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Abstract—Data center downtime typically centers around ITequipment failure. Storage devices are the most frequently failing

components in data centers. We present a comparative study of hard disk drives (HDDs) and solid state drives (SSDs) that constitute

the typical storage in data centers. Using six-year field data of 100,000 HDDs of different models from the same manufacturer from the

Backblaze dataset and six-year field data of 30,000 SSDs of three models from a Google data center, we characterize the workload

conditions that lead to failures. We illustrate that their root failure causes differ from common expectations and that they remain difficult

to discern. For the case of HDDs we observe that young and old drives do not present many differences in their failures. Instead,

failures may be distinguished by discriminating drives based on the time spent for head positioning. For SSDs, we observe high levels of

infant mortality and characterize the differences between infant and non-infant failures. We develop several machine learning failure

prediction models that are shown to be surprisingly accurate, achieving high recall and low false positive rates. These models are used

beyond simple prediction as they aid us to untangle the complex interaction of workload characteristics that lead to failures and identify

failure root causes from monitored symptoms.

Index Terms—Supervised learning, classification, data centers, storage devices, SSD, HDD
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1 INTRODUCTION

STORAGE devices, such as hard disk drives (HDDs) and
solid state drives (SSDs), are among the components that

affect data center dependability the most [1], [2], [3], [4], [5],
contributing to the 28% of data center failure events [6].
Accurate prediction of storage component failures enables
on-time mitigation actions that avoid data loss and increases
data center dependability. Failure events observed in HDDs
and SSDs are different due to their distinct physical
mechanics, it follows that observations from HDD analysis
cannot be generalized to SSDs and vice-versa. Existing stud-
ies of HDD dependability in the literature generally focus
on a few disk models that are analyzed using disk traces of
collected disk data during a period of up to two years [7],
[8]. Most of the SSD studies in the literature are done on a
simulated or controlled environment [9], [10], [11], [12], [13]
or focus on specific error types [14], [15].

In this paper, we focus on failures of HDDs and SSDs by
analyzing disk logs collected from real-world data centers
over a period of six years.We analyze Self-Monitoring, Analysis

and Reporting Technology (SMART) traces from five different
HDDmodels from the Backblaze data center [16] and the logs
of three multi-level cell (MLC) models of SSDs collected at a
Google data center. Though we are unaware of the data cen-
ters’ exact workflows for drive repairs, replacements, and
retirements (e.g.,whether they are donemanually or automat-
ically, or what are the replacement policies in place), we are
able to discover key correlations and patterns of failure, as
well as generate useful forecasts of future failures. Being able
to predict an upcoming drive retirement could allow early
action: for example, early replacement before failure happens,
migration of data and VMs to other resources, or even alloca-
tion of VMs to disks that are not prone to failure [17].

In this paper, we study the various error types accounted
by the logs to determine their roles in triggering, or otherwise
portending, future drive failures.We note that although both
the Backblaze and the Google logs have ample data, simple
statistical methods cannot be used for predictions: we find
no evidence that failures are triggered by any deterministic
decision rule, e.g., a failure cannot be predicted using simple
rules such as a feature exceeding a threshold. To address
this, we resort tomachine learning predictors to detect which
quantitative measures provide strong indications of upcom-
ing failures. We show that machine learning models that are
trained from monitoring logs achieve failure prediction that
is both remarkably accurate and timely, both in the HDD
and SSD domains. The models confirm that drive replace-
ments are not triggered by naive feature thresholds. Beyond
prediction, the models are interpreted to provide valuable
insights on which errors and workload characteristics are
most indicative of future catastrophic failures.

The models are able to anticipate failure events with good
accuracy up to several days in advance, despite some inherent
methodological challenges. Although the frequency of fail-
ures is significant, the datasets in hand are highly imbalanced
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(the healthy-faulty ratio is 10,000:1). This is a common prob-
lem in classification, and makes achieving simultaneously
high true positive rates and low false positive ones very diffi-
cult. Here, we illustrate that there exist differentways to parti-
tion the HDD and SSD datasets to increase model accuracy.
This partitioning is based on workload analysis that was first
developed in [18] for SSDs and focuses on the discovery of
certain drive attributes. We saw that similar partitioning can
be also successfully applied for the case ofHDDs.

Although the dataset partitioning is based on already
available drive attributes (e.g., drive age for SSDs, head flying
hours for HDDs), to the best of our knowledge this is the first
time that such an approach is used to improve the accuracy of
failure predictionmodels of storage devices. We also focus on
the interpretability of themachine learningmodels andderive
insights that can be used to drive proactive disk management
policies. Our findings are summarized as follows:

! Although a consistent number of drives fail during the
observed six years (i.e., 14% of SSDs and 7% ofHDDs),
only a few of them are repaired and put back into pro-
duction (i.e., 50% of failed SSDs and 7% of failed
HDDs). The percentage of failed SSDs that are put
back into production within a month after the failure
event is 8%, while almost all the repaired HDDs are
back in the data center within a day from the failure.

! Drive failures are triggered by a set of attributes and
different drive features must be monitored to accu-
rately predict a failure event. There is no single met-
ric that triggers a drive failure after it reaches a
certain threshold.

! Several machine learning predictors are quite suc-
cessful for failure prediction. Random forests are
found to be the most successful for SSDs and HDDs.

! Datasets may be partitioned to improve the perfor-
mance of the classifier. Partitioning SSDs on drive age
attribute and HDDs on head flying hours (i.e., SMART
240, the total amount of time spent by the drive head
moving) increases model accuracy. This is enabled
by training a distinct classifier for each partition of
the dataset.

! The attributes that are most useful for failure predic-
tion differ depending on the dataset split (i.e., split
based on age for SSDs and on head flying hours for
HDDs).

! No relationship between SSD program-erase (P/E)
cycles and failures are observed, suggesting that
write operations do not affect the state of SSDs as
previously thought.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the datasets analyzed in this paper and Sec-
tion 3 characterizes the data and summarizes observations.
Section 4 investigates main reasons causing SSD and HDD
failures. Section 5 studies different classification algorithms
to predict failure events. Section 6 presents related work
and Section 7 concludes the paper.

2 SSD AND HDD DATASET

SSD Dataset. The data consists of daily performance logs for
three MLC SSD models collected at a Google data center

over a period of six years. All three models are manufac-
tured by the same vendor and have a 480 GB capacity and a
lithography on the order of 50 nm. They utilize custom firm-
ware and drivers, meaning that error reporting is done in a
proprietary format rather than through standard SMART
features [19]. This dataset has been previously examined
in [14], [15], [20]. We therefore refer to the three SSD models
as MLC-A, MLC-B, and MLC-D in accordance with the
naming in [14], [20]. The dataset provides over 10,000
unique drives for each drive model, totaling over 40,000,000
daily drive reports overall.

The logs report daily summaries of drive activity. Drives
are uniquely identified by their ID, which is a hashed value
of their serial number. For each day, the following metrics
are reported:

! The timestamp since the beginning of the drive’s life-
time, given in microseconds.

! The number of read, write, and erase operations per-
formed by the drive over the course of the day.

! The cumulative number of program/erase (P/E)
cycles over the drive lifetime. P/E is the process by
which a memory cell is written to and subsequently
erased. The cumulative amount of P/E cycles is a
measure of device wear.

! Two status flags indicating whether the drive has
died and whether the drive is operating in read-only
mode.

! The number of bad blocks in the drive. A block is
marked bad either when it is non-operational upon
purchase (denoted as factory bad block) or when a
non-transparent error occurs in the block and it is
subsequently removed from use. Cumulative counts
of these two measures are provided in the log.

! The counts of different errors that have occurred
over the course of the day. Table 1 lists the logged
error types.

HDD Dataset. The HDD dataset contains daily logs for
HDDs collected at a Backblaze data center over six years.
Basic information such as serial number, model, and date is
reported, aswell as standard SMART features. Some SMART
features are not reported for Hitachi drives and also for Sea-
gate drives before 2014, for this reason we only consider Sea-
gate drives starting from January 17, 2014, until December
31, 2019. The dataset contains more than 17 different HDD
models, over 100,000 unique HDDs each identified by its
serial number, with more than 100,000,000 daily reports per
HDD. Of the 17 different models, we consider the 5 most
popular ones. Every day, a snapshot operation is performed
for every operational hard drive, reporting the following
metrics:

! The timestamp of the snapshot, which is the date of
the snapshot.

! The serial number and model of the hard drive.
! Flag of failure: 0 shows that the drive is functioning,

while 1 means this is the last operational day before
failure.

! SMART features: All SMART features are included
in the dataset, however, some of them are empty. We
are interested in the non-null features, shown in
Table 2.
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In addition to the raw features, we also consider the
cumulative effect of SMART 187 (i.e., the total number of
Reported Uncorrectable Errors over time). For cumulative
features (i.e., SMART 4, 5, 7, 9, 10, 12, 192, 193, 197, 198, 199,
240, 241, and 242), we also calculate their non-cumulative
version (i.e., the daily increment).

Drive Age and Data Count. For a given drive, the error log
may have observations spanning over a period of several
days up to several years. This is depicted in the “Max Age”
CDF in Fig. 1, which shows the distribution over the “oldest”
observations for each drive, i.e., the length of the observa-
tional horizons in the logs. We show the CDF of SSDs and
HDDs separately in Figs. 1a and 1b, respectively.We observe
that, for over 50% of drives, we have data extending over a
period of 4 to 6 years for SSDs, and 2 to 5 years for HDDs,
which shows that generally HDDs have a shorter lifespan
than SSDs. Note that days of activity are not logged for all
drives. Accordingly, wemay ask what magnitude of data we
have access to for a given drive. The accompanying “Data
Count” CDF shows exactly this: the number of drive days
that are recorded in the error log for each drive. “Data
Count” is ameasure of the volume of the log entries. Measur-
ing them as a function of time is reasonable as there is one log
entry per day per drive. Fig. 1 clearly shows that there are
ample data available for both SSDs and HDDs, and therefore
amenable to the analysis presented in this paper.

Collected errors are separated into two types: transparent
and non-transparent errors. Transparent errors (i.e., correct-
able, read, write, and erase errors) may be hidden from the

user while non-transparent errors (i.e., final read, final
write, meta, response, timeout, and uncorrectable errors)
may not. Error type statistics are listed in Table 3 where 1.0
(100%) means that the considered drive model exhibits the
specified error every day. Note that meta, response, and
timeout errors in the SSD dataset are very rare. The number
of uncorrectable and final read errors is at least one order of
magnitude larger than other errors. Correctable errors are
the most common type of errors, as also reported in [20].
For a detailed analysis of the SSD dataset that focuses on
raw bit error rates, uncorrectable bit error rates, and their
relationships with workload, age, and drive wear out, we
direct the interested reader to [20]. For HDDs, only two
types of errors are reported (i.e., uncorrectable error and
ultraDMC CRC error). In addition to these two errors, we
also consider reallocated and uncorrectable sector counts,
which are highly related to errors [21], and power-off retract

TABLE 1
Name and Description of Different Error Types Logged in the SSD Dataset

TABLE 2
ID, Name, and Description of Considered SMART Features for HDDs

Fig. 1. CDFs of maximum observed drive age (solid) and number of
observed drive days within the error logs (dashed). The HDD maximum
age is shorter than the SSD one.
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counts. Comparing different HDD models, ST3000DM001
has the highest rate of different errors and unhealthy behav-
iors as also observed in [22].

Correlation Among Errors and Different Features. Table 4
illustrates the Spearman correlation matrix across pairs
of measures for the SSD and HDD sets, aiming to deter-
mine whether strong co-incidence relationships between
different error types exist. Spearman correlations are
used as a non-parametric measure of correlation, with
values ranging between "1 and þ1. The Spearman cor-
relation differs from the more common Pearson correla-
tion in that it is able to detect all sorts of monotonic
relationships, not just linear ones [23]. Bolded values are
those with magnitude greater than or equal to 0.30, indi-
cating a non-negligible relationship between the pair of
measures.

We first discuss the correlation of P/E cycle count with
other errors in the SSDdataset. Since SSDs can only experience
a finite number of write operations before their cells begin to
lose their ability to hold a charge, manufacturers set a limit on
the number of P/E cycles that a given drivemodel can handle.
For our drive models, this limit is 3,000 cycles [20]. Due to
these limits, it is believed that errors are caused in part by
wear of write operations on the drive, which one can measure
using either a cumulative P/E cycle count or a cumulative
count of write operations. Using either measure is equivalent
since they are very highly correlated. It is interesting to
observe in Table 4 that there is little-to-no correlation of P/E
cycle count with any of the other errors, except for somemod-
erate correlationwith erase errors, which contradicts common
expectations. One reason for this is the aforementioned argu-
ment regarding device wear. Another is that drives which

TABLE 3
Proportion of Drive Days That Exhibit Each Error Type. The Maximum Value is 1.0 (100%)

TABLE 4
Matrix of Spearman Correlations Among Different Features. We Calculate the Features in

SSDs and HDDs Separately Bolded Text Indicates a Large Correlation Value
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experience more activity simply have more opportunities for
other errors to occur. Note that the correlation value of P/E
cycle count and uncorrectable error count (which reflects bad
sectors and eventual drive swap) is mostly insignificant. The
age of a drive gives a similar metric for drive wear, which cor-
relates highlywith the P/E cycle count. The drive age also has
very small correlation with cumulative error counts, with the
exception of uncorrectable/final read errors.

Bad blocks, another likely culprit for drive swaps, shows
some mild correlation with erase errors, final read errors,
and uncorrectable errors. The high value of the correlation
coefficient of 0.97 between uncorrectable errors and final
read errors is not useful as the two errors represent essen-
tially the same event: if a read fails finally, then it is uncor-
rectable. Yet, we see some moderate correlation values
between certain pairs of measures that eventually show to
be of use for swap prediction within the context of machine
learning-based predictors, see Section 5.

For the HDD dataset, we present the correlation of
power-on hours (which reflects drive age), power cycle, and
temperature with different errors and abnormal behaviors.
All of them have little-to-no correlation with other drive
errors and drive failures. Only temperature shows mild cor-
relation with power-off retract count. Uncorrectable errors
and current pending sector count have some correlation
because the pending sector count reflects the number of
unstable sectors in an HDD, and as more and more pending
sectors appear in the drive, the more uncorrectable errors
are observed. Power cycle and power-on hour are corre-
lated, because they are both power-related metrics.

Observation #1. For SSDs, there is no clear relationship
between non-transparent error types and uncorrectable
error counts that presumably result in bad sectors and
eventual drive failures. Program–erase (P/E) cycle
counts, an indicator of drive wear, show low correlations
with most uncorrectable errors and mild correlation with
erase errors (transparent errors). Drive age shows a simi-
lar pattern of correlation.

Observation #2. For both datasets, correlations among all
pairs of transparent and non-transparent errors show
that some pairs may be mildly correlated and can be use-
ful in prediction. Yet, there is no strong indication as to
which measures are most useful for prediction.

3 DRIVE FAILURE AND REPAIR

In this section, we focus on drive failures and actions fol-
lowing a failure. Table 5 shows the percentage of failures
for each drive model in SSD and HDD datasets. On average,
the failure rate of SSDs is higher than the one of HDDs. The
largest failure rate of 31.89% is observed for ST3000DM001,
an HDDmodel. This high frequency of failures poses a large
pressure in terms of maintenance costs, since each failure
requires manual intervention. Table 6 provides more
insights by reporting statistics on the frequency of failures
for the same drive. Unexpectedly, we find that some SSDs
have failed as many as four times over the course of their

lifetime. Nonetheless 89.6% of drives with failures, fail only
once. HDDs have no more than 2 failures per drive, and
only 0.2% of the failed drives has 2 failures, which is very
rare for HDDs comparing to 9.2% for SSDs. Differences in
the number of failures of HDDs and SSDs may be due to dif-
ferent replacement strategies adopted by the owners of the
two datasets.

To better characterize the conditions of failure that lead
to these repairs, we pinpoint the failures in the timeline. For
HDDs, the failure event is directly logged using the failure
feature. Fig. 2b shows the timeline of an HDD: 1) a failure
can happen during the operational period, then the failed
HDD is sent for repair. 2) The failed drive may or may not
be repaired successfully. If it is repaired, it re-enters its
operational period.

For SSDs, in addition to daily performance metrics, spe-
cial “swap” events are also reported in the data. These
events indicate the time at which failed drives are extracted
to be repaired. Swaps denote repairs – and not simply a
swapping out for storing spare parts, or moving a healthy
SSD to a storage cabinet. All swaps follow drive failures,
and accordingly, each swap documented in the log corre-
sponds to a single, catastrophic failure.

We now discuss what we consider to be “operational
activity.” It is often the case (roughly 80% of the times) that
swaps are preceded by at least one day for which no perfor-
mance summaries are documented in the SSD log. This indi-
cates that the drive was non-operational during this period,
having suffered a complete failure. A natural way to proceed
is to define failure events with respect to swap events: a fail-
ure occurs on a drive’s last day of operational activity prior to a
swap. Inactivity refers to an absence of read or write opera-
tions provisioned to the drive, this is experienced prior to
36% of swaps. and amounts to a “soft” removal from produc-
tion before the drive is physically swapped. Accordingly, we
define a failure as happening directly prior to this period of
inactivity, if such a period exists.

To summarize, SSD repairs undergo the following
sequence of events, see Fig. 2a: 1) At some point, the
drive undergoes a failure, directly after which the drive
may cease read/write activity, cease to report perfor-
mance metrics, or both, in succession. 2) Data center
maintenance takes notice of the failure and swap the
faulty drive with an alternate. Such swaps are notated as
special events in the data. 3) After trying to repair a
failed drive, it may or may not be returned to the field
to resume normal operation.

TABLE 5
High-Level Failure Statistics. This Includes, for Each Model, the
Number of Failures Observed and the Proportion of Drives that

are Observed to Fail at Least Once

260 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 1, JANUARY/FEBRUARY 2023

Authorized licensed use limited to: William & Mary. Downloaded on January 17,2024 at 17:00:26 UTC from IEEE Xplore.  Restrictions apply. 



We will now characterize each of the stages. We start by
examining the operational periods observed in the log.
Fig. 3 presents the CDF of the length of operational periods
(alternately denoted “time to failure”). The CDF includes
both operational periods starting from the beginning of the
drive lifetime and operational periods following a post-fail-
ure re-entry. It is interesting to note that more than 80% and
90% of operational periods of SSDs and HDDs, respectively,
are not observed to end with failure during the 6 year sam-
pling period; this probability mass is indicated by the bar
centered at infinity. The figure shows that there is substantial
variability in the drive operational time, with the majority of
operating times being long. Yet, there is a non-negligible por-
tion of operating times that result in failure. Comparing SSDs
withHDDs in Figs. 3a and 3b, themaximum time to failure of
HDDs is less than 5 years, while the one of SSDs is close to 6
years. Only 7% of HDDs fail after an operational period,
while for SSDs it is near to 20%. This is due to 1) the lower
failure rate of HDDs compared to the one of SSDs and 2) the
different maximum number of failures on a single drive (i.e.,
2 for HDDs and 4 for SSDs, see Table 6).

Fig. 4 shows the CDF of the length of the pre-swap non-
operational period (only for SSDs), i.e., the elapsed time
between the drive failure and when it is swapped out of
production. Roughly 20% of failed drives are removed
within a day and 80% of failed drives are swapped out of
the system within 7 days. However, this distribution has a
very long tail (note the logarithmic scale on the x-axis). A
non-negligible proportion of failed drives (roughly 8%)
remain in a failed state up to 100 days before they are
removed from production. Since these faulty drives can

remain in limbo for upwards of a year, the data suggest that
these drives may simply have been forgotten in the system.
Note that the length of non-operational periods might differ
among SSDs due to different policies adopted by Google at
each data center. The data set provides no information
about the physical location of its drives or the used policy.

Fig. 5 depicts the CDF of the time to repair. There are sig-
nificant differences in the time to repair for SSDs and
HDDs. Half of SSDs do not re-enter the field (i.e., their time
to repair is infinite – their share of probability mass is again
indicated by the bar), while more than 90% of HDDs are
never successfully repaired. Among drives that are returned
to the field, the majority of SSDs remains in for repair for
upwards of a year, while most of the HDDs are repaired in
less than one day.

Restating the results in Fig. 5, Table 7 illustrates the per-
centage of failed drives that are repaired and re-enter the
system after a period of n days in repair (the percentage of
the successfully repaired drives as a function of all drives is
also shown within the parentheses). These metrics show
that HDDs are rarely repaired, probably due to their low
cost (i.e., it is cheaper to substitute an HDD than repair it).
Although roughly half of SSDs return to the production
environment, their repair time is lengthy.

Observation #3. Failed SSDs are often swapped out of pro-
duction within a week, though a small portion may
remain in the system even longer than a year.

Observation #4. While a significant percentage of SSDs
(up to 14.3% for MLC-B, slightly smaller percentages for
other MLC types) are swapped during their lifetime,
only half of failed drives are seen to be successfully
repaired and re-enter the field.

TABLE 6
Statistics of Failure Counts. Statistics are Given With Respect to

the Entire Population of Drives and With Respect to Those
Drives Which Fail at Least Once (“Failed Drives”)

Number of Failures % of drives % of failed drives

0 88.72 —
1 10.10 89.6

SSD 2 1.04 9.2
3 0.13 1.2
4 0.01 0.1

0 93.35 —
HDD 1 6.64 99.8

2 0.01 0.2

Fig. 2. Overview of failure timeline. Different from SSDs, we cannot iden-
tify non-operational periods and swaps in HDDs.

Fig. 3. CDF of the length of the drive’s operational period. The bar indi-
cates what proportion of operational periods are not observed to end.
Failure rate of SSDs is larger than HDDs.

Fig. 4. CDF of length of non-operational period preceding a swap. This is
the number of days between the swap-inducing failure and the physical
swap itself. There is no non-operational period reported in the Backblaze
dataset for HDDs.
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Observation #5. Of those repairs that do complete, only a
small percentage of them finish within 10 days. About half
of SSDs that are swapped out are not successfully repaired.

Observation #6. The failure rate of HDDs is lower than
SSDs, and only 7% of failed HDDs are successfully
repaired.

4 SYMPTOMS AND CAUSES OF FAILURES

In this sectionwemake an effort to connect the statistics from
the two logs, aiming to identify causes of drive failures. Since
the features/information provided by the two datasets are
different, we analyze SSDs andHDDs separately.

4.1 Age and Device Wear

Recall that Table 5 shows that, among the drives repre-
sented in the datasets, 11.29% of SSDs and 7.01% of HDDs
fail at least once. A natural question is when do these failures
occur in the drive’s lifetime: i.e., what is the role of age in
drive failure? Fig. 6a reports the CDF of the failure age
(solid line) as a function of the drive age for SSDs. The figure
shows that there are many more drive failures in the first 90
days of drive operation than at any other point in the drive
lifetime. In fact, 15% of observed failures occur on drives
less than 30 days old and 25% occur on drives less than 90
days old. This implies that these drives have an infancy
period during which drive mortality rate is particularly
high, such patterns have been noticed in past studies of
SSDs in the wild [24].

The slope of the CDF in Fig. 6a gives us an estimate of the
rate at which swaps occur at a given drive age. However,
this estimate is skewed since not all drive ages are equally
represented in the data. For example, the rate of failures
seems to slow down following the four year mark, but this
is due to the fact that drives of this age level that fail are not
as common in the data (i.e., the total number of drives that
fail and are older than 48 months is only 389). We hence nor-
malize the number of swaps within a month by the amount
of drives represented in the data at that month to produce
an unbiased failure rate for each month (dashed/dotted line
in Fig. 6). We see that this rate evens out after the third
month, indicating that the length of this observed high-fail-
ure infancy period is approximately 90 days. Accordingly,
for the remainder of this paper, we distinguish drive swaps
as young versus old, i.e., those swaps occurring before
versus after the 90-day mark. Beyond the 90-day mark, we
observe that the failure rate is roughly constant, suggesting
that, even if drives become very old, they are not more
prone to failure.

A potential explanation for the spike in failures for infant
drives is that they undergo a “burn-in” period. This is com-
mon practice in data centers, wherein new drives are sub-
jected to a series of high-intensity workloads in order to test
their resilience and check for manufacturing faults. Such
increased workloads stress the drive, leading to a height-
ened rate of failure. To test this hypothesis, we looked at the
intensity of workloads over time. For each month of drive
age, we examined drives of that age and how many write
operations they processed per day. The distributions of
these write intensities are presented in Fig. 7. It is clear that
younger drives do not tend to experience more write activity
than usual (in fact, they tend to experience markedly fewer
writes!). A similar trend is apparent for read activity (not
pictured). We conclude that there is no burn-in period for
these drives and that the spike in failure rates is caused by

Fig. 5. CDF of time to repair, ranging from 1 day to 4.85 years for SSDs,
and ranging from 1 day to 1.54 years for HDDs. The proportion of repairs
that are not observed to terminate is depicted with the bar graph. Half of
the failed SSDs get repaired, while only 6% of failed HDDs are repaired.

TABLE 7
Percentage of Swapped Drives for SSD and Percentage of Repaired Drives for HDD That Re-Enter the WorkflowWithin n Days. The

Percentage of Repaired Drives as a Function of all Drives is Also Reported Within the Parentheses

Fig. 6. The CDF of the age of failed drives (solid line) and the proportion
of functioning drives that fail at a given age level, in months (dashed/dot-
ted line).
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manufacturing malfunctions not caught by drive testing. It
is worth noting that the daily write intensity is higher for
SSDs that are older than 48 months. Given that 17,805
healthy drives in the dataset (i.e., drives that do not have any
failure) are older than 48 months, observations for these
drives are statistically significant. This phenomenon may be
the result of company policy to route write requests to old
drives or of a workload variation experienced by the data
center in the last 48 months.

Beyond drive age, we are also interested in the relation-
ship between failure and device wear, which is given by P/
E cycles. In the same style as Figs. 6 and 8 illustrates the
relationship of cumulative P/E cycles and probability of
failure in the form of a CDF (solid line) and an accompa-
nying failure rate (dashed line). The CDF illustrates that
almost 98% of failures occur before the drive sees 1,500 P/E
cycles. This is surprising, considering that the manufacturer
guarantees satisfactory drive performance up until 3,000 P/
E cycles. Conversely, the failure rate beyond the P/E cycle
limit is very small and roughly constant. The spikes at 4,250
and 5,250 P/E cycles are artifactual noise attributed to the
fact that the number of drives that fail at these P/E levels
are so few in number.

In the figures discussed, we observe high failures rates
for both SSDs younger than three months and SSDs with
fewer than 250 P/E cycles. Due to the correlation between
age and P/E cycles, it might appear that these two charac-
terizations are roughly equivalent and describe the same
phenomenon. To illustrate that this is not the case, we plot
two CDFs in Fig. 9: one for young failures and one for old
ones. It is clear that the young failures inhabit a distinct,
small range of the P/E cycle distribution. Since this range is
so small, the individual P/E cycle counts are not informa-
tive to young failures.

Observation #7. Age plays a crucial role in the SSD failure
rate. Drives younger than 90 days have markedly higher
failure rates. This phenomenon is characteristic to young
drives and cannot be explained with P/E cycle counts.

Observation #8. Beyond the infancy period, age does not
seem to play an important role. The oldest drives seem
to fail with roughly the same frequency as young, non-
infant drives.

Observation #9. The vast majority of drive failures happen
well before their P/E cycle limit is reached. Furthermore,
drives operating beyond their P/E cycle limit have low
rates of failure.

4.2 Head Flying Hours in HDDs

Similar to the drive age of SSDs shown in Fig. 6a, we also
present a similar plot for HDDs in Fig. 6b. Differently from
the high failure rate of young SSDs, the failure rate of young
HDDs is relatively small (less than 1%). Therefore, we need
to find other features which may be related to failure rate.

We examine all SMART features for HDDs, and find out
that head flying hours (HFH, SMART 240) is highly related to
failures even if it is not correlated with other HDD features
(see Table 4). Here we define two kinds of disks regarding
head flying hours with a certain threshold: 1) Large HFH
disks are observed at least once with head flying hours
larger than the threshold; 2) Small HFH disks always have
head flying hours smaller than or equal to the threshold.

Fig. 10a shows the failure rate of small and large HFH
drives as a function of the threshold. The average failure rate
of all HDDs is also reported (baseline, see dashed line). We
observe two situations with high failure rate in Fig. 10: 1)
small HFH when the threshold is less than 3,000 (the begin-
ning of small HFH line), and 2) large HFH when threshold
is larger than 40,000 (the end of large HFH line). The per-
centage of HDDs, if we partition the dataset according to
HFH, is also shown in Fig. 10b. When the threshold is less
than 3,000, the percentage of small HFH drives is less than
3%, therefore it is not representative. When the threshold is
larger than 40,000, the percentage of large HFH is about
20%, which is worth to be considered. The failure rate of
these 20% large HFH disks is 17%, which is much higher

Fig. 7. Quartiles of the daily write intensity per month of drive age. The
line shows the median write intensity for each month. The 1st and 3rd
quartiles are shown as the boundaries of the shaded area.

Fig. 8. The distribution P/E cycle counts of failed drives (solid) and the
proportion of drives that fail (dashed) at a given P/E level, binned in
increments of 250 cycles.

Fig. 9. The CDF in Fig. 8 split across infant failures (occurring at age
$ 90 days) and mature failures (occurring at age > 90 days).
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than the 7% failure average (baseline). We select as HFH
threshold ¼ 40; 000 to split the dataset because this thresh-
old balances well the failure rate and percentage of large
HFH disks. This observation (small and large have different
resilience behavior) guides us to split the dataset for better
prediction, see Section 5.3 for more details.

Observation #10. HDDs with large head flying hours
(SMART 240) show a greater failure rate than disks with
small head flying hours.

4.3 Errors for SSDs

Intuitively, we would expect that catastrophic drive failure
is preceded by previous lapses in drive function, i.e., non-
transparent errors. We focus on uncorrectable errors and
bad blocks since they are by far the most common of these
errors. Other errors occur far too rarely to give much
insight. We test the validity of our intuition by comparing
the cumulative counts of errors seen by failed drives to a
baseline of cumulative error counts taken across drives that
are not observed to experience failure. We are also particu-
larly interested to see if there is any difference in error rate
between young failures ($90 days) and old failures (>90

days). This is illustrated with CDFs in Fig. 11.
We find that drives that fail tend to have experienced

orders of magnitude more uncorrectable errors and bad
blocks than other drives. This is exemplified by the fact that in
roughly 80% of cases, non-failed drives are not observed to
have experienced any uncorrectable errors. On the other
hand, for failed drives, this proportion is substantially lower:
68% for young failures and 45% for old drives. In fact, broad-
ening our scope, we find that 26% of failures happen to drives
which have experienced no non-transparent errors andwhich
have developed no bad blocks. Furthermore, we find that, if
errors are observed, then young failures tend to see more of
them than old failures. This is most easily seen in the tail
behavior of the aforementioned CDFs; for example, the 90th
percentile of the uncorrectable error count distribution is two
orders ofmagnitude larger for young failures than for old fail-
ures, in spite of the fact that the young drives have been in
operation formuch less time.

Overall, the presence of errors is not a good indicator of
drive failure since most failures occur without having seen
any uncorrectable errors. However, drives that experience
failure do have a higher error rate, which means that we
expect error statistics to be of some utility in failure predic-
tion. Furthermore, we find that the patterns of errors are
markedly different among young and old failures. In

particular, young failures have a predilection toward
extremely high error counts.

Moving into a finer temporal granularity, we are interested
in error rates directly preceding the failure. This behavior is of
particular importance for failure forecasting and prediction.
We ask: do drives tend to be more error-prone right before a
failure occurs?How long before the drive failure is this behav-
ior noticeable? Fig. 12 shows two relevant uncorrectable error
statistics in the period before a drive swap.

Fig. 12a shows the probability that a faulty drive has an
error within the last N days before its failure. The baseline is
the probability of seeing an uncorrectable error within an arbi-
traryN-day period.We see that failed drives see uncorrectable
errors with a much higher than average probability and that
this behavior is most noticeable in the last two days preceding
the failure. However, the proportions of failed drive that do
not see any errors in its last 7 days is very high (about 75%).

Fig. 12c shows the distribution of those uncorrectable
error counts that are nonzero on each day preceding the
swap. We find that error counts tend to increase as the fail-
ure approaches. We also find that young failed drives, if
they suffer an error, tend to experience orders of magnitude
more errors than older ones, note the log-scale on the y-axis
of the graph.

To summarize, we zoom in specifically on the period
directly preceding a failure. We show that error rates
depend on two factors: (1) the age of the drive (young
versus mature) and (2) the amount of time until the swap
occurs. The resulting increase in error rate is most noticeable
in the two days preceding the swap, suggesting that the
lookahead window within which we can accurately forecast
failure may be small.

Observation #11. Non-transparent errors are not strongly
predictive of catastrophic drive failures. Moreover, a
substantial proportion of drives experience failure with-
out having seen non-transparent errors.

Observation #12. Failures of young drives aremore likely to
have seen higher error rates than failures ofmature drives.

4.4 Errors for HDDs

We also show the percentage and count of uncorrectable
errors (SMART 187) for HDDs, in Figs. 12b and 12d. For
HDDs, the probability of uncorrectable errors increases

Fig. 10. Head flying hours (SMART 240). Many HDDs fail when they
have large head flying hours. The dashed-line in subfigure (a) marks the
mean failure rate.

Fig. 11. CDF of cumulative bad block counts and uncorrectable error
counts of SSDs based on the age at which the swap occurred. The “Not
Failed” CDF corresponds to the distribution over drives that are not
observed to fail.
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when a failure approaches. When a failure occurs, the prob-
ability of uncorrectable errors is around 50%. The probabil-
ity of uncorrectable errors of small HFH and large HFH is
essentially the same. For both cases, the probability is much
higher than the baseline.

When looking into the number of uncorrectable errors,
the uncorrectable error count of HDDs is several orders of
magnitude lower than SSDs. For HDDs, we also observe
higher uncorrectable error count for large HFH disks before
failure events.

Observation #14. Error rates become extremely high in the
two days before an HDD fails.

5 FAILURE PREDICTION

In this section, we use machine learning models to predict
SSD and HDD failures that will occur within N & 0 days.
The failure characterization of SSDs and HDDs presented in
Section 4 is used to improve model accuracy and specifically
by splitting the SSD and HDD datasets by drive age and
head flying hours, respectively. The machine learning mod-
els are compared with results observed with state-of-the-art
approaches [7], [14].

5.1 Model Description

Input. Both SSD and HDD datasets present daily statistics
and are extremely imbalanced, i.e., the number of healthy
disks (majority class) is larger than the number of faulty
ones (minority class). In the SSD case, the ratio of healthy
and defective drives is 10,000:1, for HDDs it is 13,000:1. To
deal with such imbalanced datasets, we under-sample the
majority class, use cross-validation for training and testing
the model, and evaluate its performance with measures that
are not affected by imbalanced datasets.

Under-Sampling. For both datasets, the training set is
under-sampled to result in a 1:1 healthy-faulty drives ratio

to avoid the classifier being biased toward healthy drives.
For this purpose, we use a random strategy, i.e., observa-
tions to be removed are randomly chosen from the majority
class. We observe that the model performance is not pro-
foundly affected by considering different under-sampling
strategies and healthy-faulty ratios.

Cross-Validation. Classifiers are cross-validated by split-
ting each dataset into five different folds. The dataset is par-
titioned by drive ID (i.e., all observations of a drive belong
to the same fold and are not used concurrently for training
and testing). If folds are created by randomly partitioning
the dataset, i.e., the strategy adopted in [7], [14], it is possi-
ble that future observations of a drive are used to predict
the past failure state of the same drive. This is undesirable
since no future information is available in real scenarios.
This is also avoided by using online prediction [17], i.e., the
model is trained on observations collected before a specific
date and tested on the remaining data. Unfortunately, this
cannot be applied to the SSD dataset: its observations do
not have a global timestamp attribute that would allow syn-
chronizing the various traces across time. Four out of five
folds are used for training, while the remaining one is used
for testing. Five different classifiers are trained (each one
tested on a different testing set). Global performance is
obtained by averaging the performance of each classifier.

Output. The model returns a continuous value in the
interval (0,1), i.e., the probability that the drive fails. In real-
world scenarios, a binary output (i.e., failure versus non-
failure) is preferred. For this purpose, we set a discrimina-
tion threshold, a, that discretizes the returned probability: if
the output is larger than a, then the model predicts a failure;
otherwise, the model predicts a non-failure. Due to its
insensitiveness to imbalanced datasets, receiver operating
characteristic (ROC) is generally used to evaluate the accu-
racy of binary classifiers [14], [25] and is adopted also in this
paper. ROC curve plots the true positive rate (TPR or recall)
against the false positive rate (FPR) of the analyzed classifier
by considering different values of a. TPR and FPR are
defined as

TPR ¼
TP

TP þ FN
and FPR ¼

FP

FP þ TN
;

where TP is the number of true positives, TN is the number
of true negatives, FP is the number of false positives, and
FN is the number of false negatives. We also consider the
area under the ROC curve (i.e., AUROC) as a further mea-
sure to determine the goodness of the proposed classifier.
The AUROC is always in the interval (0.5,1): it is 0.5 if the
prediction is not better than the one of a random classifier;
its value is 1 for a perfect predictor.

5.2 Prediction Accuracy

To compare classifiers, we report in Table 8 the AUROC of
different predictors for different lookahead windows. The
table illustrates that Random Forest and XGBoot result in
superior performance comparing to other predictors, this is
consistent with the literature ([18] and [14] for SSDs and
HDDs, respectively). Although the performance of XGBoost
and Random Forest models are similar (in fact, XGBoost
models may be slightly more accurate than Random Forest

Fig. 12. (Top) Probability of uncorrectable error (UE) happening within
the last n days before a swap. The baseline curve on the top graph is the
probability of seeing an uncorrectable error within an arbitrary n-day
period. (Bottom) Provided a UE happens, how many occur? Upper per-
centiles of the distribution of uncorrectable error counts preceding to fail-
ure, excluding zero counts.
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ones), the training time of Random Forest is only 5% of the
time required for training XGBoost. Table 8 also shows that,
independently of the classifier used, the smaller the look-
ahead window, the larger the AUROC.

Fig. 13 plots the AUROC of the Random Forest predic-
tion on HDD (solid line) and SSD (dashed line) datasets
against different lookahead windows. Each value, obtained
by averaging the AUROC of different cross-validation folds,
is plotted with its standard deviation. In both cases, the Ran-
dom Forest performance decreases for longer lookahead
windows and better AUROC values are observed for the
HDD dataset. Fig. 13 suggests that Random Forests can effi-
ciently predict SSD and HDD failures for N $ 2 and N $ 8

days lookahead, respectively.
Besides testing the predictor on all drive models, we also

evaluate the performance of the Random Forest with test set
that consists of a specific drive model. Results, for lookahead
window set to N ¼ 0 days, are shown in Fig. 14. When
applied to the SSD dataset, Random Forests can efficiently
predict the status of the SSD independently of the drive
model. Instead, in the HDD case, the predictor provides good
AUROC for ST4000DM000 and ST12000NM0007, acceptable
predictions for ST8000DM002 and ST8000NM0055, and mild
performance for ST3000DM001.

Tables 9 and 10 show the robustness of the Random Forest
across HDD and SSD models, respectively. The tables report
the AUROC of the predictor when it is trained with a given
drive model and it is tested on a different one. While the Ran-
dom Forest is very robust when applied to the SSD dataset, it
is less accurate on the HDD workload. The worst AUROC is

observed for ST3000DM001, independently of the HDD
model used for training. Good prediction for this HDDmodel
is observed only when the random forest is trained using the
same drive model. This is consistent with what is observed in
Tables 3 and 5 that show different error and failure rates for
ST3000DM001 comparing to other HDD models. In most
cases, training the Random Forest with all available models
improves its prediction. Exceptions are observed for
ST8000NM0055 and ST3000DM001 HDD models, for which
the AUROC decreases if all disk models are used for training
the random forest. While for the former disk the difference is
negligible (i.e., 0.002), a higher AUROC reduction is observed
in the latter case (i.e., almost 0.03). It is worth noting that
ST3000DM001 presents more uncorrectable errors and re-
enters the workflow more likely than other disk models (see
Tables 3 and 7, respectively). These differences between
ST3000DM001 and other HDDmodels may affect the predic-
tion accuracy of the classifier.

5.3 Model Improvement

Section 4 shows that many SSD failures are related to the
drive age, while HDD ones are affected by the head flying
hours (i.e., SMART 240). Here, we use those attributes to
improve the performance of the model. Each dataset is split
based on the value of the considered feature (i.e., drive age
or head flying hours). Then, the model is trained and vali-
dated on each sub-dataset and the performance of each new
model is compared to the performance obtained without
splitting the dataset.

First, we evaluate the TPR of the model against different
splitting on drive age (for SSDs) and head flying hours (for

TABLE 8
AUROC for Different Predictors and Lookahead Windows, N. The Cross-Validated Average

AUROC is Provided With the Standard Deviation Across Folds

Fig. 13. Random Forest AUROC as a function of lookahead window size,
N. Error bars indicate the standard deviation of the cross-validated error
across folds.

Fig. 14. Performance of Random Forest models when they are trained
on all drive models and tested on a single one. The lookahead window is
set to N ¼ 0 days.
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HDDs). Since Random Forest models return a prediction
probability, a threshold a is set to obtain a binary prediction.
A conservative threshold (i.e., a ’ 1) is practical for prob-
lems that require a low false positive rate. We test different
thresholds between 0.5 (the default one) and 1.0. Results are
shown in Fig. 15. Fig. 15a shows that, independently of the
chosen threshold, the TPR for young SSDs (i.e., younger
than 3 months) is substantially greater than the TPR for
older drives. Fig. 15b depicts the effect of the time (in
months) spent for positioning the disk heads (i.e., head fly-
ing hours, SMART 240) on the performance of the model.
Especially for small values of a, the TPR increases with the
time spent by the drive for positioning its heads.

Fig. 16 shows the ROC curve of the model when it is
trained on different sub-dataset and predicts the state of
each drive in the next 24 hours. As depicted in Fig. 16a, the
prediction model works better with young SSDs (i.e., drive
age smaller than 3 months) since its AUROC is significantly
larger (0.961) than the one shown in Fig. 13 (0.906). This
comes at the expense of slightly reduced performance for
older drives (0.894). Similarly, Fig. 16b shows the perfor-
mance improvement observed by splitting the HDD dataset
on the head flying hours feature (i.e., 40,000 hours). The
model can better predict the state of HDDs that spend a lon-
ger time in positioning their heads (0.929). Also in this case,
improvements are observed comparing to the default strat-
egy (i.e., no split) when the measured AUROC is 0.902,

while the performance for drives with small head flying
hours slightly decreases (0.890). It is worth noting that
the 20% of swap-inducing failures in the SSD dataset are
young failures, while the 25% of HDDs has large head
flying hours.

5.4 Model Interpretability

Besides providing the best performance, Random Forest
models also assign a score to each attribute based on its
relevance for solving the classification problem. This
greatly increases the model interpretability since it is
possible to identify the features that are more related to
drive failures.

Fig. 17 shows the TOP-10 features for each sub-dataset
considered in Section 5.3 (i.e., young and old SSDs, HDDs
with short and large head flying hours). Fig. 17a shows the
feature ranking for the SSD dataset. When considering
young drives, the drive age is the most important feature,
followed by the read count, its cumulative value, and the
cumulative number of bad blocks. For old SSDs, features
counting correctable errors and read/write operations, and
the cumulative number of bad blocks are in the TOP-4. It is
expected that read and write counts are more relevant for
the state prediction of old drives since young drives may
have only a few activities at the failure time. Fig. 17b depicts
the feature importance for the HDD dataset. The number of
current pending sectors, uncorrectable errors, uncorrectable sec-
tors, and reallocated sectors are among the most important
features for detecting failing drives. This is similar to what
is observed in [14]. The attribute ranking of HDDs with
large head flying hours provides new insights. In this case,
the two most relevant features are the incremental step of
written logical block addressing (LBA) and seek error rate, fol-
lowed by the number of uncorrectable errors and uncorrectable
sectors. The seek error rate and the uncorrectable sector count
are observed to be important features also in [26]. The reallo-
cated sector count is not in the TOP-10 important features for
HDDs with large head flying hours.

TABLE 9
Random Forest on the HDD Dataset forN ¼ 0

Training

Test ST4000DM000 ST12000NM0007 ST3000DM001 ST8000DM002 ST8000NM0055 All

ST4000DM000 0.902 0.839 0.828 0.827 0.788 0.904
ST12000NM0007 0.872 0.901 0.828 0.878 0.848 0.903
ST3000DM001 0.745 0.694 0.863 0.664 0.654 0.834
ST8000DM002 0.809 0.822 0.774 0.844 0.832 0.852
ST8000NM0055 0.793 0.818 0.743 0.831 0.850 0.848

TABLE 10
Random Forest on the SSD Dataset forN ¼ 0

Training

Test MLC-A MLC-B MLC-D All

MLC-A 0.891 0.871 0.887 0.901
MLC-B 0.832 0.892 0.849 0.893
MLC-D 0.868 0.857 0.863 0.901

Fig. 15. True positive rate as a function of drive attributes for SSD and
HDD for different prediction thresholds (a). The lookahead window is set
to N=0 days.

Fig. 16. ROC curves after splitting the dataset on drive features. Predic-
tion model is random forest with lookahead window N ¼ 0 days. In (b),
HFH is for Head Flying Hours (i.e., SMART 240).
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5.5 Comparison With Other Models

In this section we illustrate that splitting the SSD and HDD
datasets based on drive attributes is superior to state-of-the-
art approaches. Specifically, we use the HDD dataset (i.e.,
Backblaze) to evaluate the failure prediction accuracy of the
proposed approach against the regularized greedy forest in
[7]. To compare the effect of splitting the SSD based on drive
age, we compare prediction of error incidence with the
model presented in [14]. Note that [7] and [14] use respec-
tively, the HDD and SSD datasets as in this paper, so a com-
parison is approprate.

Backblaze Dataset. In [7], a regularized greedy forest is
used for predicting HDD failures. To deal with the imbal-
ance problem, the whole dataset is undersampled and the
remaining observations are split into training and test
sets. This biases the classifier because if separate drive
IDs are not used to generate the training and testing sets,
then we cannot preclude using future observations to pre-
dict the past. In addition, [7] creates the testing set by
sampling on the actual data which is another source of
bias since the testing set does not resemble anymore the
real data. This problem for the results presented in [7]
has been also reported by [27]. For our comparison, we
first use the biased way to define the training and testing
as in [7] and use the same hyper-parameters (i.e., leaf
nodes, L2 regularization parameters, and informative
under-sampling using K-means clustering) to train the
regularized greedy forest. For testing, we use the same
HDD model (ST4000DM000) from Backblaze and observa-
tion period (February 2014 to June 2015). Table 11

presents the AUROC obtained with this biased approach
and is in good agreement1 with the results presented in
[7]. The table also presents results with its unbiased ver-
sion (i.e., by defining the training and testing sets based
on drive IDs), and by partitioning the dataset based on
head flying hours (i.e., the methodology proposed in this
paper). As expected, if under-sampling and cross-valida-
tion are not performed correctly (i.e., the first row of
Table 11), the regularized greedy forest returns extremely
accurate predictions. When training and test sets are gen-
erated considering drive IDs and only the training set is
under-sampled (i.e., the second row of Table 11), results
are much closer to those obtained with our approach. The
AUROC slightly decreases when a random forest is eval-
uated using HDDs with short head flying hours (i.e., less
than 40K), but it is similar to the one obtained with the
regularized greedy forest for small lookahead windows
(i.e., less than or equal to 2 days). This is shown in the
third row of Table 11. The AUROC improves when the
classifier is trained and evaluated only on disks whose
head flying hours is longer than 40K (i.e., the fourth row
of Table 11). In this case, the random forest provides
accurate failure prediction up to 7 days.

Google Dataset. Although in this paper we predict SDD
failures, our methodology is extensible to estimate error inci-
dence as done in [14]. For example, when predicting

Fig. 17. Feature importance for Random Forest models after splitting the dataset on drive features.

TABLE 11
AUROC Obtained Using the Approach Presented in This Paper and the One Discussed in [7]. Both Classifiers are Trained and

Tested on Logs From ST4000DM000 Disks in the Backblaze Dataset Collected From February 2014 to June 2015

N (lookahead days) 0 1 2 7

Regularized Greedy Forest with Informative Under-sampling [7] (biased) 0:980' 0:004 0:980' 0:005 0:982' 0:007 0:984' 0:004

Regularized Greedy Forest with Informative Under-sampling 0:911' 0:011 0:878' 0:019 0:866' 0:015 0:824' 0:025

Random Forest with Random Under-sampling (HFH < 40K) 0:891' 0:065 0:873' 0:040 0:866' 0:031 0:787' 0:025

Random Forest with Random Under-sampling (HFH & 40K) 0:947' 0:017 0:936' 0:006 0:926' 0:016 0:908' 0:012

1. For comparison purposes, we use the AUROC metric instead of
the precision and recall used in [7] but it essentially presents the same
data in a different format.
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uncorrectable errors, we achieve AUROC scores of
0:960' 0:009 and 0:931' 0:007 if the dataset used to evalu-
ate the random forest is partitioned into young (i.e., less than
3months) and old SSDs, respectively. This leads to improved
performance for young drives and stable accuracy for old
SSDs when AUROC is compared to the one obtained with
unpartitioned data (i.e., 0:933' 0:006). A similar pattern is
observed also for other non-transparent errors as shown in
Table 12.

6 RELATED WORK

Large-scale data centers serve millions of requests every
day [37], [38], [39] and their dependability is critical for
services hosted on their infrastructure [40], [41]. Much prior
work investigates the main components that affect data cen-
ter dependability [15], [42], [43], [44], [45], [46], with storage
systems been considered extremely important for reliable
system operation [1], [2], [6].

Storage drives, such as HDDs and SSDs, include a moni-
tor system (originally designed by IBM and called SMART)

that allows logging drive data [19]. Disk failures are investi-
gated by Schroeder and Gibson in [1], while Pinheiro et al.
[21] explore their relationship with SMART features. Man-
eas et al. [47] explore reasons for breakdown replacement in
the same RAID group. Jaffer et al. [48] evaluate the ability of
different file systems to get through SSD faults. Hao et al.
[49] study HDDs and SSDs to highlight the importance of
masking storage tail latencies to increase performance sta-
bility. Han et al. [50] analyze SSD traces from Alibaba and
investigate correlated failures from spatial and temporal
perspectives. None of the above works attempt to predict
the failure state of drives.

Machine learning approaches have been proposed to pre-
dict drives failures and errors, see Table 13. Murray et al. [29]
develop a multi-instance naive Bayes classifier to reduce the
number of false alarms when predicting disk failures, while
Tan and Gu [31] investigates the performance of a tree aug-
mented naive Bayesian method to predict the future drive
status. Agarwal et al. [28] investigate the performance of a
rule-based classifier for discovering disk failures, Li et al. [33]
address the same problem by using decision trees, and Zhu
et al. [32] adopt neural networks and SVM. Lu et al. [26]
implement a convolutional neural network with long short-
termmemory that predicts HDD failures with a 10-day look-
ahead window by considering SMART features, disk perfor-
mance metrics, and disk physical location. Queiroz et al. [30]
propose a new method (i.e., Gaussian Mixture based Fault
Detection) to build a statistical model of SMART attributes
and predict imminent HDD failures.

To fairly compare the performance of our method with
other approaches, the same dataset must be used. As dis-
cussed by Yu [51], the performance may be extremely differ-
ent when considering different data sources. The Backblaze
dataset is used in [7], [27] to train and validate their
approaches for predicting disk failures while Mahdisoltani
et al. [14] use the Backblaze and theGoogle datasets for inves-
tigating faulty HDDs and SSDs. The regularized greedy

TABLE 12
AUROC Obtained With the Random Forest When Predicting
Various Error Types of SSDs andN ¼ 1. Response Errors are

too Rare to Predict for Different Age Granularities

Error Combined [14] Young Old

Bad block 0.877 0.878 0.873
Erase 0.889 0.934 0.882
Final read 0.906 0.959 0.852
Final write 0.841 0.937 0.780
Meta 0.854 0.890 0.842
Read 0.971 0.917 0.973
Response 0.806 — —
Timeout 0.755 0.812 0.735
Uncorrectable 0.933 0.960 0.931
Write 0.916 0.911 0.914

TABLE 13
Related Work That Uses ML to Predict Storage Device Failures. For Each Paper, the Adopted Approach, its Goal, Datasets, Used

Model, the Resampling Strategy, and the Cross-Validation Technique are Reported

Paper Goal Dataset(s), Drive Type,
Availability

MLModel(s) Random Sampling Cross-Validation

[28], [29], [30], [31] Failure Pred. Quantum, HDD, N/A Various – Random
[26], [32] Failure Pred. Baidu, HDD, Public Various – Random
[33] Failure Pred. N/A, HDD, Private Decision Tree Change Class Weight

of Training Set
Random

[7] Failure Pred. Backblaze, HDD,
Public

Regularized Greedy Forest Under-sample the whole
dataset

Random

[27] Failure Pred. Backblaze, HDD,
Public

Random Forest SMOTE on Training Set,
No “Hard-to-Classify”

Samples

Drive-by-drive

[14] Error Pred. Backblaze and Google,
HDD and SSD, Public

and Private

CART, Neural Network,
Linear Regression, SVM,

Random Forest

Under-sample the
Training Set

Random

[34] Online Failure Pred. Backblaze, HDD,
Private

Online Random Forest – Time-based

[8] Failure Pred. Backblaze, HDD,
Public

Attetion-augmented Deep
Architecture

Under-sample the
whole dataset

Drive-by-drive

[35] Failure Pred. Google, SSD, Private One-class ML – Unknown
[36] Online Failure Pred. Backblaze and Alibaba,

HDD, Public and
Private

StreamMining Under-sample the
whole dataset

Time-based
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forest adopted by Botezatu et al. [7] shineswhen compared to
other approaches used to predict failures in the Backblaze
dataset with 98% precision and accuracy but as discussed in
Section 5.5 this is due to the incorrect formation of the train-
ing and test sets. Moreover, they also under-sample both
training and test sets as also noted by [27]. Similarly, also
Wang et al. [8] test a deep architecture for predicting HDD
failures on an under-sampled dataset. Typically, under- or
over-sampling the whole dataset (training and test sets) gen-
erates overoptimistic results [52]. Aussel et al. [27] train and
evaluate a random forest on a small subset of the Backblaze
dataset (i.e., only data from 2014). Although they show high
precision and a considerable recall (i.e., 95% and 65%, respec-
tively), they filter out observations with similar features and
different failure states. We believe this is hardly doable in
real scenarios since it requires a priori knowledge of the
drive state. Mahdisoltani et al. [14] investigates different pre-
diction models to predict uncorrectable errors and bad
blocks in HDDs and SSDs, and they show that random for-
ests provide good performance for this task. Although our
approach is similar to the one presented in [14], we aim to
predict drive failures. A recent work [35] aims to predict SSD
failures by using 1-class ML models that are trained only on
the majority class (i.e., healthy drives). This approach allows
obtaining high prediction accuracy even if the occurring
error has never been observed. Although the authors claim
that their approach provide better AUROC results than [18],
close inspection illustrates that the look-ahead prediction in
[18] is superior to that reported in [35]: compare Fig. 8 in [35]
with Fig. 12 in [18] and Fig. 13 in this paper. Approaches for
online prediction of HDD errors and failures are proposed in
[34], [36], [53] by using online random forests, concept drift
adaptation [54], and tensor decomposition [55]. Unfortu-
nately, the SSD dataset does not provide a global timestamp,
hence online prediction cannot be implemented here.

In this paper, we explore the capability of random forests
for predicting drive failures and investigate possible
enhancements by statistically analyzing drive features and
by using different models based on observed attributes. We
consider a conceivably long lookahead window and use
two large and real datasets for training and validating the
proposed machine learning approach. To the best of our
knowledge, storage device failures have never been studied
by splitting the dataset based on attribute values.

7 CONCLUSION

In this paper, we investigate SSD and HDD failures using
two traces, each one six-year long, from production environ-
ments. Daily logs for 30,000 SSDs are collected at a Google
data center, while 100,000 HDDs are observed at a Back-
blaze data center. Analyzing the available traces, we draw
remarkable conclusions. Unexpectedly, we observe that fea-
tures that are commonly thought to cause SSD failures (i.e.,
write operations and error incidence) are not highly related
to faulty SSDs. We train and test different classifiers to pre-
dict faulty SSDs and HDDs, and note that Random Forest
models provide accurate predictions with a short training
time. Their high interpretability makes them the best predic-
tor for the analyzed problem. We observe that splitting each
dataset based on attribute values of its observations allows

increasing the performance of random forests. The drive
age is a critical attribute for predicting SSD failures; drives
failing before being three months old can be detected easier
than other drives. Similarly, when predicting faulty HDDs,
a higer detection rate is observed for drives with head flying
hours (i.e., SMART 240) longer than 40,000 hours.

We are aware that new technologies for SSDs (e.g., flash
design and interface) and HDDs (e.g., internal track design)
have been developed in recent years. To the best of our
knowledge, datasets containing logs of new generation stor-
age devices are not publicly available yet. In the future, we
aim to apply the methodologies presented in this paper to
more recent devices and evaluate their performance.
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