (17). Our experiments
included parameter optimization for eachmethod, as described above
(Oscillator model and simulation details). Tables S1–S3 of the

Supplementary Information file contain the 10 best parameter
configurations for each problem size. Figure 4 shows that networks
basedon (17) obtainworse solutions (with greater energies) and satisfy
only a smaller percentage of constraints on benchmark 3SAT
problems44 compared to our method. The systematic analysis of
exponent settings in the generalization of our method is left to future
research.

Data availability
Thedata that support the plotswithin this study andotherfindings can
be generated using the available code and data available in the Sup-
plementary Information file.

Code availability
The computer code used to produce the results reported in this study
is available online at https://github.com/connorbybee/hoim54.
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