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A Feshbach resonance in collisions between 
triplet ground-state molecules

Juliana J. Park1 ✉, Yu-Kun Lu1, Alan O. Jamison2,3, Timur V. Tscherbul4 & Wolfgang Ketterle1

Collisional resonances are important tools that have been used to modify 
interactions in ultracold gases, for realizing previously unknown Hamiltonians in 
quantum simulations1, for creating molecules from atomic gases2 and for 
controlling chemical reactions. So far, such resonances have been observed for 
atom–atom collisions, atom–molecule collisions3–7 and collisions between Feshbach 
molecules, which are very weakly bound8–10. Whether such resonances exist for 
ultracold ground-state molecules has been debated owing to the possibly high 
density of states and/or rapid decay of the resonant complex11–15. Here we report a 
very pronounced and narrow (25 mG) Feshbach resonance in collisions between two 
triplet ground-state NaLi molecules. This molecular Feshbach resonance has two 
special characteristics. First, the collisional loss rate is enhanced by more than  
two orders of magnitude above the background loss rate, which is saturated at the 
p-wave universal value, owing to strong chemical reactivity. Second, the resonance 
is located at a magnetic field where two open channels become nearly degenerate. 
This implies that the intermediate complex predominantly decays to the second 
open channel. We describe the resonant loss feature using a model with coupled 
modes that is analogous to a Fabry–Pérot cavity. Our observations provide strong 
evidence for the existence of long-lived coherent intermediate complexes even in 
systems without reaction barriers and open up the possibility of coherent control of 
chemical reactions.

Collisional resonances profoundly change the properties of ultracold 
gases. Magnetically tunable Feshbach resonances have been used to 
modify interactions between ultracold atoms from strong to weak 
and attractive to repulsive, as well as to coherently convert atomic 
gases into molecular gases2. Collisional resonances have become an 
important tool not only for creating previously unknown Hamiltonians 
in quantum simulations1 but also for investigating and understanding 
interatomic potentials and interactions.

It has been a long-standing goal for the field of ultracold molecules 
to harness the power of collisional resonances. Ultracold molecules 
provide opportunities to study quantum-state-controlled chemistry16,17, 
quantum simulation18–20 and quantum information processing21–24. 
Recent progress in the production of ultracold molecules from ultra-
cold atoms25–31 or direct laser cooling of molecules32,33 has laid the 
groundwork for achieving atom-like control of ultracold molecules.

For molecular systems, collisional resonances can provide micro-
scopic information about collision complexes and they can be used to 
alter chemical reactions. However, Feshbach resonances have previ-
ously been observed only in two systems of atom–molecule collisions 
(NaK + K (refs. 3,4) and NaLi + Na (ref. 5)) and for collisions involving 
Feshbach molecules, which are vibrationally excited molecules close to 
the dissociation continuum with resonances close to atomic Feshbach  
resonances6–10. It has even been an open question as to whether 

collisional resonances can be observed at all for ultracold, tightly 
bound molecules owing to the high density of states and rapid decay 
of resonant states11–15.

We report the observation of a pronounced, isolated Feshbach 
resonance in collisions between fermionic NaLi molecules in their tri-
plet rovibronic ground state. The magnetically tunable resonance is 
extremely narrow (about 25 mG) and enhances the loss rate by more 
than two orders of magnitude, providing strong evidence for a stable, 
long-lived collision complex. The existence of long-lived complexes in 
a molecular system of high reactivity such as NaLi + NaLi is unexpected 
and has strong implications for controlling ultracold chemistry through 
scattering resonances. The long-lived state shown by our experiments 
is coherently excited, whereas all other observations of collisional 
complexes in molecule–molecule collisions34–39 are compatible with 
an incoherent population.

The observed resonance is special in two regards. In simple models, 
resonantly enhanced losses are only possible if the background loss rate 
is much lower than the so-called universal limit40. A loss rate near the 
universal limit implies almost complete inelastic loss at short range and 
should suppress any long-lived resonant state. However, we observe loss 
rates close to the universal limit outside the narrow resonance. Second, 
the NaLi + NaLi Feshbach resonance is observed at a specific magnetic 
field where two open channels become degenerate. It is possibly a new 
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type of Feshbach resonance with a mechanism different from those 
observed so far in ultracold atomic systems. This mechanism cannot 
be realized in ultracold collisions of alkali-metal atoms because the 
required single-particle-level degeneracies do not occur at practicable 
field strengths. By contrast, degeneracies between two-particle thresh-
old energies are commonly found in molecule–molecule collisions 
and have been used to engineer shielding interactions in ultracold 
KRb + KRb and CaF + CaF collisions41–43. Our results indicate that this 
new type of degeneracy-induced magnetic resonance could be ubiqui-
tous in ultracold molecular physics, offering a powerful new mechanism 
for tuning intermolecular interactions with external electromagnetic 
fields. We explain the observed behaviour with simple models.

The experiment is carried out with 23Na6Li(a3Σ+) molecules in the 
rovibrational triplet ground state. The molecules are prepared with 
all spins aligned in the lower stretched hyperfine state. Following the 
techniques described in ref. 5, we prepare 6 × 104 molecules at 1.8 μK in 
a 1,596-nm 1D optical lattice potential (further details in Methods). We 
coarsely search for resonant loss by sweeping the bias field in 600 ms 
by 3 G in steps of 2 G. Any loss feature in the 3-G range will show up as a 
reduced molecule number at the end of the sweep. Only one feature was 
observed in the range 40.5 G < B < 1,401.6 G. By performing finer scans 
around this loss feature, the Feshbach resonance was identified to have 
a width of 25 mG centred at 334.92 G (Fig. 1a). The molecules become 
almost completely depleted at this field in 50 ms, whereas more than half 
of the molecules survive at the background after 1 s, as shown in Fig. 1b. 
We show that the losses are due to two-body p-wave collisions by inves-
tigating the density and temperature dependences of the decay rate.

To characterize the loss mechanism, the molecular decay rate, Ro, is 
measured as a function of the initial density, no, and compared with the 
behaviour βn γ

o
( −1) expected for decay by collisions involving γ particles. 

A power-law fit gives γ = 1.85(9), which confirms that the observed decay 
is due to binary collisions. Next, we map out the temperature depend-
ence of the molecular decay rate constant and compare with the Wigner 
threshold law44. We generate molecular gases at different temperatures 
by varying the initial temperature of the Na/Li atomic mixture. The 
observed decay rate depends linearly on temperature, as expected from 
the p-wave Wigner threshold law44 for collisions between two identical 
fermions (see Methods for the characterization of the decay in detail).

Natural comparisons for the observed decay rates are the universal 
limit and the unitarity limit. The universal limit assumes perfect 
absorption of scattering flux at short range and is given by β =l=1

univ.  
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2  (ref. 40). Here μ = mNaLi/2 is the reduced mass 
and we use an approximate value of the NaLi–NaLi long-range disper-
sion coefficient (C6 = 5,879 a.u.) obtained by summing all C6 coefficients 
between the two constituent atoms45. When reflected flux at close/short 
range destructively interferes with the reflected flux at long range, loss 
rates can exceed the universal limit but are always limited by the uni-
tarity limit46. Our experiments in a 1D optical lattice are carried out in 
the crossover between 2D and 3D physics. For a quasi-2D trap, the uni-
tarity limit is given by β π l= 4 ( )ħ

μ2D
unit.

0  (ref. 47). We see that β 2D
unit. scales 

linearly with the oscillator length in the tightly confined direction, 
l ħ m ω= ( / )z0 NaLi

1/2. By contrast, the 3D unitarity limit neglects the zero- 
point motion owing to 2D confinement and is given by β λ= 6 ħ

μ dB3D
unit. ,  

in which λdB is the thermal de Broglie wavelength λ πħ k μT= 2 /dB
2

B . 
Our experiments were carried out in the regime in which the zero-point 
energy is larger than the thermal energy, and rates should be limited 
by the 2D limit because the 3D unitarity limit is higher.

The background loss-rate constants (at 745 G) were obtained for vari-
ous molecule temperatures and estimated to be 1.7(5) × 10−12 (cm3 s−1)
(TNaLi/1 μK) from a linear fit. This background loss-rate constant matches 
the p-wave universal value within the uncertainty. The rate constant, β,  
increases by more than two orders of magnitude as the bias field 

approaches 334.918(5) G from near the p-wave universal value to above 
the s-wave universal value. Loss-rate coefficients are plotted as a function 
of magnetic field and fitted to a Lorentzian function for two tempera-
tures, 1.8 μK and 4.2 μK, in Fig. 2. The loss-rate-constant contrast is ≈150 
for 1.8 μK and ≈230 for 4.2 μK. The rate constants at the peaks are below 
the 3D unitarity limits but approach the 2D unitarity limits. The width of 
the resonance is comparable with the inhomogeneity of the magnetic 
field across the molecular sample, ≈25 mG. Lorentzian widths from the 
fits for both 1.8 μK and 4.2 μK are also ≈25 mG and are probably broad-
ened by the field inhomogeneity. The result at 4.2 μK shows an overall 
higher loss-rate constant compared with that of 1.8 μK, as expected from 
the p-wave threshold law at the resonance, β ∝ T, mentioned earlier.

We now develop a model that addresses our main experimental find-
ings. The universal limit assumes that the loss rate is given by all the 
flux that has not been quantum reflected, that is, has tunnelled through 
the centrifugal barrier located at ≈2.2Rvdw. Rates higher than the uni-
versal limit as observed here are only possible if the losses occur at 
long range (outside the p-wave barrier) or if substantial back reflection 
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Fig. 1 | Resonant molecular loss. a, The remaining molecule number after 
holding for 30 ms at a target field is mapped out for various magnetic fields 
near 334.9 G. Molecule numbers are normalized by the number without the 
hold. Each data point represents three to six measurements with and without 
30-ms hold and the error bars are one standard deviation. The dashed black line 
is a Gaussian fit. The vertical blue (green) line indicates the field in which the 
molecular decay curve in blue (green) is obtained in b. b, The main plot shows 
the decay curve near the centre of the resonance (334.92 G) within 50 ms. The 
inset shows decay curves away from the resonance at 334.82 G (green squares), 
at 745.00 G (red triangles) and at 334.92 G (blue circles) over 2 s. Dashed lines 
are fits to a simple model for two-body loss using mean square regression  
(see Methods for details). Data values represent the average and error bars 
represent one standard deviation of the mean, estimated from statistical 
errors of three to six measurements.
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from behind the centrifugal barrier destructively interferes with the 
reflection at long range. Spin-flip processes can, in principle, happen 
at long range owing to the magnetic dipole–dipole interaction, but 
for the nearly degenerate hyperfine states in our system (see Methods 
for the hyperfine structure of NaLi), the quantum numbers for the 
z-component of the electron spin differ by two from the input channel, 
so coupling by single spin flips is forbidden. Higher-order spin flips 
owing to the intramolecular spin–spin and spin–rotation couplings 
are too weak: a loss-rate constant greater than 10−10 cm3 s−1 requires a 
coupling strength on the order of 16 kHz at long range (about 100 nm). 
However, the strongest higher-order process has a coupling strength of 
around 0.05 kHz (further details in Methods). We therefore assume that 
we have a p-wave resonance enabled by high reflectivity at close range.

In principle, the observed resonance could be an ordinary p-wave 
resonance. However, the fact that this resonance occurs exactly at 
the magnetic field where the input channel becomes degenerate with 
another open channel suggests a new mechanism for which we intro-
duce a minimal model. This model assumes two nearly degenerate 
states, |1⟩ and |2⟩, coupled to a quasi-bound state, |3⟩, in which two 
molecules are held together by the p-wave barrier and reflection at 
short range (see Fig. 3a). The transferred flux from the incoming flux I  
in state |1⟩ to state |2⟩ depends on the coupling strengths γi between 
channel |3⟩ and the open channels |1⟩ and |2⟩ and on the energy differ-
ence between the incoming state ħω and the quasi-bound state ħω0:

T I
γ γ

ω ω γ γ
= ⋅

( − ) + [( + )/2]
. (1)trans

1 2

0
2

1 2
2

The process is fully analogous to a harmonic oscillator with resonance 
ω0 and damping rate γ2 driven at frequency ω by means of a frictional 
input coupling γ1. The power dissipated through γ2 (normalized to a 
quarter of the drive power at zero amplitude of the harmonic oscillator) 
is exactly given by equation (1) (see Methods for details).

It is even more intuitive to generalize the optical analogue we devel-
oped in a previous paper5, which treated long-range quantum reflec-
tion and reflection at short range as the two mirrors of a Fabry–Pérot 
interferometer. In our optical analogue, the coupling to the second 
open channel is represented by transmission through the inner mirror, 
as shown in Fig. 3b. In the simplest model, we assume no further loss 
for state 3 at short range.

Tuning the coupling term, γ2, now leads to a pronounced resonance- 
type feature in the Fabry–Pérot transmission. For small γ2, transmis-
sion is proportional to γ2. However, for large γ2, the quality factor of the 
resonance is reduced, there is less and less build-up of light inside the 
resonator and the transmission decreases with γ2. For resonant cou-
pling (ω − ω0 ≪ γ1), the maximum transmission is 100% (Ttrans = I) when 
γ2 = γ1, whereas for off-resonant coupling (ω − ω0 ≫ γ1), the maximum 
transmission is at the reduced value of γ1/(ω − ω0) when γ2 = 2(ω − ω0), 
as shown in Fig. 3c.

We are using a generalization of the model from ref. 48 in the treat-
ment of atomic p-wave Feshbach resonances, which can be used to con-
nect the parameters in equation (1) to a microscopic scattering theory 
(see Methods for details). The scaling of γ2 comes from the threshold 
behaviour of p-wave inelastic collision rates (∝ k′2) and the density of 
states of an open channel (∝ k′). When the external magnetic field is 
lowered, it tunes channel |2⟩ from above to below the energy of the 
input channel |1⟩. Initially, channel |2⟩ is closed. When it opens, it has 
zero coupling strength owing to the k′3 term. For a magnetic field ΔB 
below the threshold, the coupling strength grows ∝ ΔB3/2, which tunes 
the loss across its maximum, as in Fig. 3c.

Using a similar scaling for γ1 ∝ k3, in which k is the wavevector in the 
input channel |1〉, we obtain the inelastic loss rate:
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in which E is the incident energy and E0 is the resonant energy. In 
Methods, equation (2) is derived using a T-matrix formalism. Note that 
the numerator scales with k2 instead of k3, which is different in structure 
from equation (1). The reason is that, for particle collisions, the initial 
channel has a specific wavevector, so we see threshold p-wave scaling 
(k2) for the input coupling. Inelastic decay from the closed channel 
proceeds into a continuum of states, which adds another power of k for 
the density of states in the continuum. The experimentally observed k2 
dependence of the loss-rate constant implies that γ1 never dominates 
the other terms in the denominator of g2. Derivation of equation (2) 
and the more general formalism including an extra loss channel for 
state 3 at short range are included in Methods.

We suggest that this mechanism is responsible for the observed 
resonance. For this, we assume that the incoming channel couples to a 
long-lived collision complex independent of the applied magnetic field, 
which would be the case for identical or similar magnetic moments 
in the two states. The magnetic field tunes the coupling to a second, 
nearly degenerate open channel. This may seem to call for a remarkable 
coincidence, but molecule–molecule collisions are predicted to have 
a high density of resonances11–14, so it is reasonable to assume that a 
near-threshold p-wave bound state is readily available at almost any 
magnetic field and collision energy.
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The model presented so far can explain a resonant enhancement of 
the loss as a function of magnetic field, but an enhancement by a fac-
tor of 1/y would lead to an off-resonant suppression of loss below the 
universal limit by a factor of y on the basis of the results of the quantum 
defect model5,40 ( y is the standard short-range absorption parameter). 
However, we observe a background loss comparable with the universal 
loss rate. One possible explanation is that the incoming flux is split 
into two or more (orthogonal) components: one part has the resonant 
behaviour described above whereas the other part has non-resonant 
universal loss (that is, full transmission at short range). For example, 
if one-tenth of the scattering flux is coupled to the resonance, but its 
loss is enhanced by a factor of 1,000, the total loss can be 100 times the 
universal limit. Outside the resonance, most of the flux (assumed here 
to be 90%) provides the background loss near the universal rate. The 
optical analogy for this is the addition of a polarizing beam splitter to 
the Fabry–Pérot interferometer, shown in Fig. 3d. If most of the incom-
ing flux matches the polarization that is reflected out of the cavity by 
the beam splitter, we would see a large background loss rate. Actually, 
for this polarization, we have the optical analogue of the universal 
limit at which the ‘inner mirror’ is absent owing to rapid short-range 
loss. If the molecule–molecule collision follows several paths split by 
some internal-state quantum numbers, this can explain the peculiar-
ity of a large resonant enhancement above the universal limit from a 
background near the universal limit.

We estimate the lifetime of the complex using the analogy with 
the photon lifetime in a cavity, that is, the round-trip time multi-
plied by the resonant enhancement divided by 4. Using the observed 
loss-enhancement factor of 230, we obtain an estimated lifetime of 
320 ns. We regard this as a low estimate. Even if the p-wave resonance 
is at resonance, owing to thermal broadening, the maximum loss 
enhancement is reduced by a factor ħγ1/kBT. For a collision energy of 

4.2 μK, the reduction factor is approximately 0.1, which implies a ten 
times larger lifetime. Furthermore, if we assume that the loss enhance-
ment is possibly not 230 but 2,300 for 10% of the incident flux (model 
with polarization beam splitter), then the lifetime would be another 
factor of ten higher and could be tens of microseconds. The observed 
enhancement of 230 provides an upper bound for the short-range 
absorption coefficient y ≤ 0.0043 (see Methods for details).

The most surprising aspect of our results is the existence of a 
long-lived collision complex in NaLi + NaLi collisions, which allow 
barrier-free chemical reactions in all channels49. A long-lived complex 
is necessary for the existence of a high-Q resonance, such as we have 
observed, independently of any detailed model. Our observation of 
resonant behaviour is very different from other recent experiments 
reporting long-lived collision complexes in molecule–molecule colli-
sions, observed by means of photoionization34 or inferred as the source 
of optical trap loss35–39. These observations were fitted to rate equations 
and are most probably related to ‘sticky’ collisions11–15 connected with 
a high density of states. Such complexes are formed incoherently and 
lead to loss at the universal rate. By contrast, an enhancement above the 
universal rate (as observed here) is only possible when the flux reflected 
at short range destructively interferes with the quantum-reflected flux 
and, therefore, requires full phase coherence.

In summary, we report an unexpected new type of Feshbach reso-
nance in ultracold molecule–molecule collisions, the first observed 
between rovibrational ground-state molecules at ultracold tempera-
tures. The resonance arises from a background loss at the universal 
limit, which is impossible with the most commonly studied models of 
ultracold collisions. The observed more than hundredfold enhance-
ment of loss implies the existence of a remarkably long-lived colli-
sion complex in a system with barrier-free reactions in all channels. 
The observed resonance could be an ordinary p-wave resonance. 

PBS

a + a

a + b

3

a b

c d

Loss

Coupling to other 
hyper�ne states

Long range

Outgoing
�ux

Incoming
�ux

Short-range
loss

p polarization

s polarization

1

M1
M2

2
1

2
2

1

10–4

10–2

100

10–2 101 104Tr
an

sm
is

si
on

 p
ro

b
ab

ili
ty

 (T
tr

an
s/
I)

Coupling strength 2

 – 0 = 0
 – 0 = 10
 – 0 = 100

Loss

Coupling to other 
hyper�ne states

Long range

Outgoing
�ux

Incoming
�ux1

M1
M2

2

Fig. 3 | Three-state model for the resonance and optical analogues.  
a, Schematic of the resonance model with two open channels and a p-wave 
bound state trapped behind a centrifugal barrier. Channels |1⟩ and |2⟩ are the 
open channels coupled to a closed channel |3⟩. Channel |1⟩ corresponds to the 
initial scattering channel with two NaLi molecules in the lower stretched 
hyperfine state. Channel |2⟩ corresponds to another open channel in which 
molecules are in a different hyperfine state energetically close to the incident 
scattering state. b, Fabry–Pérot cavity model for molecular collisions. Two 
mirrors M1 and M2 couple light into and out of the Fabry–Pérot resonator 
created by these mirrors with coupling strengths γi. When the spacing between 
the mirrors is tuned to form a cavity mode resonant to the incoming light, 
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However, we propose a more plausible mechanism that operates near 
a single-molecule degeneracy. This suggests that one should look for 
new collisional properties near known degeneracies in other molecular 
systems focusing on points with sufficient nuclear spin overlap.

Although we explain the unusual features with a phenomenological 
model, they raise many questions for future work. Are narrow reso-
nances such as ours unique to molecules with light atoms and therefore 
a lower density of states? Are resonant quasibound states coexisting 
with lossy channels a common feature of molecular systems that has 
so far gone undetected? In our case, we could detect the quasibound 
state only by modifying the coupling to a second, nearly degenerate 
open channel, and it is possible that many more long-lived states exist at 
other magnetic-field values. Resonant states with low loss should have 
a distinct signature on elastic-scattering properties, which, however, 
may be difficult to measure in the presence of strong loss. Or does 
the non-observation of any other magnetically tunable molecule– 
molecule Feshbach resonance imply that those resonances are, in 
general, very dense, or broadened by strong coupling to other states 
or decay channels, and therefore not resolved? Our and other recent 
results35–39 emphasize that the properties of collision complexes—even 
for the simplest molecular systems—are far from being understood.
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Methods

Experimental sequence
Our experiments use ground-state 23Na6Li(a3Σ+) molecules in their lower 
stretched hyperfine state (|F, MF⟩ = |7/2, −7/2⟩), in which all nuclear and 
electron spins are anti-aligned to the bias magnetic field direction, 
trapped in a 1D optical lattice made with 1,596-nm light. As described 
previously5,25,50, we first produce loosely bound molecules through 
magnetic association at a Feshbach resonance near 745 G, followed 
by stimulated Raman adiabatic passage to the rovibrational ground 
state. These triplet ground-state molecules are in the upper stretched 
hyperfine state (|F, MF⟩ = |7/2, 7/2⟩). The bias field is reduced from 745 G 
to a low field near 8 G in 15 ms, at which a magnetic-field sweep in the 
presence of radiofrequency waves coherently transfers them from the 
upper stretched state to the lower stretched state.

After state preparation, the magnetic field is ramped to a target 
value in 15 ms. A search for scattering resonances is done for the bias 
field range of 40.5 G < B < 1,401.6 G. After waiting a certain time for the 
molecules to collide with one another at the target field, we reduce the 
field back to 8 G for reverse state transfer (|7/2, −7/2⟩ → |7/2, 7/2⟩). The 
field is raised back to 745 G, at which the molecules are dissociated. 
We use absorption imaging of the resulting lithium atoms to measure 
molecule number and temperature. A hold time of 15 ms < t < 30 ms 
after each magnetic-field ramp was sufficient for the bias field to set-
tle within the range of the magnetic-field inhomogeneity across the 
molecular sample.

Characterization of the decay
We investigate the effect of impurities to confirm that the enhanced 
loss near 334.92 G is due to collisions between fermionic molecules in 
a single state. A small amount of impurities owing to imperfect state 
preparation could cause rapid initial decay resulting from s-wave colli-
sions that are not suppressed by Pauli exclusion. However, after a rapid 
loss of these impurities, the fast decay would stop. By observing almost 
full decay of the molecular sample, we rule out that the fast decay is 
related to impurities. Figure 1b shows that about 30 molecules per 
lattice site decay to approximately seven molecules in 40 ms and are 
depleted to a barely detectable level in less than 100 ms.

Furthermore, the density dependence and the temperature depend-
ence of the decay rate shown in Extended Data Fig. 1 prove that the loss 
occurs owing to two-body collisions. The molecular decay rate, Ro, is 
measured as a function of the initial density, no, and compared with the 
behaviour βn γ

o
( −1) expected for decay by collisions involving γ particles. 

In general, the loss-rate constant β is dependent on temperature. To 
avoid a more complicated analysis, we controlled the initial tempera-
tures of the molecules to be the same within 15%. Extended Data Fig. 1a 
shows that the observed decay is due to binary collisions (a power-law 
fit gives γ = 1.85(9)). Next, the molecular decay rate constant, β(T), is 
measured as a function of temperature. We generate molecular gases 
at different temperatures by varying the initial temperature of the  
Na/Li atomic mixture. Initial molecule temperatures ranging from 
0.74(8) μK to 3.88(36) μK and from 1.33(7) μK to 4.40(25) μK are 
achieved away from (745 G) and at the resonance (334.92 G), respec-
tively. The observed decay rate in Extended Data Fig. 1b depends linearly 
on temperature. A power-law fit β = CT l, in which T is the temperature, 
results in l = 1.4(2) at the resonance and l = 0.98(19) at 745 G.

We model two-body loss with a differential equation that takes the 
time dependence of temperature into account51:

n t β T t n t n t
T t
T t

( ) = − ( ( )) ( ) −
3
2

( )
( )
( )

, (3)2̇
̇

in which β is the two-body loss-rate constant, n is the mean density 
and T is the temperature of the molecules. Molecules are lost prefer-
entially from the highest density region. This ‘anti-evaporation’ causes 

temperature increases of up to 50% within one molecular decay time 
near 334.9 G. We fit measured temperatures to a linear function of time, 
T(t) = Ht + To, in which H is the heating rate and To is the initial tempera-
ture. Both away from and near to the resonance, the loss-rate coefficient 
has a temperature dependence that can be expressed as β = β0(T(t)/T0), 
in which β0 is the initial loss-rate coefficient when the temperature is T0. 
To determine the rate coefficient from equation (3) requires accurate 
knowledge of the molecular density. The mean molecular density can 
be expressed with the effective number of particles, Neff, and the mean 
volume, Veff, of molecules for a single pancake as n = Neff/Veff.

We obtained the effective particle numbers for a single pancake from 
the measured number of molecules, Ntot, and the number distribution 
over pancakes. The observed axial profile of NaLi follows a Gaussian 
form with width σ = 450(60) μm, so we assume a Gaussian distribution 
of the particle number per pancake. As the average weighted over a Gauss-
ian, the effective particle number per pancake is N N a π σ= ⋅ /(2 ⋅ )eff tot , 
in which the lattice constant a = λ/2 and λ = 1,596 nm.

The trap volume of each pancake, Veff, is determined from the meas-
ured molecule temperature and trap frequencies. For a purely harmonic 
trap, one obtains V ω πk T m= (4 / )eff

(0) −3
B

3/2, in which the geometric mean 
of the NaLi trap frequencies ω ω ω ω= ( )x y z

1/3. However, there are two 
corrections that we determine separately: (1) the confinement in each 
pancake is moderately anharmonic and (2) the system is in the crosso-
ver regime between quasi-2D and 3D, kBT ≈ ħωz.

First, the anharmonicity of the trapping potential leads to a modified 
mean volume V eff

(1)

∫

∫
V

V

V
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d e

d e
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in which U(r, z) is the potential of a single lattice site, r is the radial coor-
dinate, z is the axial coordinate along the beam direction and β = (kBT)−1. 
We use the same trap model validated in ref. 5 to determine U(r, z) and 
the same integration limits. With typical conditions for molecular loss 
measurements, the mean volume V eff

(1)  is larger than V eff
(0) by less than 

25%. However, some measurements at lower density required weaker 
optical traps, for which the anharmonicity correction is larger and had 
to be taken into account for proper density calibration.

Second, the tight confinement in the lattice direction makes the clas-
sical thermal distribution for harmonic trapping in the pancakes invalid 
for low molecular temperatures. We estimate the corrected volume as
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in which ϕi(z) is the ith eigenstate of the axial harmonic oscillator and 
ρ(r) is the classical thermal distribution in the radial direction, which is 
a Gaussian function. We confirmed that, for all the experimental condi-
tions, V eff

(0) differs from the more accurate V eff
(2)  by less than 20%.  

As it is unclear how this correction might interact with the larger correc-
tion from V eff

(1) , we include V eff
(2) only as an enlargement in the uncertainty.

Hyperfine structure of NaLi
The Hamiltonian that includes hyperfine coupling and Zeeman energy 
is given as

→ → → →
H H H

a S I a S I
μ

ħ
g S g I g I B

= +

= ⋅
→

+ ⋅
→

+ ( +
→

+
→

) ⋅
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HF Zeeman

1 Na 2 Li
B

s Na LiNa Li

in which a1 = 433.2(1) MHz and a2 = 74.6(1) MHz (ref. 25). There are  
36 states in the ground rotational state manifold (N = 0). The states 
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converge to eight hyperfine thresholds in the zero-field limit owing to 
the conservation of the total angular momentum ∣ ∣ ∣ ∣

→→
F F S I I= = +

→
+

→
Na Li , 

in which →
S S= = 1∣ ∣  is the total electron spin of NaLi(a3Σ+) and INa = 3/2 

and ILi = 1 are the nuclear spins of Na and Li, respectively. The hyperfine 
splitting owing to the Na nucleus is much larger than that owing to the 
Li nucleus, so →

F S I= +
→

= 1/2, 3/21 Na∣ ∣ , and 5/2 is an approximately good 
quantum number that characterizes the largest-scale hyperfine split-
tings in the zero-field limit in Extended Data Fig. 2. The hyperfine struc-
ture of NaLi in an external magnetic field is obtained by diagonalizing 
the Hamiltonian given in equation (6). A total of nine hyperfine states 
cross the lower stretched state at bias fields between 320 G and 340 G. 
There are three states that cross at fields within a few hundred mG of 
the resonance. Owing to the uncertainty of the hyperfine constants, 
the uncertainty of their energies relative to the stretched state is 
±400 kHz and therefore each of them is a possible candidate to cross 
the stretched state at or near the observed Feshbach resonance at 
334.92 G.

The state a in Extended Data Fig. 3 is the lower stretched state 
(|F = 7/2, MF = −7/2⟩), which has the spin character M M M| , , ⟩ =s I INa Li

 
| −1, −3/2, −1⟩. The three states close in energy near the resonance are 
indicated as b1, b2 and b3 in Extended Data Fig. 3. The most probable 
candidate to couple to the stretched state is the state b1 = |F = 5/2,  
MF = −3/2⟩, as its nuclear spin character overlaps with the stretched 
state by 50%, whereas for the other two states, in leading order, the 
spin overlap is zero. Non-zero nuclear spin overlap less than 0.1% may 
arise from small intramolecular spin–spin and spin–rotation couplings. 
More explicitly, the state b1 has spin contributions of 0.503 of |1, −3/2, −1⟩,  
0.324 of |0, −1/2, −1⟩, 0.163 of |−1, 1/2, −1⟩ etc. State b2 = |F = 5/2, MF = −1/2⟩ 
has 0.583 of |0, 1/2, −1⟩, 0.301 of |1, −1/2, −1⟩, 0.097 of |−1, 3/2, −1⟩ and 
some other minor contributions. State b3 = |F = 5/2, MF = 1/2⟩ has 0.837 
of |0, 3/2, −1⟩, 0.145 of |1, 1/2, 0⟩ and some other minor contributions. 
The difference in MF to the lower stretched state is the smallest for  
state b1, which is 2.

Long-range interactions of NaLi(a3Σ+) molecules
Here we show that the long-range coupling between the two hyperfine 
states |a〉 and |b1〉 involved in the crossing shown in Extended Data Fig. 3 is  
too weak to explain the observed loss rates. To explain the observed Fesh-
bach resonance, it is therefore necessary to assume the presence of a short- 
range loss mechanism. A minimal model for such a mechanism involves 
a bound state (channel |3⟩) coupled to the open channels (|aa⟩ and |ab1⟩).

Long-range coupling would occur outside the centrifugal p-wave 
barrier of the input channel. The peak of the barrier is at 241/4⋅ Rvdw ≈ 7.8 nm,  

at which the vdW length ( )R =
μC

ħvdw
1
2

2 1/4
6

2  and the inner turning point 

is at 100 nm at a temperature of 3.35 μK. In the Born approximation,  
for a potential of average strength V0 in an effective volume π R4 /30

3 ,  

the total low-energy elastic-scattering cross-section  






σ π= 4
μV R

ħ

2

3

2
0
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(identical to the solution for a spherical square well potential with  
radius R0). Applying this relation to the observed nearly unitarity limited 
cross-section of 2.95 × 10−11 cm2 corresponding to the loss-rate constant 
of 10−10 cm3 s−1 at 1 μK and using the position of the inner turning point 
to estimate R0 = 100 nm provides a coupling matrix element V0 of 16 kHz. 
This is the required value for coupling outside the p-wave barrier to be 
compatible with the observed loss rates. For inelastic collisions with 
final wavevector k′, the rate has an extra factor k′/k owing to the density 
of states, but for large k′, the matrix element will decrease with k′, so 
our rough estimate for the required spatial coupling matrix element 
should also apply to inelastic collisions.

First, we show that magnetic dipolar interactions52 that lead to spin 
exchange and dipolar relaxation and often limit the lifetime of mag-
netically trapped atoms are very weak outside the barrier. At the posi-
tion of the p-wave barrier (Rb = 100 nm), the interaction between two 
spins with magnetic moments 2μ0, in which μ0 is the Bohr magneton, is 
VmDD = 0.052 kHz, which is already small. However, owing to the selection 

rules of the magnetic dipolar interaction (|ΔMS| = 1), a single spin flip can-
not provide coupling between the near-degenerate hyperfine states of 
interest |a⟩ and |b1⟩, which correspond to MS = 1 and MS = −1, respectively 
(see above). Therefore the coupling must involve an intermediate state |k⟩, 
which is off-resonant by its Zeeman energy Δak ≃ 1μ0 × 300 G ≃ 400 MHz. 
This further reduces the magnetic dipolar coupling between the open 
channels by the factor (VmDD/Δak)−1 = 7.7 × 106 to much lower than 1 mHz. 
We can thus rule out the magnetic dipolar interaction as a source of the 
observed loss.

Spin flips in collisions of 3Σ molecules can also occur by means of cou-
pling of the incident channels |a⟩ and |b1⟩ to excited rotational states53,54. 
This mechanism is similar to that of magnetic dipolar relaxation dis-
cussed above, with the excited rotational states (N ≥ 1) playing the role of 
the intermediate Zeeman states. A distinctive feature of this mechanism 
is that it is mediated by the anisotropy of the electrostatic interaction 
between 3Σ molecules (which couples the N = 0 incident states to N ≥ 1 
closed-channel states of the same MS) and the spin–rotation and spin-spin 
interactions in the N ≥ 1 manifolds, which couple states of different MS.

Below we quantify this molecular spin-relaxation mechanism by 
estimating the magnitude of the anisotropic coupling between the 
degenerate open channels |a⟩ and |b1⟩ owing to the excited rotational 
states at R = 100 nm. We find that the strongest coupling resulting from 
the electric dipole–dipole interaction is only 0.05 kHz and is therefore 
too small to explain the observed loss rate.

Coupling matrix elements between degenerate open channels 
|aa⟩ and |ab1⟩ owing to rotationally excited states
Here we estimate the matrix elements between the degenerate open chan-
nels |aa⟩ and |ab1⟩ owing to long-range interactions between NaLi(a3Σ+) 
molecules. The interactions are described by the multipole expansion55

∑V π V R r r A R r rˆ( , , ) = (4 ) ( , , ) ( ,̂ ˆ , ˆ ) (7)A B
λ λ λ

λ λ λ A B λ λ λ A B
3/2

, ,
, , , ,

A B
A B A B

R r r

in which A R r r( ,̂ ˆ , ˆ )λ λ λ A B, ,A B
 are the angular functions, V R r r( , , )λ λ λ A B, ,A B

  
are the radial expansion coefficients55, R Rˆ = /R  and rr rˆ= /i i i. To leading 
order, the expansion (7) contains the electric dipole–dipole, dipole–
quadrupole and quadrupole–quadrupole interactions. We assume 
that the internuclear distances of NaLi molecules are fixed at their equi-
librium values. The rigid rotor approximation is expected to be extremely 
accurate because the long-range NaLi–NaLi interactions at R = Rb  
(see below) are thousands of times smaller than the spacing between 
the ground and the first excited vibrational states of NaLi (ħω10 = 40.2 cm−1 
(ref. 56)). Because we are interested in long-range physics outside the 
p-wave barrier, we will also neglect the spin dependence of the NaLi–NaLi 
interaction, which is notable only at very close range (R ≤ 10 a0).

The radial expansion coefficients in equation (7) are expressed in terms 
of the multipole moments Q λ ,0i

 of the interacting molecules (i = A, B)
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
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The leading terms for two interacting neutral polar molecules such 
as NaLi are
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in which di and Qi
20 are the electric dipole and quadrupole moments of 

the ith molecule. Note that the long-range interaction (equation (7)) 
is spin-independent and hence can only couple the states of the same 
MS, MI1

 and MI2
. We use the accurate ab initio value of the molecule-frame 

electric dipole moment dNaLi = 0.167 D (ref. 56) and an approximate value 
of the electric quadrupole moment ΘNaLi = 10 a.u. on the basis of the 
calculated values for Na2 and Li2 from ref. 57. Our estimates are not sen-
sitive to the precise magnitude of ΘNaLi because the dominant contribu-
tion at R = Rb is given by the electric dipole–dipole interaction.

Extended Data Fig. 4 shows the radial dependence of the long-range 
interactions between two NaLi molecules. Although the dipole–dipole 
interaction dominates outside the p-wave barrier (R ≥ 100 nm), both 
the dipole–quadrupole and quadrupole–quadrupole interactions grow 
in magnitude as R becomes shorter. At R = 100 nm, the magnitude of 
the electric dipole–dipole, dipole–quadrupole, quadrupole–quad-
rupole and magnetic dipole–dipole interaction terms in equation (9) 
are (in kHz) VDD = −3.446, VDQ = −0.339, VQQ = 0.0273 and VmDD = 0.0519, 
respectively.

Equating the barrier energy plotted in Extended Data Fig. 4 and the 
end points of the experimental range of collision energies (1.8–4.2 μK), 
we obtain the corresponding range of distances of closest approach 
of two NaLi molecules in the p-wave channel as Rb = 89.3–136.4 nm. 
For simplicity, we will use a value close to the middle of this interval, 
Rb = 100 nm = 1,890a0, to estimate the magnitude of all long-range 
coupling matrix elements.

Having parameterized the anisotropic long-range interaction 
between two NaLi molecules (equation (9)), we now proceed to evalu-
ate its matrix elements between the degenerate open channels |a〉 and 
|b1〉. The general matrix elements are given by:

∣ ∣R r rγ γ lm η V γ γ l m η⟨ ˆ( , , ) ′ ′ ′ ′ ′⟩ (10)A B l A B A B l

in which γ γ lm η⟨ A B l ∣  are the properly symmetrized basis states for two 
identical molecules (η = −1 for identical fermions), γA and γB refer to the 
internal hyperfine-Zeeman states of the molecules, l is the orbital angu-
lar momentum for the collision and ml is its projection on the 
space-fixed quantization axis defined by the external magnetic field54. 
The initial scattering state of interest corresponds to γA = γB = a, l = 1, 
ml = 0 and η = −1.

The matrix elements are calculated by a straightforward extension of 
the procedure described in ref. 54 to include the hyperfine structure of 
both NaLi molecules (see the Supplemental Material of ref. 58 for more 
details about the basis functions). Using a minimal basis including three 
lowest rotational states of each of the NaLi molecules (N = 0–2) and 
two partial waves (l = 1, 3) leads to the total number of coupled chan-
nels Nch = 9,908 for the total angular momentum projection Mtot = −7. 
We note that this basis set is expected to produce converged results 
at R = 100 nm, at which the largest anisotropic long-range coupling 
|VDD| = 3.446 kHz is much smaller than the spacing between the N = 0 
and N = 1 rotational levels (2Be = 8.4 GHz).

Extended Data Fig. 5 shows the matrix elements between the incident 
channel |aa, l = 1, ml = 0⟩ at R = 100 nm and all final channels. The largest 
of these matrix elements V01 ≃ 1.5 kHz is due to the long-range electric 
dipole–dipole coupling between the ground and excited (N = 1) rota-
tional states. Although these matrix elements do not directly couple 
the degenerate channels |a⟩ and |b1⟩, they do contribute to indirect 
second-order couplings estimated below. There are also direct cou-
plings between the incident channel and lower-lying relaxation chan-
nels (with single-molecule hyperfine-Zeeman states lower in energy 
than the incident state |aa⟩), which occur between the l = 1 and l = 3 
partial waves. These couplings are mediated by the intramolecular 
spin–spin interaction, which couples the different MS components of 
the N = 0 and N = 2 rotational states53. As shown in the inset of Extended 
Data Fig. 5, the largest of these direct couplings is about 0.04 kHz, which 
is too small to be responsible for the observed loss.

It remains to consider the second-order couplings between two 
degenerate channels |a⟩ and |b1⟩ through rotationally excited states. 
These couplings are suppressed by the factor (V01/Δ01)−1, in which 
Δ01 = 2Be is the energy of N = 1 rotational states relative to the ground 
rotational state. Using the values Δ01 = 8.4 GHz and V01 = 1.5 kHz, we 
obtain (V01/Δ01)

−1 = 5.6 × 106 and thus the second-order couplings are 
smaller than 1 mHz and can be neglected.

Fabry–Pérot transmission
The transmission of flux through a Fabry–Pérot cavity with two mir-
rors, M1 and M2, is exactly expressed by an Airy distribution in terms 
of the incoming light intensity, I, mirror reflection and transmission 
coefficients, ri and ti, and single-pass phase shift ϕ, as:

T I
t t

r r r r ϕ
=

(1 − ) + 4 sin
. (11)trans

1
2

2
2

1 2
2

1 2
2

This Airy distribution is well approximated by a Lorentzian spectral line 
shape near a resonance (ω ~ ω0) for highly reflective cavities ( ≪r r 11

2
2
2 ) as:

T I
γ γ

ω ω γ γ
=

( − ) + [( + )/2]
(12)trans

1 2

0
2

1 2
2

in which γ = −2lnri/τRT are the mirror coupling strengths, τRT is the 
round-trip time for a pulse travelling in the cavity, ω0 is the angular 
frequency of the cavity mode and ω is the angular frequency of the 
incoming light59.

Equation (12) also describes the dissipation in a harmonic oscillator 
driven by a friction force. A harmonic oscillator with resonance ω0 
and damping rate γ2 driven at frequency ω through a frictional input 
coupling γ1 is described by the differential equation:

q t
t

γ
q t

t
γ

t
q t q t ω q t

d ( )
d

+
d ( )

d
+

d
d

[ ( ) − ( )] + ( ) = 0. (13)
2

2 2 1 d 0
2

Here we assume the drive qd(t) = q0sinωt. By rearranging the terms, 
we obtain the standard equation of a driven harmonic oscillator with 
damping γ = γ1 + γ2

q t
t

γ
q t

t
ω q t γ

t
q t

d ( )
d

+
d ( )

d
+ ( ) =

d
d

( ). (14)
2

2 0
2

1 d

The steady-state solution of equation (14) is

q t
γ q ω

ω ω γω
ωt ϕ( ) =

( − ) + ( )
cos( − ) (15)1 d

2
0
2 2 2

in which ϕ is defined by ϕ γω ω ωtan = /( − )2
0
2 . The rate of energy dissi

pation owing to γ2 is ̇P γ q t= ( )out 2
2. The average dissipation power

̇P γ q

γ
γ q ω

ω ω γω
ωt ϕ

⟨ ⟩ = ⟨ ⟩

=
( − ) + ( )

sin ( − )
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is approximated to γ γ q ω

ω ω γ

1
8 ( − ) + ( /2)

2
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0
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 near resonance. The ratio of the 

average dissipated power normalized by a quarter of the average 
nominal drive power (drive power at zero amplitude of the harmonic 
oscillator) is exactly given by equation (12).

Three-state T-matrix model of p-wave resonant scattering near 
degeneracies
The main purpose of this section is to provide a microscopic derivation 
for equation (2) using an extended nonperturbative T-matrix model of 
p-wave resonant scattering48. The model includes a single p-wave bound 
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state (or closed channel) |3⟩ coupled to two open channels: the incident 
channel |1⟩ and the outgoing inelastic channel |2⟩ with threshold ener-
gies E1 and E2 (E1 > E2), as illustrated in Fig. 3a. The open channels are 
separated by the energy gap Δ > 0 such that E1 = E2 + Δ. The total energy 
of the two-molecule system before the collision is E1(k) = k2/2μ = k2/m, 
in which μ = m/2 is the reduced mass of the two identical molecules 
of mass m, k is the wavevector in the incident open channel |1⟩ and we 
have set E1 = 0, so that E2 = −Δ. The incident scattering state in channel 
|1⟩ is a plane wave |k⟩ with energy E1(k) = k2/m multiplied by the internal 
state vector of the colliding molecules |α⟩.

By summing the diagrammatic expansion for the T matrix, one 
obtains the following expression for the off-diagonal matrix elements 
between the open channels α and α′ (α, α′ = 1, 2)48

T
C
L

kk F k F k
E δ

=
′ ( ) ( ′)
− − Σ − Σ

, (17)α α
α α

, ′ 3
′

1 2

in which E = k2/m is the collision energy in the incident channel |1⟩ and 
δ > 0 is the energy of the bare p-wave bound state |3⟩, L3 is the quantiza-
tion volume and C = cosθ, in which θ is the angle between the incoming 
and outgoing wavevectors48. The functions Fα(k) quantify the coupling 
between the open and closed channels as a function of the wavevector 
k and ∫E π q qΣ ( ) = (2 ) dα

π F q
E E q

4
3

−3 4 ( )
− ( )
α

α

2
 are the open–closed channel cou-

plings in the energy space. These couplings are crucial, as they deter-
mine the resonance width. They can be evaluated by regularizing the 
diverging terms and then setting F(q) → F(0), which results in the fol-
lowing expression

E λ
i
π

m m E E

δ η E E

Σ ( ) =
−

12
( [ − (0)])

− − [ − (0)]
(18)

α α α

α
α α

3/2

0
( )

in which λα = |Fα(0)|2 are the q → 0 limits of the open–closed channel 
couplings and the integrals

∫δ π F q mq q= (6 ) ( ) d (19)α
α0

( ) 2 −1 2 2∣ ∣

∫η π F q m q= (6 ) ( ) d (20)α α
2 −1 2∣ ∣

depend on the exact form of the coupling matrix elements between 
the open and closed channels. Note that (1) E1(0) = 0 and E2(0) = −Δ by 
definition and (2) the first term on the right-hand side of equation (18) 
is purely imaginary (because we assume Δ > 0) and thus gives rise to 
resonance width

γ E γ γ γ

γ

m
π

λ E λ E γ

( , Δ) = ( + ) +

= −2ℑm(Σ + Σ ) +
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6

( + (Δ + ) ) +
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1
3/2

2
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d

in which we have introduced the intrinsic width γd of the p-wave bound 
state owing to the coupling to lower-lying inelastic channels other than 
|1⟩ and |2⟩ (see Extended Data Fig. 6a). Although ref. 48 assumes that Δ is 
much larger than all the other energy scales in the problem, we do not 
make such an assumption here. Indeed, in our model, the new Feshbach 
resonance occurs when Δ → 0.

Defining the resonance shift δ δ δ= +0 0
1

0
2 and neglecting the dimen-

sionless terms ηα, which are expected to be very small compared with 
unity48, we obtain from equation (17)
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kk F F
E δ δ iγ E

=
′ (0) (0)

− ( − ) + ( , Δ)/2
. (22)α α

α α
, ′ 3
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0

Here we have also assumed that the bound-continuum coupling 
matrix elements F(k) are well approximated by their zero-k values Fα(0), 
which is a good approximation in the limit k → 0 (note, however, that 
this approximation starts to break down as kR3 approaches 1, in which 
R3 is the ‘size’ of the p-wave bound state, as shown below). The final 
wavevector in equation (22) k m E′ = (Δ + ) . We are interested in the 
two-body inelastic rate for the transition |1⟩ → |2⟩ at fixed collision 
energy, which is given by (up to a constant scaling factor)

(23)
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in which ρ k m E π( ′) = ( /2) 2(Δ + )/22
3/2 2 is the density of states in the 

final channel |2⟩ (ref. 60). Equation (2) is identical to equation (23) up 
to a constant overall scaling factor and with the intrinsic decay width 
of state |3⟩ γd = 0. This provides a microscopic justification for the 
Fabry–Pérot model. In particular, the Fabry–Pérot decay rates may be 
expressed as γ λ E= m

π1 6 1
3/2

5/2
 and γ λ E= (Δ + )m

π2 6 2
3/2

5/2
, providing insight 

into their collision energy and Δ dependence.
We now discuss the main features of the expression for the two-body 

inelastic rate equation (23). To this end, consider the expression for 
the resonance width γ(E, Δ) in the denominator of equation (23) 
given by equation (21). As well as the intrinsic width γd, the width 
contains contributions from (1) the coupling between the incident 
open channel |1⟩ with the p-wave bound state γ1 ∝ E3/2 ∝ k3 and (2) the 
coupling between open channels |1⟩ and |2⟩ through the bound state 
γ2 ∝ (E + Δ)3/2 ∝ (k′)3.

Equation (23) shows that the inelastic rate away from the resonance 
(when E − (δ − δ0) > γ1 + γ2) or for γd > γ1 + γ2 exhibits the standard p-wave 
scaling g2 ∝ k2(k′)3 (ref. 48), as observed experimentally. Normal p-wave 
threshold scaling will be modified if the denominator of equation (23) 
becomes energy-dependent, which requires the detuning E − (δ − δ0) 
and γd to be small compared with γ1 + γ2. Under these (rather unlikely) 
conditions, the scaling changes to g2(E) ∝ k2(k′)3/[λ1k3 + λ2(k′)3].

To further explore the properties of the inelastic rate in equation (23), 
it is convenient to introduce the parameter 

∼
EΔ = Δ + , such that the 

translational energy in the outgoing channel |2⟩ vanishes at Δ = 0
∼

 (k′ = 0) 
and inelastic scattering becomes energetically forbidden at Δ < 0

∼
. With 

this definition, we obtain from equation (23) the inelastic rate as a func-
tion of 

∼
Δ

≃∼
∼

∼g
δE γ c

(Δ)
(Δ)

+ [ + Δ ] /4
, (24)2

3/2

2
1

3/2 2

in which δE = E − (δ − δ0) is the detuning from resonance, c λ= m
π6 2

5/2
 and 

we have omitted the factors proportional to k, m and λi in the numera-
tor because we are interested in the inelastic rate at a fixed collision 
energy.

Note that our ability to vary δE by tuning an external magnetic 
field may be limited, as the magnetic moments of the closed-channel 
and open-channel p-wave states may be very close (as in the case of a 
single-channel p-wave shape resonance). We therefore do not assume 
the resonance condition and keep the term δE2 in equation (24).

Extended Data Fig. 6b shows that the inelastic rate ∼
g (Δ)2  has a pro-

nounced resonance structure as a function of Δ
∼

. The remarkable increase 
of the inelastic rate with narrowing the energy gap between the open 
channels is a consequence of the reduction of the total resonance width 
(equation (21)) in the limit Δ → 0 at which γ2 → 0 (note that we also require 
that γd ≪ γ1). This reduction enhances the peak rate of inelastic decay of 
the p-wave bound state into channel |2⟩ above the universal limit.

The resonance profiles shown in Extended Data Fig. 6b are the sharp-
est at zero energy detuning (δE = 0), at which the denominator of 



equation (24) is most sensitive to Δ
∼

. As expected, the resonance 
becomes more and more suppressed as one moves away from reso-
nance, owing to the growing background contribution from the δE2 
term in equation (24). In principle, the background contribution can 
arise not only from a finite δE but also from other mechanisms, such 
as the intrinsic decay of the p-wave bound states to deeply bound chan-
nels (parameterized by γd), which may contribute to the overall decay 
rate in equation (21).

In the experiment, the temperature and observed width of the Fesh-
bach resonance are similar. Therefore the strong dependence observed 
on Δ suggests that alternative decay mechanisms are slow compared 
with the dominant decay channels, that is, γd ≲ γi (i = 1, 2). In principle, 
γd can be estimated from the line shape of the loss-rate constant in 
Fig. 2 as in ref. 5. However, the resonance asymmetry is not resolved 
because of the magnetic-field inhomogeneity, which is comparable 
with or greater than the resonance width.

Derivation of Fα(k) matrix elements
The p-wave bound state in channel |3⟩ is described by the wavefunction 
⟨R|ψ3⟩ = ψ3(R) of the intermolecular separation vector R. For a single 
p-wave bound state, the radial and angular variables separate to  
give R

u
ψ g R Y R( ) = ( ) ( )̂m3 1 1 , in which mu is the projection of the angular 

momentum l = 1 of the bound state on a quantization axis u. As in ref. 48, 
we assume that the bound state is coupled to both of the open channels 
|k, α⟩ (α = 1, 2) by means of the coupling matrix elements ⟨k, α|V|3mk⟩,  
in which α e α⟩ = ⟩ikz∣ ∣ ∣R k  are the scattering states in the open chan
nels α. Expanding the incoming plane wave in spherical waves, e =ikz   
∑ i π l j kR Y θ ϕ4 (2 + 1) ( ) ( , )l

l
l l0 , in which jl(kR) is a spherical Bessel func-

tion, we observe that only the p-wave (l = 1) components of the incident 
and outgoing waves couple to the p-wave bound state owing to the 
orthogonality of the spherical harmonics (and the assumption of  
isotropic bound-continuum coupling).

For practical purposes, it is convenient to define the bound- 
continuum couplings in k-space48

∫F k i α V
k

g R j kR R R( ) = 12 ⟨ ˆ 3⟩
1

*( ) ( ) d (25)α 0

∞

1 1
2∣ ∣

in which ∣ ∣α V⟨ ˆ 3⟩  is a spin matrix element. The advantage of the Fα(k) 
matrix elements is that they have a well-defined k → 0 limit. Expanding 
j1(kR) ≃ kR/3 + O((kR)5), we get

∣ ∣ ∫F i α V
k

g R R R(0) = 12 ⟨ ˆ 3⟩
1

*( ) d (26)α 0

∞

1
3

The approximation F(k) ≃ F(0) is used in the previous section and in 
ref. 48 to simplify the expression for the T-matrix elements near thresh-
old. This approximation is valid as long as kR3 ≤ 0.1, in which R3 is the 
characteristic size of the p-wave bound state ( ≃g R R e( ) R R

1
2 − / 3). We find 

that F(k) ≃ F(0) is a good approximation for the incident collision chan-
nel (kR3 ≃ 0.1 for R3 = 100a0 and E = 10 kHz). This is no longer the case 
when the open–closed splitting becomes large compared with the 
collision energy (Δ/E ≫ 30) or the p-wave bound state becomes 
extremely delocalized, in which case the exact k-dependent matrix 
element F(k) should be used.

Lifetime of collisional complex
For previously observed Feshbach resonances, one may estimate a 
lower limit for the lifetime of the collision complex by converting the 
observed width of the resonance to a lifetime. For our case of a 25-mG 
width, we get 29 μs, using a magnetic-field sensitivity of 1 Bohr mag-
neton to convert from magnetic field width to energy width. However, 
according to our model, the observed width may not reflect the width 
of the long-lived state but would depend instead on the ratio of coupling 
strengths for the two open channels. A more reliable estimate uses the 

classical round-trip time τRT for a zero-energy particle in the combined 
centrifugal and vdW potential, which is equal to τRT = ħ/EvdW ≈ 5.6 ns 
with the vdW energy E = ħ

μ RvdW 2
12

vdw
2 . The photon lifetime in a cavity is the 

round-trip time multiplied by the resonant enhancement divided by 
4. Using this analogy and the observed loss-enhancement factor of 
230, we obtain an estimate for the lifetime of the complex of 320 ns. 
We regard this as a low estimate. Even at the peak of the p-wave reso-
nance, owing to thermal broadening, the maximum loss enhancement 
is reduced by a factor ħγ1/kBT. γ1 is estimated by the classical round-trip 
frequency 1/τRT multiplied by the quantum transmission probability 

t a a k≈ 2 ¯ ¯1
2

1
2 3∣ ∣  (ref. 61). For a collision energy of 4.2 μK, this is approxi-

mately 2π × 9 kHz. Here ( )a πR¯ = 4 /ΓvdW
1
4

2
, ( )a a¯ = ¯Γ1

1
4

6
 and k is the col-

lision wavevector. Therefore the reduction factor is approximately 0.1, 
which implies a ten times larger lifetime. Furthermore, if we assume 
that the loss enhancement is possibly not 230 but 2,300 for 10% of the 
incident flux (model with polarization beam splitter), then the lifetime 
would be another factor of ten higher and could be tens of micro
seconds. The observed enhancement of 230 provides an upper bound 
for the short-range absorption coefficient y ≤ 0.0043.
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Extended Data Fig. 1 | Density and temperature-dependent loss rate.  
a, Density dependency of molecular decay rate at 334.92 G. The initial decay 
rates are plotted as a function of initial molecule mean density. The green, blue 
and red dashed lines show the behaviour expected for single-molecule decay, 
two-body and three-body collisions, respectively. b, Threshold laws of 
molecule–molecule collisions. Initial rate coefficients are plotted as a  
function of the initial temperature of NaLi molecules. Blue data points are 

measurements near the centre of the resonance and red data points are 
measurements away from resonance near 745 G. The lines show the linear 
dependence expected for p-wave collisions. Data points were acquired from 
five to eight different hold times at each bias field; three to six measurements at 
a given hold time were averaged. Error bars represent one standard deviation 
of a fitted decay parameter.



Extended Data Fig. 2 | Ground-state hyperfine structure in an external 
magnetic field. The dashed vertical blue line indicates the position of the 
Feshbach resonance (about 334.92 G). The subplot shows the Zeeman energies 

of NaLi hyperfine states from 0 to 1,000 G, whereas the main plot is zoomed 
into where there are nine near-degenerate hyperfine states (between 300 and 
400 G).
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Extended Data Fig. 3 | Ground-state hyperfine structure near 334.92 G. 
State a in red is the lower stretched hyperfine state of NaLi molecules. States b1, 
b2 and b3 in blue are other hyperfine states that are energetically close to state a 
near 334.92 G.
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Extended Data Fig. 4 | Radial dependence of NaLi–NaLi interactions. Radial 
dependence of the dipole–dipole, dipole–quadrupole and quadrupole–
quadrupole interactions of NaLi(a3Σ+) molecules. The p-wave centrifugal 
barrier is also shown (dashed line). The upper and lower bounds on the 
experimental collision energies (4.2 μK and 1.8 μK) are marked by green 
horizontal lines. The turning points at the centrifugal barrier for these collision 
energies are Rb = 89.3 and 136.4 nm, respectively.
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Extended Data Fig. 5 | Matrix elements of NaLi–NaLi interactions. Matrix 
elements of the NaLi–NaLi interaction at R = 100 nm as a function of the channel 
index labelling the basis states |γAγBlmlη⟩. The initial channel is |aa, l = 1, ml = 0⟩ 
and the total angular momentum projection Mtot = −7. The channel index labels 
closed channels, in which one or both NaLi molecules are in their N ≥ 1 excited 
rotational states. Only the matrix elements with the absolute magnitude 
exceeding 1 Hz are plotted. The magnetic field B = 333 G is tuned near the 
crossing between the |a⟩ and |b1⟩ hyperfine-Zeeman levels. Inset, histogram of 
direct coupling matrix elements between the incident channel and lower-lying 
open channels, in which both NaLi molecules are in the ground N = 0 rotational 
states.
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Extended Data Fig. 6 | Degeneracy-induced resonance model. a, Schematic 
of the resonance model with two open channels and a p-wave bound state 
trapped behind a centrifugal barrier. b, Inelastic rate g (Δ)2

∼
 (in arbitrary units) 

plotted as a function of 
∼

γΔ/ 1 for the different values of detuning from resonance 
normalized by γ1, δE/γ1. Note that for Δ < 0

∼
, the channel |2⟩ becomes closed and 

thus 
∼

g (Δ) = 02 .
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