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Abstract. We present a measurement of the cross-correlation between the MAGLIM galaxies se-
lected from the Dark Energy Survey (DES) first three years of observations (Y3) and cosmic mi-
crowave background (CMB) lensing from the Atacama Cosmology Telescope (ACT) Data Release 4
(DR4), reconstructed over ~ 436 deg? of the sky. Our galaxy sample, which covers ~ 4143 deg?, is
divided into six redshift bins spanning the redshift range of 0.20 < z < 1.05. We adopt a blinding
procedure until passing all consistency and systematics tests. After imposing scale cuts for the cross-
power spectrum measurement, we reject the null hypothesis of no correlation at 9.1¢. We constrain
cosmological parameters from a joint analysis of galaxy and CMB lensing-galaxy power spectra con-
sidering a flat ACDM model, marginalized over 23 astrophysical and systematic nuisance parameters.
We find the clustering amplitude S = 05(€;,,/0.3)%% = 0.75Jj8:8§. In addition, we constrain the
linear growth of cosmic structure as a function of redshift. Our results are consistent with recent DES
Y3 analyses and suggest a preference for a lower Sg compared to results from measurements of CMB
anisotropies by the Planck satellite, although at a mild level (< 20) of statistical significance.

Keywords: Cosmology, Large-scale structure, CMB lensing cross-correlations, Growth of Cosmic
Structure, Surveys
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1 Introduction

According to the current favored cosmological model, most of the energy density of the Universe is
composed of cold dark matter (CDM) and a cosmological constant A. The tightest constraints on
the ACDM cosmological parameters come from the measurements of the Cosmic Microwave Back-
ground (CMB) [1], which provide a snapshot of the very early universe. However, the CMB data also
offers a great opportunity to constrain information from the later evolution of the Universe, for ex-
ample, by studying the weak gravitational lensing (WL) of the CMB photons due to the gravitational
potentials of large-scale structure (LSS) [2].



Over the past two decades, observations from large galaxy imaging surveys have become one of
the key ways of probing cosmology. The early results of Stage III photometric galaxy surveys (as de-
fined by the Dark Energy Task Force report [3]), such as the Dark Energy Survey (DES) [4-7], Hyper
Suprime-Cam Subaru Strategic Program (HSC-SSP) [8, 9] and Kilo-Degree Survey (KiDS) [10, 11]
have demonstrated the feasibility of cataloging millions of galaxies, constraining the geometry and
structure growth of the Universe, and testing for systematic effects. Despite the remarkable success in
tightening the cosmological parameter constraints and testing the ACDM model, the results of these
LSS observations reveal a possible tension in the derived parameter Sg = og+/€2,,/0.3, where oy is
the amplitude of mass fluctuations parametrized as the standard deviation of the linear overdensity
fluctuations in 8 h~'Mpc spheres at the present time, / is the dimensionless Hubble parameter, and
Q,, is the density parameter of matter at the present time. In particular, the value of Sg obtained
from Planck CMB TT+TE+EE+lowE data (z = 1100) assuming ACDM is Sg = 0.834 4+ 0.016 [1],
while cosmic shear analyses (z < 1) report a 1.70 — 3.40 lower value, e.g.[8, 12-17]. In addition,
CMB lensing analyses (z ~ 0.5 — 5) from Planck [18], South Pole Telescope (SPT) [19] and ACT
[20, 21], reveal an Sg consistent with those inferred using early Universe CMB data, favoring higher
values compared to those inferred from shear and galaxy clustering measurements at lower redshifts
and smaller scales.

The upcoming generation of LSS surveys, including the Rubin Observatory Legacy Survey of
Space and Time (LSST) [22], DESI [23], SPHEREx [24], Euclid [25], Nancy Grace Roman Space
Telescope (Roman) [26], as well as CMB experiments like SPT-3G [27], Simons Observatory (SO)
[28] and CMB-S4 [29], hold the potential to shed light on the source of the possible discrepancy
between early and late-time probes of the Universe. In addition, innovative data analysis methods
can help overcome systematic effects and shed light on the physical properties of the Universe.

The combination of distinct cosmological probes has been shown to be a promising technique
for investigating the properties of our Universe on cosmic scales. In particular, cross-correlations of
CMB lensing with galaxy surveys offer an opportunity to probe cosmological parameters while hav-
ing more stringent control over additive observational systematic effects. Examples of this approach
include the cross-correlation of CMB lensing with galaxy weak lensing [30-37], galaxy density [38—
48], quasar density [49-51], cosmic infrared background [52-54], and many others.

In this work, we measure the cross-correlation between the CMB lensing from the fourth data-
release (DR4) of the Atacama Cosmology Telescope (ACT) [43, 55] and the galaxy density from
the magnitude-limited sample (MAGLIM) of the DES Year-3 data release (Y3) [6]. We consider six
redshift bins spanning the redshift range of 0.20 < z < 1.05, over ~ 436 square deg. of the sky.
We jointly model the galaxy and the galaxy-CMB lensing power spectra to probe the amplitude and
evolution of linear galaxy bias, linear growth of structure, and cosmological parameters such as €2,
and Sg.

This paper is structured as follows: in Sec. 2 we describe the theoretical framework used to
model the galaxy and galaxy-CMB lensing power spectra. In Sec. 3 we present the data sets used in
our analysis. In Sec. 4, we describe the method to estimate the angular power spectrum, covariance
matrix, and parameter inference. We validate our methodology using simulations in Sec. 5 and we
study the impact of systematic effects in Sec. 6. The main results are discussed in Sec. 7. Finally, in
Sec. 8 we present our conclusions.

2 Theory

The CMB lensing convergence «“MPB is expected to be correlated with the galaxy overdensity dg,

since both are tracers of the underlying mass distribution. On linear scales, these observables are the



weighted projection of the three-dimensional matter density contrast § along the line-of-sight
[e.9]
u() = [ dz g (23(x(2)0. ) @
0

where the fields u = {x“MB, §,} are defined on the celestial sphere, and q%(z) are their respective
projection kernels. For a flat universe, the CMB lensing kernel is given by

CMB m 2 « — X(2
) = T s (L )2,

(2.2)

Here, c is the speed of light, H(z) is the Hubble parameter at redshift z, and H is the present-day
value of the Hubble parameter. The terms x(z) and y. denote the comoving distance to redshift z
and to the last-scattering surface, respectively.

The galaxy kernel ¢% is expressed as the sum of two terms,

¢ (2) = V' (2)ni(z) + p'(2), (2.3)

where i labels the redshift bin, n, is the normalized redshift distribution of the galaxy sample, and
b(z) is the galaxy bias. We model b(z) of our sample assuming a linear, deterministic, and scale-
independent galaxy bias [56] that is constant across each tomographic bin, as validated in [57]. The
second term, p, quantifies the so-called magnification bias effect, caused by the increase of the ob-
served flux of the background galaxies due to lensing by foreground structure. This effect leads to
a deviation in the observed number density of galaxies as it allows the detection of galaxies that,
in the absence of lensing, would be fainter than the limiting magnitude of the survey [58—60]. The
magnification bias correction is given by

: : 3 QM T (&) = x(2)
[ — 5 T 2\ — m--0 1 / d /1 / 2.4
H(e) = (5" = 2)5 e D42 [ dmy() Q4)
The quantity s denotes the slope of the cumulative apparent magnitude distribution N (1)
) 1 Nint,i
i dlog N (m) 2.5)

dm

The values of s for the DES Y3 galaxy sample are estimated in [61] and are held fixed to the
values listed in Table 2. More discussion on the magnification estimation and the robustness of the
assumption of constant values within the tomographic bins can be found in [57, 61, 62].

Following previous DES-Y3 analyses [6, 63], we model the uncertainty in the source galaxy
redshift distributions with an additive shift parameter, Az', where i labels the redshift bin. The
photometric redshift distribution is modified as

n;(z) — n;(z — AZY. (2.6)
We also parametrize the uncertainty on the width of the redshift distribution by a stretch parameter
Ui [6, 64], so that the combination with the shift parameter leads to

n;(z) — Jiné((ri[z —(2)] + (2) — AZY). (2.7)



Assuming the Limber approximation [65], the theoretical galaxy-galaxy and galaxy-CMB lens-
ing angular power spectra of a given i-redshift bin can be evaluated as

e = [T w<z>]2p<k=“5,z>,

ROl — : 2)q°9 (2 = 2,
Ce _/0 cx()q e ()P<k x(2) )

where P(k, z) is the nonlinear matter power spectrum. We model P(k, z) using the CAMB Boltzmann
code [66] with the HALOFIT prescription of [67] and we use the DESC Core Cosmology Library
(CCL) [68] to compute the theoretical quantities.

For a ACDM Universe, in which the only relevant density contrast is that of pressureless matter,
the matter power spectrum in the Eq. 2.8 can be written in terms of the normalized linear growth
function D(z) as

P(k,z) = P(k,0)D?(2). (2.9)
From Egs. 2.2, 2.3, and 2.8 it is possible to notice that C} is sensitive to bD?(z), while C{? is
sensitive to b2 D?(z). The combination of these two observed (obs) quantities allows us to break the

degeneracy between the linear galaxy bias and linear growth through the D¢ estimator [69], defined
as

99,1t
(@0 Jen > . (2.10)
V4

(ngyii)obs

In the above equation, the brackets denote an average over the range of multipoles included in
the analysis, and ¢’gg and @Zg are the theoretical power spectra defined in Eq. 2.8 evaluated with the
matter power spectrum at z = 0,

99,4 _ dz H(z) 9 ()2 5=
o = [T EG R PP o)

o
kgt dZ H(Z) HCl\IB P Og.i P 5 =
o= [ RS S G P o)

(2.11)

These terms are introduced to keep D¢ bias-independent and normalized to unity today, i.e., bg( z=
0) =1.

Given the current discrepancies in the literature concerning the values of Ss, it is crucial to
emphasize that the aforementioned formalism is based on a set of assumptions. If stochasticity is
present due to, for example, physical processes impacting the halo collapse or any systematics in the
galaxy selection, the galaxy bias in the C? term would absorb a stochastic component in a distinct
manner compared to the CZ 9 term, thereby affecting the Sg amplitude. Further understanding of
potential systematic issues associated with stochasticity is an important next step, especially for future
high-signal-to-noise measurements.

3 DATA

3.1 ACT CMB lensing

The CMB lensing convergence map used in this work [43] is reconstructed from the CMB tempera-
ture and polarization data of the fourth ACT data release (DR4) ! [55, 70, 71]. The CMB data used

'"The ACT CMB lensing DR4 products are publicly available at ht tps: //lambda.gsfc.nasa.gov/product/
act/actpol_prod_table.cfm
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to perform the lensing reconstruction were synthesized from observations taken during the 2014 and
2015 seasons in the 98 GHz and 150 GHz frequency bands in two different patches of the sky, namely
BOSS-North (BN) and deep-56 (d56). In particular, we use CMB lensing reconstructed in the d56
region, which overlaps with DES Y3 data over a total area of ~ 456 square degrees of the sky. This
is ~ 11% of the overlapping region of the most recent ACT lensing map from DR6 [20], which will
be explored in future work.

The CMB lensing map is reconstructed by applying a quadratic estimator [72], with a minimum
variance combination of temperature and polarization CMB data. Modes with ¢ < 500 and ¢ > 3000
are removed to restrict to scales where the ACT map-maker transfer function is nearly unity and to
minimize foreground contamination, respectively.

One of the largest potential contaminants affecting cross-correlation analysis with CMB lensing
comes from the thermal Sunyaev-Zel’dovich effect (tSZ) [73-75]. The ACT DR4 lensing maps come
in two versions: The baseline map, which combines ACT and multi-frequency data from Planck to
reconstruct CMB lensing using an extended multipole range from 100 < ¢ < 3350, and a second
version that only uses ACT data from the 2 frequency bands. The baseline map has the tSZ effect
deprojected using the method described in [43, 76].

We use the baseline ACT+Planck tSZ-free map in our main analysis. However, in Sec. 6
we investigate the impact of the tSZ in our results by repeating our analysis using the lensing map
without the tSZ mitigation. During the lensing reconstruction, an apodized mask is applied to the
input CMB maps [43], and the released lensing maps are divided by the mean of the square of the
mask, (W?2), in order to correct for the loss of power resulting from the original masking. In our
analysis, we multiply the CMB lensing map by (WW?2) because we consider the mask correction in the
power spectrum computation.

We convert the original CMB lensing maps and the associated mask to HEALP ix [77] format
with resolution Ngqe = 1024 using the pixell”> package. In particular, we use the
healpix_from_enmap routine with £, of 6000 to project the maps. The total effective area in
our cross-correlation study is equal to ~ 436 deg?.

The estimation of the ACT convergence map and its associated products are described in more
detail in [43]. The reconstructed ACT CMB lensing map is shown in Figure 1. In this figure, the CMB
lensing map is smoothed with a Gaussian kernel on a scale of 20 arcmin for visualization purposes
only.

3.2 DES Magnitude-limited sample (MAGLIM)

The DES Y3 data relies on observations taken from August 2013 to February 2016, in five broad
filters, grizY, using the Dark Energy Camera [78]. The main catalog, referred to as Y3 GOLD,
includes nearly 400 million objects over ~ 5000 deg? of the sky, with depth reaching S/N ~ 10 up to
limiting magnitudes of g = 24.3, r = 24.0,¢ = 23.3, z = 22.6,and Y = 21.4 [79].

In this work, we use the MAGLIM catalog, which is a sample defined with a magnitude cut in the
i-band that depends linearly on photometric redshift: ¢ < 4z + 18 [80]. This selection is based on an
optimization found in [80]. Additionally, selecting 7 > 17.5 removes residual stellar contamination
and other bright objects. The photometric redshift is estimated from the Directional Neighborhood
Fitting (DNF) algorithm [79, 81] and has been validated using cross-correlations with spectroscopic
galaxies [64]. We split the catalog into 6 tomographic photometric redshift bins, spanning the range
of 0.20 < z < 1.05, with bin edges [0.20, 0.40, 0.55, 0.70, 0.85, 0.95, and 1.05]. In Fig. 2 we show
the normalized redshift distribution for each tomographic bin.

https://github.com/simonsobs/pixell
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Figure 1: CMB convergence map of the d56 region, reconstructed from the combination of tSZ-
cleaned ACT and Planck data [43]. The map is smoothed with a Gaussian beam with 20 arcmin for
visualization purposes only. Data in the white regions are masked out regions.

<

Figure 2: Normalized redshift distributions of the DES Y3 MAGLIM sample.
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In [82] it was found that the DES galaxy number density fluctuates as a function of a series of
observational conditions and survey properties. To correct this dependency in the number counts, we
weighted each galaxy by the inverse of the angular selection function at that galaxy’s location [6, 63].
More information about the MAGLIM systematic tests and the methodology to assign weights can be
found in [82] and the impact of these systematics is also investigated in Sec. 6.



Redshift range Ngal [aremin™2] | ¥ | Caiax
0.20 < 2 < 0.40 | 0.150 97 137
0.40 < z < 0.55 | 0.107 144 175
0.55 < 2z<0.70 | 0.109 187 | 227
0.70 < 2z < 0.85 | 0.146 223 271
0.85<2z<0.95 | 0.106 248 301
0.95 < z<1.05 | 0.100 268 325

Table 1: Summary of properties of the MAGLIM lens sample: Redshift range, the effective number
density of galaxies in units of arcmin~2, and maximum multipole considered in the cosmological
analysis for the C7Y and C;¥ (Sec 4.1).

3.2.1 Pixelized masks and maps

The galaxies in the MAGLIM catalog have an associated weight to correct for the impact of observa-
tional systematics [82]. We use these weights to construct a map of the number of sources in each
pixel p, estimated as N, = Ziep w;, where w; is the weight of the i-th galaxy. We create pixelized
maps of the galaxy overdensity at a HEALPix resolution parameter Ngqe = 1024, defined by

_ (LN
5p_<fpn> 1, (3.1)

where n denotes the mean of all number of sources in the unmasked pixels computed as

a2zl 62)
p fo)

The term f, represents the DES mask, which contains information about the fraction that each pixel
has been observed, the so-called fractional coverage or completeness. This mask is constructed by
a series of cuts to remove astrophysical foregrounds or regions with recognized systematics, e.g.,
bright stars or regions with data processing issues [6]. Specifically, regions with bad quality, extreme
observing conditions, areas outside the survey footprint, and pixels with fractional coverage smaller
than 80% are removed. More details about these cuts and the flags imposed on the MAGLIM sample
can be found in [6, 83].

In its original resolution of Ngqe = 4096, the f, map has values ranging from 0.8 to 1.0
within the DES footprint, and 0.0 outside the footprint. We degrade the completeness map from the
original resolution to Ngg. = 1024 by setting the f, values as the mean of the higher resolution
pixels. After proper masking, the MAGLIM sample contains ~ 10 million galaxies covering an area
of ~ 4100 deg? of the sky and ~ 1 million galaxies in the ACT d5 6 region. Some of the key features
of the galaxy sample are summarized in Table 1.

Fig. 3 shows the MAGLIM overdensity map in the redshift range of 0.20 < z < 1.05. The
grey region shows the region of the sky that is masked, and the orange line represents the ACT d56
footprint.

4 METHODS

4.1 Angular power spectrum

The angular power spectrum estimate for a survey that covers only a fraction of the sky is affected
by the mask, which introduces coupling between the different modes of the true power spectrum. We



Figure 3: MAGLIM overdensity map for the full sample in Mollweide projection and equatorial
coordinates. The grey region shows parts of the sky that are masked, and the orange line indicates the
outline of the ACT d56 footprint.

use a pseudo-Cy estimator [84] implemented by NaMaster [85] to obtain an unbiased estimate of
the angular power spectra. Roughly speaking, the true underlying power spectrum C}rue is recovered
in the pseudo-C) approach at every integer ¢ by inverting

CP*™ =" My Cre, @.1)
zl

where the Cg’bs is the observed power spectrum and M is the so-called mode-coupling matrix. It is
worth noticing that the mode coupling matrix depends solely on the mask information.

We compute the galaxy-power spectrum considering the full DES footprint, as defined by the
DES mask described in Sec.3.2.1. When computing the galaxy-CMB lensing cross-power spectrum
with NaMaster, it is possible to employ individual masks for each of the maps. For the DES
field, we utilize the same mask used for computing the galaxy-power spectrum. For the xK“M® field,
we utilize the square of the mask described in Sec. 3, while also setting the masked_on_input
keyword to True in NaMaster. This approach is adopted because the reconstructed CMB lensing
map inherently incorporates an apodized ACT mask, given that it is applied to the CMB maps during
the quadratic estimator process. We validate the mask treatment in Sec. 5.2.

When sky coverage is incomplete one needs to bin the pseudo-power spectrum and the coupling
matrix. We compute the power spectra considering linearly spaced bins of width A¢ =30 upto ¢ =
3072. However, in our analysis, we consider a conservative cut on values of £ smaller than ¢,,;, = 50
for the galaxy-power spectrum and /,;; = 100 for the galaxy-CMB lensing power spectrum. We



define these minimum multipoles based on the coverage of the sky and the precision of the lensing
reconstruction [43], respectively.

For modeling described in Sec. 2 to be accurate, we need to ensure that our analysis encom-
passes scales in the linear regime, where effects such as the non-linear galaxy bias and baryonic
effects on the matter power spectrum are negligible. In the DES Y3 galaxy clustering analysis
[6] a scale cut corresponding to a comoving scale smaller than R = 8 h~'Mpc is imposed to ex-
clude smaller scales on which the linear galaxy bias model breaks down. This cut corresponds to a
Emax = 1/R = 0.125 hMpc L.

In our analysis, we define different scale cuts for ng and C;Y. For the galaxy power spec-
trum, we impose the scale cuts in each tomographic bin based on the “physical scale cuts”, where
lmax = kmax X (Z), with a conservative kyax = 0.08 hMpcfl, hence dropping physical scales below
12.5 h~!Mpe. Since the galaxy-CMB lensing power spectrum is less affected by the non-linearities
of the galaxy bias and has expected signal-to-noise smaller than the galaxy power spectrum, we im-
pose a more flexible scale cut for C;7, with £y, corresponding to the physical scales k. fixed at
0.1 hMpc_l. These conditions led to the £, values summarized in Table 1.

The galaxy power spectrum measurement has a shot noise contribution that must be subtracted.
Assuming purely Poisson sampling, the “mode-coupled” shot noise can be estimated analytically [46]
as

Ny= @ (4.2)
ng
where m is the survey mask, and 71 is effective number density given by
ng = (Piepwi)® ;
QPiX Zp mp Ziep w?

where ()i is the pixel area in units of steradians. The “mode-decoupled” bandpowers are then
computed by taking the inverse of the binned mode-coupling matrix

Ne=> (M) Ne. (4.4)
Z/

4.3)

We test the validity of the shot-noise estimate in Sec. 6.4. In the subsequent analysis, we
subtract the shot-noise from the galaxy power spectrum C?9, and then divide the bandpowers by the
square of the pixel window function. The C,” is divided by one power of the pixel window function.
Finally, when comparing data with theory, we apply the appropriate binned mode-coupling matrix
and binning scheme to the theoretical curves.

4.2 Covariance Matrix

In order to quantify the correlation between bandpowers in our analysis, we consider the so-called
disconnected part of the covariance, that is, we assume that all fields are Gaussian distributed. We do
not include the non-Gaussian covariance term in our analysis, since we consider only linear or weakly
nonlinear scales, where the disconnected terms of the covariance are dominant and the non-Gaussian
corrections are expected to be small [86]. In addition, the super-sample covariance term, responsible
for correlations on large scales, is largely subdominant for a survey like DES Y3, as shown in [87].
This means that, for the purposes of this work, we can safely employ a Gaussian covariance.

In the absence of sky masks, the different harmonic modes are uncorrelated in the Gaussian
covariance, so its computation for two fields, X and Y, reduces to the diagonal terms given by

Coviot = (075Y) 20, (4.5)



where the error ag( Y can be computed using

(@ P = Gl CEE) + (P @6)
where the auto-power spectra terms above contain the contribution of the associated noise, Ny.
While the expression above is accurate for full-sky and some particular cases of partial sky [88],
a sky mask introduces a non-zero correlation between different modes in the Gaussian covariance and
may also affect the amplitude of the main diagonal elements. To account for these, we use the method
proposed in [89, 90], implemented in NaMaster, where the covariance is computed as

1
Cov(C) YOy o) = m[o{j}cg{;{wg + CFY ClMep]. 4.7)
The coupling matrix My, is computed based on the masks of fields X and Y (see [90] for further
details).

The NaMaster algorithm requires the use of the underlying power spectra, C7?, C;*¥ and C}*,
for example, from the theoretical prediction that depends on parameters that we do not know a priori,
such as the galaxy bias. In order to circumvent this issue and perform our analysis according to the
blinding policy described in Sec. 4.4, we compute the covariance using the power spectra computed
with the fiducial cosmology described in Table 2. After unblinding the data results, we update the
analysis with the covariance computed with this best-fit cosmology, finding ~ 0.30 changes in the
main result for Sg.

When computing the covariance, we consider the noise contribution of the galaxy field given
by Eq. 4.4. For the CMB convergence field, we estimate the noise contribution by taking the residual
between the power spectrum of the noisy ACT CMB lensing simulations [43] and the noiseless CMB
lensing simulations used as input to lens the ACT CMB simulations. This approach takes into account
the impact of the noise caused by the lensing reconstruction and survey geometry. As a sanity check,
in section 5.3 we use lognormal mock galaxy catalogs to check the robustness of the covariance
matrix computation.

4.3 Parameter inference

In order to extract cosmological information from the measured C7Y and the C;/¥, we evaluate the
posterior of the parameters conditional on the data by assuming a Gaussian likelihood, £, of the form

In £(D|6) = —%[D — z(8))]TCov 1D — z(8)], (4.8)

where D is the measured data vector, x(0) is the theoretical prediction at parameter values (6). The
quantity Cov ™! denotes the inverse of the covariance matrix, described in Sec 4.2, and which we keep
constant during parameter estimation. The posterior distribution is then proportional to the product
of the likelihood and the priors

p(8]D) x L(D|8)7(6), (4.9)

where 7(0) are the priors on the parameters of our model.

We consider a spatially flat ACDM cosmology, characterized by the total matter density €2,,,,
the baryonic density €, the dimensionless Hubble parameter h, the amplitude of primordial scalar
density perturbations A, and the spectral index ng of the power spectrum. We do not expect mas-
sive neutrinos to impact our analysis, given our scale cuts, the expected significance of the cross-
correlation, and that DES Y3 clustering analysis poorly constrains the neutrino mass [63]. Therefore,
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Table 2: The parameters and their priors used in the analysis considering a flat ACDM universe.
Square brackets denote a flat prior, while parentheses denote a Gaussian prior of the form N (u, o).
The Fiducial column shows the fiducial values we consider to construct the simulations in Sec 5.1.

Parameter Fiducial Prior
Cosmology
Qm 0.309 [0.1, 0.9]
Ag10° 2.19 [0.5, 5.0]
Ng 0.97 [0.87, 1.07]
Q 0.049 [0.03, 0.07]
ho 0.69 [0.55, 0.91]

Linear galaxy bias

b; 1.5,1.8,1.8,1.9,2.3,2.3 [0.8,3.2]
Lens magnification
S; 0.642, 0.63 , 0.776, 0.794, 0.756, 0.896 Fixed
Lens photo-z shift and stretch

Az 0.0 (—0.009,0.007)
Az 0.0 (—0.035,0.011)
Azs 0.0 (—0.005, 0.006)
Azy 0.0 (—0.007,0.006)
Azs 0.0 (0.002,0.007)
Azg 0.0 (0.002,0.008)
021 1.0 (0.975,0.062)
029 1.0 (1.306,0.093)
023 1.0 (0.870,0.054)
024 1.0 (0.918,0.051)
0z 1.0 (1.08,0.067)
026 1.0 (0.845,0.073)

we consider only massless neutrinos to speed up the computation of the matter power spectrum. The
prior ranges for the parameters are listed in Table 2, and are motivated by physical constraints or by
the DES Y3 analysis [6].

We sample the likelihood using the Monte Carlo Markov Chain (MCMC) sampler, implemented
in the publicly available code Cobaya®[91, 92]. We determine the chain convergence using a gen-
eralized version of the R — 1 Gelman-Rubin statistic [92, 93], which we establish that the chains
converge once R — 1 < 0.05. We remove the first 30% of the chains from all analyses as burn-in. All
the visualization of our results is done with GetDist* [94].

4.4 Blinding

The results were blinded throughout the analysis until we tested the pipeline and passed all the tests
for systematic effects. The tests we performed before unblinding the cosmological results are sum-
marized below:

*https://cobaya.readthedocs.io/en/latest/index.html
*nttps://getdist.readthedocs.io/en/latest/
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* First, we tested all the stages of the analysis pipeline using simulations, described in Sec. 5. We
validated that we could recover the input power spectra, cosmological, and nuisance parameters
of the simulations.

» Next, we used the real data to test for possible systematic contamination in our measurements.
These include: 1) check the robustness of the weights applied to correct correlations in the
number density map with survey properties; 2) understand and test for spurious contributions
to our C’;g signal due possible correlated foregrounds; 3) validate the shot-noise subtraction in
the C77.

* Once the above issues were well understood, we ran the parameter inference using real data
under different choices in the pipeline. In this step, we looked at the blinded contours only,
removing the axes when generating the figures of the parameter constraints. The real data
points were not directly compared with theoretical predictions until they were unblinded.

We describe the changes done post-unblinding in Sec. 6.5.

S SIMULATIONS AND PIPELINE VALIDATION

In this section, we apply our methodology to mock simulations to assess the validity of the power
spectrum computation, covariance estimation, and the parameter constraints over the range of angular
scales considered.

5.1 Lognormal Mocks

An important step before unblinding is to validate the pipeline using synthetic data with the noise
levels, survey geometry, and galaxy density as in the real data. While the variance of the galaxy-CMB
lensing convergence power spectrum can be captured to sufficient accuracy by Gaussian random
fields, this is not realistic for the galaxy power spectrum due to the non-linear evolution of the density
field [95]. On the scales we consider in our analysis, the one and the two-point function of the galaxy
field can be better modeled by a field drawn from a lognormal distribution [96-99].

We follow the methodology described in Sec. 3.1 of [100] to produce a set of 1000 correlated
Gaussian and lognormal simulations mimicking the ACT CMB lensing field and the DES galaxy
overdensity, respectively °. For this, we consider the mean galaxy number density per steradian of
the real data and the theoretical power spectrum computed based on the cosmological parameters,
linear galaxy bias, lens magnification, and photometric redshift uncertainties listed in the “Fiducial”
column of Table 2.

We draw random galaxies following a Poissonian distribution to add the shot-noise within the
survey’s footprint. Then, we convert the galaxy number counts maps into galaxy overdensity maps
5;““1‘. Finally, we add Gaussian realizations of the CMB lensing noise [43] to the CMB lensing
simulations. We account for the masks and the same pixelization scheme described in Sec 3.2.1 in
the mock production.

5.2 Angular power spectrum validation

In order to validate the mask treatment in the power spectrum computation, we apply the methodology
described in Sec. 4 on the 1000 lensing convergence and galaxy overdensity mock simulations with

SThe code used to produce the correlated mocks is publicly available at https://github.com/
huffenberger-cosmology/lognormal_mocks
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known cosmology. In Fig. 4 we show the average of the C7Y (left panel) and C; (right panel)
measured from these mocks, compared with the input theoretical power spectrum. We verify that
both measurements, the auto and cross-power spectrum, are in good agreement with the input signal
with sub-percent accuracy over the range of scales of interest. The level of agreement is much better
than the measurement uncertainty for any of the bins. For clarity, the figure shows the result of the
second redshift bin of the MAGLIM sample simulations, but these results are consistent for all redshift
bins.

In addition to the mask treatment in the Cg 9 computation, we also want to test additional effects
that may impact the ACT convergence reconstruction map and thus potentially bias our measure-
ments. Such sources of bias could include, for example, the HEALP i x projection of the convergence
map, the mask treatment, the normalization correction in the lensing reconstruction, or any non-trivial
mask effect during the lensing reconstruction. To this end, we generated 500 constrained realizations
of the galaxy overdensity, which are correlated with the noiseless lensing potential maps used as the
input to lens the ACT CMB simulations [43]. Then, we computed the cross-power spectrum of these
galaxy simulations with the respective noisy suite of ACT lensing maps. These noisy lensing simula-
tions accurately reflect the signal and noise properties of the ACT data. The CZ 9 obtained from this
simulation suite is in agreement with the input power spectrum to within < 0.1o (where o here is the
error of the mean), as shown in Fig. 5.

5.3 Covariance validation

In our analysis, the covariance matrix is estimated with the NaMaster algorithm, assuming a Gaus-
sian (disconnected) approximation. When doing the parameter inference using multiple tomographic
bins, we do not consider the cross-spectra between the tomographic bins. Nevertheless, we include all
the cross-terms in our covariance, i.e., the cross-covariance of sz”gj and C,/?". However, the resulting
matrix is dominated by its diagonal components.

We checked our covariance matrix against one produced by the lognormal simulations. Fig. 6
shows the diagonals of the covariance matrix estimated using simulations and NaMaster. For both
the galaxy auto-spectrum (upper panel) and galaxy-CMB lensing power spectrum (lower panel), we
find that the NaMaster covariance is in very good agreement with the covariance computed directly
using the simulations. For clarity, we show the result of the fifth redshift bin, but we find analogous
agreement for the other bins. Thus, we conclude that the NaMaster covariance accurately recovers
the power spectrum uncertainties given the impact of the survey geometry.

5.4 Parameter estimation on mocks

We seek to constrain cosmological parameters using observations. In order to validate the parameter
inference, we test the ability in recovering the input cosmological and nuisance parameters using sim-
ulations. We verify the results using the power spectra measured from two independent realizations
as the data vector and also using the average of the set of simulations.

We performed a C7? and C; joint fit for the 6 photo-z bins with a total of 23 free parameters,
including the galaxy bias, photo-z uncertainties, and cosmological parameters. We impose the priors
shown in Table 2 for the linear galaxy bias and cosmological parameters. As our simulations do not
include the photo-z uncertainties, we consider a Gaussian prior with mean-centered on zero and one
respectively for the photo-z shift and stretch parameters, and width equal to the values considered in
the real data shown in Table 2. We apply the same scale cuts as in the analysis of the real data. In
Figure 7 we show the marginal posterior distributions for the linear galaxy bias of the six tomographic
bins, §2,,, and og obtained for a given set of C7¥ and C;¥ extracted from two independent realizations
(yellow and blue curves) and from the average of the set of simulations (black curves). In all cases, the
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Figure 4: Comparison between the average power spectrum computed from simulations with the
input power spectrum for the galaxy (left panel) and galaxy-CMB lensing (right panel) power spec-
trum. The error bars are divided by +/ Ngims, where Ngims = 1000. We show the results for the second
redshift bin, but are similar for all redshift bins.

results are compatible with their input values, thus validating our pipeline. The small deviation from
the input values seen in some of the parameters constrained from individual simulations is expected
due to statistical fluctuations.

6 ROBUSTNESS OF THE RESULTS

The Y3 MAGLIM sample and the ACT DR4 CMB lensing map have undergone thorough tests for
various astrophysical and systematic effects in previous studies [43, 55, 71, 82]. Here, we perform
additional tests to further assess the robustness of our measured bandpowers.

6.1 Weights vs deprojection

Sky contaminants such as non-cosmological sources, artifacts in the images, and other systematic
effects coming from the observing conditions may change the selection function across the observed
footprint or with redshift. Consequently, the observed number density of galaxies may vary accord-
ing to the conditions of the survey. A detailed analysis of the impact of these survey properties or
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Figure 5: Test of any residual bias in the galaxy-CMB lensing power spectrum from lensing recon-
struction and mask treatment. The points show the difference between the cross-power spectrum of
the constrained realizations of DES galaxies and the ACT lensing simulation compared to the input,
in units of the error bar of the data.

observational effects in the MAGLIM number density was explored in [82], which derived weights to
account for correlations in the number density with survey properties. As discussed in 3.2, we apply
these weights in our analysis when producing the total pixelized number counts map. A full charac-
terization of the effect of observational systematics on the MAGLIM number counts is presented in
[82]. Here, we perform additional tests to ensure that the systematics and the survey properties do
not significantly impact our measurements.

In order to validate that the weighting applied to the number counts map is robust to correct
for the effect of systematics on the galaxy-power spectrum and on the galaxy-CMB lensing power
spectrum, we apply a technique called “template deprojection” [85, 101]. For that, it is assumed that
the observed galaxy overdensity, §°7, is modeled linearly with the contaminants so that

50bs — 5true + at, (61)

where the "true" overdensity, 5", receives contributions from the template maps of the fluctuation
of known contaminants, ¢, scaled by an unknown linear amplitude «. The modes that are common
to the set of systematic templates and the observed maps are removed by building a likelihood for
§°P considering a model for §*""° and marginalizing over a.. This can be achieved by projecting 5°°
onto the subspace orthogonal to ¢ and analytically accounting for the associated loss of modes when
estimating the angular power spectrum. We refer the readers to the listed references for more details
on the template deprojection method.
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Figure 6: Comparison of the diagonal terms of the covariance matrix computed directly from the
simulations and NaMaster covariances (see Section 5.3). The solid and dashed lines show the
zeroth-order (¢ = j) and first-order (¢ = j + 1) diagonals, respectively. For clarity, we show the
covariance elements of C7? (left panel) and C;¥ (right panel) of the fifth redshift bin, but we find
similar agreement for the other bins.

We use a set of 107 maps corresponding to DES survey properties (SP) in different photometric
bands {g, 7,1, 2}, stellar density, and the interstellar extinction map as the contaminant templates.
This set corresponds to the systematics considered in the DES Y3 Key Project. More detailed infor-
mation on the construction of these maps may be found in [83] and in [82].

To evaluate the impact of these contaminants, we compare the resulting power spectra after the
template deprojection from galaxy overdensity maps constructed without the weights applied to the
number counts. The SP deprojection and weighting are different techniques that supposedly correct
for the same effects, so we expect the deprojected power spectra of unweighted galaxy maps to be
consistent with the power spectra of the weighted maps.

Fig. 8 shows the difference between the power spectrum measurements of weighted maps (our
baseline measurements) and after deprojecting the contaminants of unweighted maps, in units of the
statistical error. In both measurements, C7? (left panel) and C;j (right panel), the deprojected C of
unweighted maps are only sub-percent different from the baseline measurements, by less than ~ 0.30
within the scales of interest. This consistency provides additional confidence that the SP are already
accounted for by the data cuts and weighting since their effects are subdominant with respect to other
sources of uncertainty.

6.2 tSZ and CIB effects

One of the major contaminants to the CMB lensing cross-correlations with tracers of large-scale
structure is the tSZ effect. For this reason, in our baseline analysis, we use a CMB lensing map
where tSZ has been explicitly removed (“tSZ-free”). To evaluate the impact of the tSZ effect on the
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in our analysis.
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CMB lensing map on our analysis, we perform an additional test by measuring the cross-correlation
between the MAGLIM galaxies and a CMB lensing map without tSZ removal (“with-tSZ”). The aim
of this test is to characterize the change in the C;7, as well as any potential scale dependence caused
in the presence of the tSZ.

To assess the tSZ effect, we reconstruct the with-tSZ map based on ACT-only data, instead of
the combination of ACT and Planck’s data used in the tSZ-free map [43]. These two maps contain
slightly different noise levels. We estimate the noise level of the with-tSZ map by taking the mean
difference of the auto-power spectrum of 500 ACT simulations and their input power spectrum. These
simulations are built considering the same setup and reconstruction method used for the data. We use
the associated noise of the field and the method described in Sec. 4.2 to compute the covariance of
the CZWlthftSZg.

Figure 9 shows the difference between the C* extracted from the convergence map with tSZ
and from the tSZ-free map, in units of the total error of the measurement. Although we use the tSZ-
free convergence map in our baseline analysis, the power spectrum does not change significantly if
we do not deproject the effect, by less than ~ 0.30 in the scales of interest and with no clear scale
dependency. Therefore, we can conclude that even if we had used a CMB lensing map without tSZ
removal, it would not significantly impact our results.
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Figure 9: Difference between the C’; 9 extracted from the convergence map with tSZ and from the
tSZ-free map, in units of the total error of the measurement. Although we use the tSZ-free conver-
gence map in our baseline analysis, the power spectrum does not change significantly if we do not
deproject the effect, by less than ~ 0.3¢ in the scales of interest.

Another expected bias to the galaxy-CMB lensing cross-correlations is the CIB originated dom-
inantly from the emission from unresolved dusty star-forming galaxies. At the same time that the CIB
correlates with the galaxies, its signal may leak into convergence in the lensing reconstruction [102].
However, we do not expect a strong correlation between CIB with the MAGLIM galaxy sample since

—18 -



the CIB emission is mostly sensitive to redshifts z ~ 2, higher than those probed by DES galaxies.
The impact of the CIB in the galaxy-CMB lensing cross-correlation considering DES-like galaxies
was explored in [103], finding that the CIB contamination is sub-dominant compared to the tSZ con-
tamination (see. Fig 3 of [103]). Since our results are stable in the case of a CMB with tSZ (as shown
in Fig. 9 ), we conclude that any possible bias introduced by the CIB is insignificant compared to our
uncertainties.

6.3 Null-tests

Cross-correlation between independent probes is generally less sensitive to known (and unknown)
additive systematics compared to auto-correlation. However, there are systematics that can contam-
inate both, CMB lensing and galaxy overdensity and therefore, impact our C’; 9. For instance, the
extinction of distant sources by dust in our galaxy can modulate the number counts of galaxies and
add signals in CMB temperature and polarization data. The stellar density is a potential source of
systematic error, as it can correlate with foregrounds that might bias lensing reconstruction and mod-
ulate galaxy number density, potentially leading to a dilution of both auto and cross-correlations [41].
In order to check the validity of our measurements against the possibility of spurious signals from
contamination we compute

PO

s C f 5

where S denotes the systematic map, either the stellar contamination or dust extinction. The Xg
quantity accounts for the cross-power spectrum between the systematic map and both, s and ¢,, nor-
malized by the auto-power spectrum of .S. If our measurements are not biased by these contaminants,
we would expect this signal to be consistent with zero, compared to the statistical uncertainty of the
measurements. The star map is created with bright DES point sources, hereafter stellar_dens [83],
and the interstellar extinction map is made following [104].

We find no evidence for contamination and Fig. 10 shows Xg of the stellar density (upper
panel) and dust extinction (lower panel) for all redshift bins. For clarity, the points are slightly shifted
along the x-axis. The error bars are computed using the “delete one jackknife” (JK) covariance [105],
computed using IV;, = 37 equal-area patches. Since the number of removable JK-patches is limited
by the fraction of the sky, we reduced the number of ¢-bins when computing X g to obtain a more
stable covariance. We have measured the Xg with linearly spaced bins of a width of A¢ = 60,
instead of the A¢ = 30 used for the baseline analysis. We use the jackknife covariance to estimate
the 2 with respect to the null model (Xg = 0), and the corresponding probability-to-exceed (PTE)
for the same scale cuts summarized in Table 1. The results for each case are summarized in Table 3.
In all redshift bins, we find no significant signal, and therefore, the results are in agreement with the
hypothesis of no systematic contribution in C;.

(6.2)

6.4 Shot-noise subtraction

As discussed in Sec. 4.1, we subtract the shot-noise contribution to the auto-correlation power spectra
using an analytical estimate given by Eq. 4.2. However, the shot-noise can deviate from this simple
relation due to several effects such as super-Poissonian variance, variations in completeness, mask,
and observational systematics [106].

We verify the validity of the analytical shot-noise by taking the power spectrum of random
overdensity fields. To generate these fields, we randomized positions according to the completeness
map, considering the same number of objects as the real galaxy sample. In essence, these randomized
fields represent an independent Poisson process sampling the same smooth overdensity field. Fig. 11
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Figure 10: Contributions due to stellar contamination (upper panel) and extinction (lower panel) to
the galaxy-CMB lensing cross-power spectrum, assessed by Eq. 6.2. The error bars are computed
from the covariance obtained from a jackknife samples. In all cases we find no significant signal, and
therefore, the null-test is consistent with zero. For clarity, the points are slightly shifted along the

X-axis.
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Correlation Photo-z bin x?ld.o.f PTE (%)
Stellar Density 0.20 < z < 0.40  0.46/1 49.3
0.40 < z < 0.55 0.005/1 94.2
0.55 < z<0.70 0.36/2 83.3
0.70 < 2 < 0.85 1.31/2 519
0.85 < 2 < 0.95 1.22/3 74.7
0.95 < 2 < 1.05 1.99/3 57.3

Correlation Photo-zbin  x?/d.o.f PTE (%)
Extinction 0.20 <2< 040  0.31/1 574
0.40 < z < 0.55 0.31/1 57.4

0.55 <2 <0.70  0.05/2 97.3
0.70 < 2 <0.85  0.63/2 72.6
0.8 <2<0.95 0.68/3 87.7
0.95 < z<1.05 0.84/3 83.9

Table 3: Summary of y? per degree of freedom and the PTE for the null-test defined in Eq. 6.2.
The top half of the table shows the results for the stellar density, while the lower half shows the
corresponding values for the extinction map.

shows the comparison between the shot-noise from the analytical prediction with the average of the
power spectrum measured from the randomized maps. Both results are in very good agreement,
within ~ 1%, thus validating shot-noise subtraction in our analysis.
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Figure 11: Comparison of the shot noise estimated analytically from Eq. 4.2 and 4.4 and from the
mean of random overdensity maps with the same number of objects as the real data. The analytic
estimate agrees within ~ 1% with the random estimate for all redshift bins in the scales of interest.
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6.5 Unblinding

We validated the pipeline by following all the steps outlined in Section 4.4. These tests revealed
no indication of systematic contamination in our measurements. Subsequently, we unblinded the
cosmological parameter contour using real data and confirmed it produced a reasonable PTE with
respect to the fiducial model (> 1%) using the covariance computed based on fiducial cosmology.

After unblinding the data, we adjusted the flat-prior range for the linear galaxy bias from [0.8-
3.0] to [0.8-3.2]. We made this choice based on preliminary results that indicated the best-fit galaxy
bias values of the last three redshift bins were very close to the edge of the prior. This choice doesn’t
effectively change the results other than making the error bars slightly larger.

At the start of our work, our approach involved utilizing a binary mask that was generated based
on non-zero values observed on a map based on the DES completeness map. However, during the
latest stages of our work, we realized that the correct DES mask necessary for the harmonic space
analysis should encompass the completeness of each individual pixel. In light of this, we updated
the analysis to incorporate the completeness information as the DES mask, as outlined in Sec. 3.2.1.
Consequently, this modification primarily affected the bandpowers at smaller scales, which were
excluded from the main analysis due to scale cuts. As a result, the change on the main Sg value was
minimal, ~ 0.1c. Nevertheless, we show the results after implementing the updated mask within our
pipeline.

At this stage, the parameter inference was done using the covariance computed based on fiducial
cosmology. Lastly, we updated the parameter inference by using the covariance matrix computed at
the best-fit parameter values. In the subsequent sections, we present our results after accounting for
these changes.

7 RESULTS

7.1 Power spectra

Fig. 12 shows the measured bandpowers, C7¢ (left panel) and C;;/ (right panel), for each tomographic
bin of the MAGLIM sample. The grey shaded region marks the range of multipoles in which the data
points were discarded in the main analysis, as discussed in Sec. 4.1 and 6.5.

Before presenting the parameter constraints below, we aim to evaluate the total significance
of rejecting the null hypothesis of C}Y, i.e., the significance at which the "no-signal" hypothesis is
rejected. This involves computing the significance level of rejecting the null hypothesis as

Xaun = DT Cov'D, (7.1)

where the D is the data-vector and Cov is the corresponding covariance matrix. Here, we consider
only CZ 9 as the data vector. Then, we convert the X121u11 into a probability to exceed (PTE), given the
number of degrees of freedom (dof). Finally, we express the PTE in terms of equivalent Gaussian
standard deviations as the significance of the rejection of the null hypothesis. We find the significance
of the rejection of the null hypothesis is 9.1c when considering the scale cuts of our baseline analysis,
and 14.20 when we do not apply any scale cuts ({ax = 2 X Ngide)-

7.2 Linear Galaxy bias

The DES Y3 “3x2pt” analyses [13]° found that the 2 highest redshift bins show some fluctuations
in the measurements that led to a poor fit of the model. Therefore, the main 3x2pt analyses were

The “3x2pt” are real-space analyses that include both the auto-correlation of galaxy shear and MAGLIM galaxies, as
well as their cross-correlation.
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Figure 12: Extracted galaxy power spectrum (left panel) and CMB lensing-galaxy power spectrum
(right panel) for each redshift bin. The grey-shaded areas highlight the range of multipoles discarded
in the baseline analysis. The solid black lines represent theoretical prediction evaluated at the best-fit
model developed in Sec. 7.4.

conducted using only the first four MAGLIM redshift bins. We can use our CZ Y measurements to
check the consistency of the results, as we expect that CMB lensing cross-correlation would be less
(or differently) contaminated by systematic effects that can plague measurements of the galaxy auto-
power spectrum. However, since the degeneracy with the galaxy bias prevents the use of C’; 9 and ng g
separately to constrain cosmological parameters, we can test the agreement between the two measure-
ments by keeping the underlying cosmology fixed at the fiducial parameters listed in Table 2, while
allowing the galaxy bias and parameters describing the photo-z uncertainties to vary simultaneously.
Here, we essentially use the fact that C7¥ and C; scale with b® and b, respectively.

Fig. 13 shows the comparison of the inferred linear galaxy bias from C7? and C;¥ individually.
As expected, the cross-power spectrum has less stringent constraining power than the galaxy power
spectrum. When using the C7? alone we find b; = 1.51 £ 0.07, by = 1.49“:8:82, by = 2.36 + 0.07,
by = 2.29700% by = 2.32 £ 0.07, and bg = 2.807 05, with the best-fit xZ, = 25.2 for 26 data
points corresponding to a PTE of 50.7%. When considering the Cg 9 alone we obtain b; = 1.63+0.4,
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by = 1.20£0.22, bg = 1.88£0.35, by = 1.55%0.30, b5 = 2.05+0.32, bg = 1.7710.27, with
xZ; = 42.1 for 31 data-points and PTE = 8.81%.

For all the redshift bins, the galaxy bias from C’fg exhibits a preference for a higher galaxy bias
compared to the ng . However, given the uncertainties, we observe an acceptable agreement between
the two results, except for the highest redshift bin. Other studies indicated potential issues in the
measurements or modeling of the two high-redshift MAGLIM bins [6, 37], which can be connected
to this result. However, these analyses rely on the two-point correlation function in real space, and
the results largely depend on the assumed fiducial cosmology and the scale cuts applied.

Despite this result, in Sec. 7.4, we explore the stability of the cosmological constraints by using
(and removing) an individual tomographic bin, finding no evidence of a significant shift. We expect
to have a hint of this difference in the future using the DR6 ACT CMB lensing map which will enable
us to infer a higher signal-to-noise cross-correlation.
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Figure 13: Constraints on linear galaxy bias for the six tomographic bins of the MAGLIM sample,
with cosmological parameters fixed assuming the fiducial cosmology. The blue lines denote the
results from galaxy-galaxy and the red lines denote the results from galaxy-CMB lensing power
spectrum.

7.3 Linear growth of structure

Given the measured galaxy and galaxy-CMB lensing power spectra, we compute the linear growth
factor for the six redshift bins. To this end, we use the i)G estimator [69], which allows one to break
the degeneracy between the galaxy bias and growth structure under the assumption that both are linear
and do not evolve within the selected redshift bin.

In the D¢ computation, we account for the errors associated with the bandpowers by rewriting
Eq. 2.10 as a weighted average across multipoles,

S, wrDaL

Dy = =rvrber
G ZLU}L Y

(7.2)
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where D for each band power L is given by

(ng)obs (a%g)th

De.r = . (7.3)
(@) V' (CL)obs
The weights are expressed in terms of the error of the power spectrum as
. 2 a(C™obs 2 1 [ 0(C9) s\ 2
wzl _ DG,L |:( ( ;qI;] )Obb) + ( ( g[g, )Obs) :| . (7.4)
(CL )obs 4 (CL )obs

The D estimator is computed by taking the average of the bandpowers over a multipole range.
To avoid nonlinearities, we set the maximum multipole to /3%, as is specified in Table 1, while the
large-scale cut is set to £y, = 100 due to limitations in the x map. However, applying these scale
cuts, the power spectra of the first redshift bin would not lie in a range suitable to compute Dg.
Instead, we consider weakly-nonlinear scales up to ¢,,,x = 137 for this particular bin, but we exclude
this point from the main fit below and use it solely for plotting purposes. We show in Fig. 14 the
linear growth factor estimated for each tomographic bin with the corresponding 1o error bar. The
error bars are estimated from the dispersion of the D¢ computed using the auto- and cross-spectra of
the correlated simulations described in Sec. 5.1.

From the growth factor estimated in each redshift bin, we can assess the evolution of growth
assuming that the theoretical growth function ng(z) scale linearly with a redshift-independent am-
plitude Ap. Thus, Ap probes the growth function with respect to the fiducial cosmology and can be
estimated by minimizing the following x?

6
X* =Y (Da(zi) — ApDE!(z:))Covyj (Da () — Ap DE\(2)). (7.5)

ij
We use the MCMC approach to fit Ap, simultaneously varying both A and the photo-z uncer-
tainties (Az and o) over the priors specified in Table 2. In this process, we keep the cosmological
parameters fixed at their fiducial values. We set a flat prior for the parameter Ap, ranging from 0.1
to 3. The covariance is estimated from the D¢ computed using the simulations. We obtain Ap=
0.87=+ 0.14, when we consider the estimates of the five redshift bins, shown as the filled points in Fig
14. We show in Fig. 14 the fit of the growth amplitude in its 1o confidence interval as the blue line
and bands, respectively. The obtained value is within 1o of the expected value in the fiducial case,
Ap = 1. Also, this result is in agreement with similar analyses using other CMB lensing and galaxy

samples spanning different redshift ranges [39, 40, 42, 69, 107].

7.4 Cosmological Constraints

We next fit cosmological parameters to our measurements. For these fits, we sample the posterior
simultaneously varying the galaxy bias, the photo-z uncertainties (i.e. A, and ¢,), and the flat- ACDM
parameters: €2,,,, {0, s, As, and h. In total, this inference marginalizes over 23 parameters with prior
ranges listed in Table 2. Typically LSS data is especially sensitive to {2,,, and to the combination

Q,

which we are interested in placing constraints.

Figure 15 shows the constraints on the £, and Sg from the measured C{? and C; of the 6
tomographic bins of the MAGLIM sample. We find that the marginalized 68% C.L. mean values
(best-fit values inside parentheses) are:
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Figure 14: The linear growth factor of each tomographic bin estimated with the Dq statistic (Eq.
7.2) that uses the combination of the galaxy and CMB-lensing-galaxy power spectrum. The red
points correspond to the D estimated from the data within the scale range described in Sec 7.3. The
open point at z ~ 0.29 corresponds to the constraint using the weakly non-linear scales described in
the text and is not included to fit the growth amplitude Ap, which is shown by the blue line. The
blue band represents the 1o confidence interval on the best-fit amplitude Ap, assuming the fiducial
cosmology shown in the solid black line.

Qp, = 0.27710:639(0.26);
Ss = 0.75110:05(0.73).

The best-fit model has x? = 48.7 for 57 dof, corresponding to a PTE 77.4%.
To ensure the consistency of the results, we repeat the analysis considering various combinations
of data. We perform the parameter constraints considering the following setups:

* The measurements of each individual photo-z bin.
* The measurements of 5 photo-z bins, excluding one MAGLIM photo-z bin at a time.

* The combination of the 4 lowest redshift bins, i.e., removing the two highest photo-z bins from
the analysis.

Fig.16 shows the 1o uncertainty on Sg and §2,,, for the different scenarios described above. As a
comparison, we also show the result of the baseline analysis presented highlighted in red. The largest
parameter shift towards lower Ss is found when we use only measurements from the second photo-z
bin to establish constraints on the cosmological parameters; on the other hand, using the fifth photo-z
bin shifts the Sg to higher values than the baseline result. However, these constraints have visibly
larger uncertainties in both cases and the shifts are less than 1o different from the baseline result. It
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Figure 15: Constraints on €2,, and Sg obtained from the joint CJ¥ and C;¥ of the six tomographic
redshift bins of the sample. Both 68% and 95% credible levels are shown.

is worth noticing that in Fig. 14 is possible to see a similar behavior, in which the growth rate of the
second (and of the fifth) photo-z bin is relatively lower (higher) than the other points. Given Fig. 16,
this is not a surprising result since the D¢ scales with Sg and €2,,, as well. In addition, the results are
stable when removing one of the photo-z bins at a time. Therefore, the parameter constraints for all
these setups are consistent with the baseline result indicating an internal consistency of the baseline
data choice.

Recent studies using the two-point information of the DES Y3 MAGLIM sample also add con-
straints on Sg, including the galaxy clustering and galaxy-galaxy lensing [6] (Sg = 0.778*_'8:8%)
and the 3x2pt [63] (Sg = 0.776 £ 0.017). In [37], Sg is derived from the cross-correlation be-
tween MAGLIM galaxies and DES Y3 shear with the CMB lensing from Planck and SPT (Sg =
0.736f8:8‘3§), while [108] consider the combination of the 2-point correlation function between SPT
CMB-lensing, galaxy positions, and galaxy lensing (Sg = 0.792 4= 0.012). Despite the fact that these
analyses use different combinations of data and employ real-space correlation functions, which makes
it difficult to compare their analysis choices with ours in harmonic space, our results are statistically
consistent with all of them.

Other studies that rely on late-time data also suggest a lower Sg value compared to what is
inferred from CMB data within the context of ACDM. In particular, the analysis of the TT-TE-EE-
and low-E polarization of the Planck satellite (Planck TT+TE4+EE+lowE) found Sg = 0.834 +0.016
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Figure 16: Summary of the constraints on Sg = og(£2,,,/0.3)°® (left panel) and €2,,, (right panel) and
their robustness against different setups in the data combination (see Section 7.4 for more details).
The red dot denotes the baseline result.

[1], which is ~ 1.70 different from our results when adding the statistical uncertainties in quadrature.
Interestingly, analysis of the CMB lensing from Planck [18] and, more recently, from ACT [20, 21],
also reveals a Sg value consistent with the CMB constraints, suggesting that tracers at higher redshifts
and probing larger scales tend to prefer higher Sg than the probes at lower redshifts. In Fig. 17 we
summarize the comparison of our 1D marginalised Sg parameter against these measurements.

Our results are also in agreement with other CMB-lensing cross-correlation studies, such as
with the unWISE (Sg = 0.784 4+ 0.015) [47], DESI (Sg = 0.73 £ 0.03) [48], and KiDS (Sg =
0.64 4 0.08) [36] data. The results are also consistent with [46], who reported a low Sg value (Sg =
0.7781 4 0.0094) in comparison to CMB constraints through the cross-correlation of Planck CMB
lensing with various galaxy surveys. However, their results exhibited higher Sg when excluding shear
measurements (0.825 + 0.023).

It remains unclear whether the observed discrepancy in the Sg values measured from the CMB
and those derived from the late universe is due to a physical reason, an unaccounted for systematics,
or due to a statistical fluctuation. It is thus important to emphasize that our analysis relies on a few
assumptions. We assume validity of the model in the linear regime so that the galaxy overdensity
is connected to the matter overdensity by a linear, deterministic, and scale-independent galaxy bias.
However, even applying conservative scale cuts to ensure linearity, this relationship may no longer be
accurate if there is a stochastic component in the galaxy density, which could be caused by various
observational and astrophysical factors, such as discrete sampling and physical effects on galaxy
formation other than those from the local density field [109]. To account for these potential effects,
it would be necessary to increase the complexity of the model. Nevertheless, due to the uncertainties
in our measurements, it is unlikely that we would be able to draw a conclusive result even with an
improved model. Therefore, we leave this for future work.
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Figure 17: Comparison of measurement of Sg from our analysis with other measurements using
DES Y3 data [6, 37, 63, 108], ACT CMB lensing + BAO [20], and primordial CMB from Planck [1],
though note that the DES points here include marginalization over the sum of neutrino masses.

8 SUMMARY

We have presented the first analysis in harmonic space of the cross-correlation between the galaxy
density fluctuations from DES Y3 MAGLIM galaxies and CMB lensing cross-correlation. We use the
CMB convergence map from the fourth ACT data release. This measurement, when combined with
the galaxy power spectrum, helps to break the degeneracy between the galaxy bias and cosmological
parameters. We have derived cosmological constraints by considering a tomographic approach, with
six redshift bins spanning from z = 0.20 to 1.05.

Our pipeline has been extensively validated and we carried out several systematic checks (Sec.5
and 6), in which we found no significant evidence of unaccounted contamination in our measurements
within the range of scales we use. Initially, we performed the analysis under a blinding procedure
described in 4.4. After applying very conservative cuts to ensure our data lies in the linear regime, we
rejected the null hypothesis of no correlation at 9.1¢. The bandpowers measurements are displayed
in Fig. 12.

We use our measurements to constrain cosmology under different scenarios. First, we fixed the
cosmology at the fiducial values and checked the consistency of the linear galaxy bias constrained
from the C;/¥ and from the C7¥ data. The main result is displayed in Fig. 13 and indicates a acceptable
concordance in all redshift bins, with the exception of the highest redshift bin. In this particular bin,
we observe an indication of a potential discrepancy between the linear galaxy bias derived from our
two measurements. Nevertheless, when removing this particular redshift bin to place constraints on
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Sg, we did not observe any significant impact on the results.

Next, we investigated the linear growth rate of the structures at different redshifts by employing
the galaxy bias-independent D¢ estimator defined in Sec. 7.3. The main result is shown in Fig. 14.
Given the growth measurements at each redshift, we constrain the parameter A p, which represents the
total amplitude of the linear growth with respect to the fiducial cosmology. We find Ap = 0.87+0.14,
consistent with the expected value of the fiducial model, (Ap = 1). Measuring D¢ tomographically
is a possible way to investigate whether a preferred lower or higher Sg value exists within a specific
redshift range. This approach is motivated by the fact that certain analyses with late-time data suggest
lower values of the clustering amplitude compared to the constraints imposed by primordial CMB.
Due to the data limitations and the conservative scale cuts applied, we are not able to place constraints
strong enough to further examine if there is a preferred trend of the D¢ evolution. This approach
would significantly benefit from the use of a convergence CMB lensing map with improved overlap
and noise levels, such as the latest ACT data release 6 [20, 21] that almost entirely overlaps with the
DES region [110].

Finally, we vary the cosmological and astrophysical parameters to place constraints on {2,,, and
Ss. In ACDM, we find at 68% C.L ©,,, = 0.2777003), and Sg = 0.75170:015. Our main result
is shown in Figure 15. We find that our Sg constraints are slightly lower with respect to Planck
TT+TE+EE+lowE at the ~ 1.70 level when adding the statistical uncertainties in quadrature. Our
result is also consistent with other studies [6, 36, 37, 47, 48, 63]. We perform a number of internal
consistency tests to assess the stability of the main result. We conducted several internal consistency
tests to evaluate the robustness of our main result. A summary of these tests is presented in Fig. 16.

The current discrepancy between the inferred value of Sg from the CMB and from some late
Universe observations emphasizes the need for testing the ACDM model and systematic effects
through various methods, datasets, and pipelines. Our study demonstrates the ability to constrain
cosmology using the combination of the galaxy power spectrum and the CMB lensing- galaxy cross-
power spectrum. In a companion paper [111], we explore the parameter constraint using the cross-
correlation between ACT DR4 CMB lensing and DES Y3 shear data, which is also sensitive to the
amplitude of large-scale structure parameter og. Furthermore, the next data releases of galaxy sur-
veys such as the DES, HSC, DESI, and new CMB lensing maps such as from AdvACT and SPT-3G
will tighten the parameter constraints and help us to understand the history of the cosmic structure
growth. This will be especially valuable if one can demonstrate that the systematic effects are well
controlled, even with increased precision. In the future, a comprehensive cross-correlation analysis
will be even more stringent using data from upcoming surveys such as the Vera Rubin Observatory
Legacy Survey, Euclid mission 7, the Nancy G. Roman Space Telescope®, Simons Observatory”, and
CMB-S4!°. However, accurate theoretical modeling is crucial for achieving this goal. Although we
have adopted conservative scale cuts and do not extend the analysis to include mildly-small scales, a
comprehensive understanding of effects significant in this regime (e.g., nonlinear galaxy bias, bary-
onic effects) will be essential to performing precision cosmology and is something to be addressed in
a higher signal-to-noise measurement using ACT DR6 cross-correlation studies [110].

"https://www.euclid-ec.org/
$https://roman.gsfc.nasa.gov/
9https ://simonsobservatory.org/
Ohttps://cmb-s4.0rg/
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