
Articles
https://doi.org/10.1038/s41567-022-01651-7

1Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA. 2MIT–Harvard Center for 
Ultracold Atoms, Cambridge, MA, USA. 3Department of Physics, Harvard University, Cambridge, MA, USA. 4Department of Physics, Stanford University, 
Stanford, CA, USA. ✉e-mail: eunlee@mit.edu

The dynamics of strongly interacting quantum many-body sys-
tems is an active frontier of research. It has broad implica-
tions ranging from understanding fundamental phenomena 

such as quantum thermalization or the lack thereof1–5 to realizing 
new forms of matter (for example, time crystals6,7) and to control-
ling entanglement for quantum information processing8,9. However, 
analysing such systems in full is difficult due to their complexity.

A large class of models which allows us to make significant prog-
ress is that of integrable systems. These systems feature stable qua-
siparticles at finite temperatures and occur generally in one spatial 
dimension. Indeed, a wealth of dynamical phenomena has been 
uncovered in them, such as generalized quantum thermalization10 
and spin transport belonging to various universality classes such as 
ballistic, diffusive and even superdiffusive lying in the celebrated 
Kardar–Parisi–Zhang class, the latter of which was only recently 
predicted11–13 and experimentally observed14.

Another recent development is the theoretical discovery that 
many integrable models host a special set of many-body eigen-
states that are degenerate, that is, so-called phantom Bethe states15. 
These states are composed of multiple quasiparticles which carry 
momentum but contribute zero energy (relative to the reference 
‘vacuum’ state), akin to ghost particles, hence the term ‘phantom’. 
The existence of such states implies that there are special initial, 
far-from-equilibrium configurations which do not thermalize to a 
(generalized) Gibbs ensemble, hence representing an exception to 
(generalized) quantum thermalization.

An integrable model which is paradigmatic for this behaviour 
is the spin-1/2 anisotropic Heisenberg model in one dimension, 
whose Hamiltonian is given by

H = Jxy
∑

⟨ij⟩
[Sxi Sxj + Syi S

y
j +∆Szi Szj ]. (1)

Here, the transverse and longitudinal spin couplings (between 
neighbouring sites i and j) are Jxy and Jz ≔ JxyΔ, respectively, where Δ 

is the spin-exchange anisotropy. For this model, simple patterns of 
spins winding in the transverse plane, that is, spin-helix states, share 
the properties of the phantom Bethe states if their pitch λ or wave-
vector Q ≔ 2π/λ = Qp satisfies the ‘phantom condition’

∆ = cos(Qpa), (2)

where a is the lattice spacing. These ‘phantom helix states’ are exact 
many-body eigenstates of the system and do not decay.

In this work, we utilize our versatile ultracold atom quantum 
simulator platform with tunable anisotropy16,17 to search for the 
phantom helix states in the Heisenberg model (equation (1)). We 
systematically explore the dynamics of spin-helix states and study 
their decay as a function of wavevector Q for different fixed aniso
tropies Δ, finding a non-monotonic decay rate with a pronounced 
minimum near the expected special value Qp. This is the signature 
of the phantom spin-helix state, confirming the theoretical predic-
tions of ref. 15 and providing the first experimental evidence for this 
novel general feature of integrable systems.

We further investigate whether the phenomenon of phan-
tom spin helices persists beyond integrable systems. We theoreti-
cally establish generalizations of the phantom spin-helix states to 
Heisenberg models of higher dimensions, with higher spin quan-
tum numbers, and for non-cubic lattice geometries. The existence 
of stable far-from-equilibrium helices in such systems, which are 
non-integrable in general, leads to genuinely non-thermalizing 
dynamics associated with so-called quantum many-body scars18. We 
propose an experimental protocol to realize such scarred dynamics 
with ultracold atoms.

In addition to the fundamental importance of phantom helices 
for spin physics, the dynamics of phantom helices can be applied as 
an important tool for quantum simulations of spin physics. Using 
the phantom condition (equation (2)), we demonstrate how it is 
now possible to experimentally determine the anisotropy Δ of the 
Heisenberg model. Our measurements show that the anisotropy 
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is strongly affected by nearest-neighbour (off-site) interactions 
of the underlying Hubbard model which have not been observed 
before for contact interactions (and therefore all alkali atoms) and 
can be an important, general effect for quantum simulations with  
ultracold atoms.

Spin-helix states and the phantom condition. In this work, we 
study transverse spin-helix states

| ( )〉 =
∏[

( )|↑〉 + ( ) − |↓〉
]

The polar angle θ determines the local longitudinal spin component 
〈 〉= , which is initially constant along the chain, and zi is the 
position of the ith spin (Fig. 1a,b). In the classical limit, any trans-
verse spin helix is stable for any anisotropy since the torques exerted 
on a given spin by its neighbours cancel exactly17. Therefore, the 
decay of a spin helix is due to quantum fluctuations. However, for 

wavevectors Qp fulfilling the phantom condition for ∣Δ∣ ≤ 1 (equa-
tion (2)), the fluctuations from the two nearest neighbours also 
cancel exactly, making these special helices particularly long-lived 
compared with helix states with any other wavevector. Intriguingly, 
one can show that they are in fact exact many-body eigenstates of 
the Heisenberg model (equation (1)) for infinite systems, or for 
finite systems with appropriate boundary conditions15. For the finite 
chains with open boundaries that we prepared in our experiments, 
the phantom spin helix is only metastable, as spins at the boundar-
ies have only one neighbour and dephase rapidly. This perturbation 
propagates into the bulk17, resulting in a finite decay rate.

For the isotropic system (Δ = 1), the phantom spin helix has a 
wavevector Qp = 0 and thus reduces to a spin-polarized product state 
for all angles θ (for example, in the Sx direction for θ = π/2), which 
is a trivial eigenstate of this model. For Δ = 0, the phantom condi-
tion yields Qpa = π/2, so that angles between neighbouring spins are 
90° (assuming that all spins lie in the Sx–Sy plane, that is, θ = π/2). 
To explain intuitively how this state is metastable, consider a spin 
which points, for example, in the Sx direction, with quantum fluc-
tuations in the Sy–Sz plane. Since Jz = 0, there is no interaction from 
the Sz component, while the Sy component causes no precession on 
the neighbouring spins, which also point along the ±Sy direction. 
In the following, we demonstrate the existence of these long-lived 
phantom helices for general Δ and confirm the predictions of the 
phantom condition (equation (2)).

Experimental methods. As in our previous work16,17, the spin model 
is implemented by loading ultracold 7Li atoms in the two lowest 
hyperfine states into a three-dimensional optical lattice. This sys-
tem is well described by a two-component Bose–Hubbard model. 
Two of the three lattice potentials are kept high at 35ER, where 
ER = h2/(8ma2) is the recoil energy for atomic mass m with h being 
the Planck constant, creating a bundle of isolated one-dimensional 
(1D) chains. The lattice depth of the third axis V0 is set to a 
value between 9ER and 11ER, which is deep enough that the sys-
tem remains in the Mott insulating regime while still allowing for  
spin dynamics.

Because particle motion is suppressed in the Mott insulator, the 
dynamics of the remaining degrees of freedom can be described 
using a pure spin model. By mapping the two hyperfine states onto 
spin |↑〉 and |↓〉, we can realize the spin-1/2 Heisenberg XXZ model 
(equation (1)) in which the interactions are mediated by super-
exchange19–22. The longitudinal and transverse spin couplings are 
given by

= + ˜ ↑↓ − ˜ ↓↓ − ˜ ↑↑

= − ˜ ↑↓

where  ̃ is the tunnelling matrix element between neighbour-
ing sites and U↑↑, U↑↓ and U↓↓ are the on-site interaction energies. 
The spin couplings (equation (4)) can be varied over two orders of 
magnitude by changing the lattice depth V0, which scales the entire 
Hamiltonian. We control the anisotropy Δ ≔ Jz/Jxy via an applied 
magnetic field B, which tunes the interactions through Feshbach 
resonances16,17,23. In our realization, the transverse coupling is anti-
ferromagnetic (Jxy > 0).

The transverse spin helix is created by radiofrequency pulses to 
tilt the spins to a finite polar angle θ, followed by magnetic field 
gradients to wind a helix17,24–26 (Fig. 1c,d and Extended Data Fig. 1). 
Time evolution is initiated by rapidly lowering V0. The dynamics 
following this quench are governed by the 1D XXZ model (equation 
(1); Fig. 1e) with a selected anisotropy Δ. After a variable evolution 
time t, the dynamics are frozen by rapidly increasing V0. The sam-
ple is then imaged. Experimental parameters are given in refs. 16,17  
and Methods.
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Fig. 1 | Preparation and observation of spin-helix states. a–g, We prepare 

a transverse spin helix where the spin vector winds within the Sx–Sy plane 

with θ�=�π/2 (a) or with arbitrary polar angle θ (b). Black arrows indicate 

the direction of the spins of the atoms (spheres) aligned along +Sy (blue), 

−Sy (red) or intermediate directions (purple); grey ribbon is to guide the 

eye. An initially spin-polarized state in the Sy direction (c) is wound into a 

spin helix with variable wavevector Q using a magnetic field gradient (black 

triangles). Here, we illustrate a winding of Qa�=�π/2 (d). This state evolves 

under the XXZ Heisenberg Hamiltonian (e). After unwinding the remaining 

spin modulation to a resolvable wavevector (f), the local Sy magnetization 

is imaged in situ (g) where dark blue indicates spins along +Sy. Only the Sx 

and Sy components of the spin are shown in c–f.
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Our imaging system limits the direct observation of spin modula-
tions to a wavelength of λ > 6a. To image spin helices at any value of 
Q, we first unwind the remaining spin modulation to a wavelength 
of λ ≈ 10a by applying a π-pulse followed by a magnetic field gradi-
ent as in Fig. 1f. After unwinding, we turn the transverse helix into 
a population modulation by applying a π/2 pulse. Finally, we detect 
the spatial distribution of spin |↑⟩ atoms in situ with state-selective 
polarization-rotation imaging (Fig. 1g). Compared with our previ-
ous work16,17, this novel unwinding step extends our observable range 
of wavevectors Q all the way to Qa = π, where neighbouring spins 
are anti-aligned. Integrating the images along a direction perpen-
dicular to the chains yields a 1D spatial profile of sinusoidal popula-
tion modulation over all spin chains (Fig. 1g). The observable is the 
normalized contrast c(t) of this sinusoidal spin modulation. Due to 
the lack of exact theory for the decay shape, we fit the whole decay 
curve by a linear function (1 − γt) to phenomenologically determine 
a decay rate γ, while accounting for a constant experimental detec-
tion noise floor for long times t. (See Methods for details of the fit-
ting.) For the data in Figs. 2 and 3b–d, we measure the spin dynamics 
at two different lattice depths V0 and verify that the decay curves c(t) 
collapse when time is rescaled by the spin-exchange time ℏ/Jxy, con-
firming that the spin dynamics is driven by superexchange.

Experimental observations of phantom helices. Figure 2 illustrates 
the contrast decay c(t) for spin helices with different wavevectors Q 
at Δ ≈ 0. We see that the decay for Qa = π/2 is noticeably slower than 
that for Qa = 0 or π. This non-monotonic behaviour is the signa-
ture of phantom spin helices. This feature is emphasized in Fig. 3 by 
comparing the contrast decay rates γ as a function of Q for various Δ. 
Since the superexchange interactions in equation (4) depend on the 
scattering lengths, we can tune Δ smoothly by varying the magnetic 
field. In the next section, we confirm that the value of Δ obtained 
from the observed minimum of the decay rate agrees with the value 
of Δ derived from equation (4) (with appropriate higher-order cor-
rections) and previously determined scattering lengths27. Figure 3 is 
consistent with a predicted exact symmetry (Methods) in that the 
decay rate at a wavevector of Q and an anisotropy of Δ is equal to 
that at a wavevector of π/a − Q and an anisotropy of −Δ.

We employ a fit function γ(Q) = γ1|∆− cos(Qa)|+ γ0, derived 
previously from a short-time expansion of the spin-helix contrast 
c(t) (ref. 17). Here, Δ, γ1 and γ0 are treated as free fit parameters. γ1 
represents a bulk-intrinsic dephasing decay (for spin helices away 
from the phantom condition) originating from quantum fluctua-
tions of the spins. Therefore, its magnitude is on the order of the 
spin coupling Jxy/ℏ. γ0 represents a background decay rate account-
ing for effects such as finite chain length, holes in the spin chains 
and inhomogeneous lattice depth, which enable dephasing induced 
by an effective magnetic field hz = 4̃t2/U↑↑ − 4̃t2/U↓↓ (ref. 17), 
which is also created by superexchange and, for our experimental 
situation, is comparable to Jxy (Methods and Extended Data Figs. 2 
and 3).

We also observe phantom helix states for various polar angles 
in Fig. 3b–d. This confirms the prediction15 that there is a whole 
family of phantom helix states for a given value of Δ. We find that 
a larger absolute value of the total Sz magnetization (that is, θ close 
to 0 or π) leads to an overall slower decay. This is expected since 
such values of θ correspond to states that are almost uniformly 
polarized along the Sz direction with a small density of quasipar-
ticles (magnons), which gives rise to a small rate of inter-particle  
scattering events.

For anisotropies ∣Δ∣ > 1 (Fig. 3a,e, open symbols) there is no lon-
ger a stable spin-helix eigenstate15. We see instead that the mini-
mum decay rate always occurs at Q = 0 (for Δ ≥ 1) and Qa = π (for 
Δ ≤ −1). Comparing decay rates across Δ in this range, we find a 
Q-independent increase relative to the ∣Δ∣ = 1 case which is mono-
tonic in ∣Δ∣ − 1.

Our improved imaging protocol allows us to access new param-
eter regimes beyond previous work. For the isotropic system 
(Δ = 1), we had observed diffusive spin transport characterized by 
γ(Q) ≈ γ1Q2a2/2 + γ0 (refs. 16,17,24). However, we now see this qua-
dratic behaviour break down for large Q when the wavelength λ 
becomes comparable to the lattice spacing a (Fig. 3a). The fastest 
decay occurs for the Néel state (Qa = π), where neighbouring spins 
are anti-aligned. This directly demonstrates that this classical anti-
ferromagnetic state is not the ground state of the quantum antifer-
romagnetic Heisenberg Hamiltonian. Nevertheless, the Néel state is 
an exact highly excited eigenstate for Δ = −1 (Fig. 3e).

Extension to higher dimensions and long-range systems. The 
phantom spin-helix states were originally discovered in 1D as a 
coherent superposition of Bethe phantom states, which are special 
degenerate solutions to the Bethe ansatz equations15. This raises 
the question of whether this phenomenon is tied exclusively to 
integrability. We find that this is not the case. We can rigorously 
show that stationary phantom helix states exist for the anisotropic 
Heisenberg model defined on hypercubic lattices in arbitrary spa-
tial dimensions and for arbitrary spin quantum numbers. A valid 
phantom spin-helix state in d dimensions is specified by a wavevec-
tor Q = (Q1, ⋯, Qd), such that Q = Qp ≔ Qpx, where x ∈ {−1, 1}d is a 
binary vector of ±1s and Qp (0 ≤ Qpa ≤ π) satisfies the phantom con-
dition ∆ = cos(Qpa) (equation (2)). The precise statement as well 
as the corresponding proof is presented in Methods.

Figure 4 demonstrates an example of a two-dimensional spin helix 
on a two-dimensional (2D) square lattice with a particular winding 
angle ϕ = Qpa = 40°, which is a phantom helix state for the aniso-
tropic Heisenberg model with ∆ = cos(40◦) ≈ 0.771. Spins along 
each (horizontal and vertical) line in fact form a one-dimensional 
phantom helix state with a winding angle of ϕ = Qpa. Additionally, 
note that the 2D model, owing to the nearest-neighbour pairwise 
nature of its interactions, can be written as a sum of 1D Heisenberg 
Hamiltonians along each line. One can therefore understand the 
stability of these 2D phantom helices (as well as higher-dimensional 
generalizations) as arising from the 1D mechanism of pairwise can-
cellation of fluctuations demonstrated above.
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Fig. 2 | Decay of spin-helix states. a–c, The spin-helix contrast c(t) 
measured for Δ ≈ 0 and θ = π/2 at two different lattice depths 9ER (red) 
and 11ER (blue), with corresponding spin-exchange times ℏ/Jxy = 1.06 
and 2.91 ms, for three wavevectors: Qa = 0 with all spins aligned (a), 
Qa = π/2 with neighbouring spins perpendicular (b), which is a many-body 
eigenstate for Δ = 0, and Qa = π with all spins anti-aligned (c). Their 
respective spin patterns in the Sx–Sy plane are illustrated by the arrows 
above each panel. The decay curves at different lattice depths collapse 
when times are normalized in units of ℏ/Jxy. The contrast lifetime is 
significantly longer for Qa = π/2 compared with Qa = 0 or π. The linear 
fit function captures the decay and averages over an oscillatory beat 
note between the spin chains and isolated atoms as discussed in ref. 17. 
An experimental detection noise floor is on the level of ~0.06. Error bars 
represent 1σ uncertainty of the fits.

Nature Physics | VOL 18 | August 2022 | 899–904 | www.nature.com/naturephysics 901

http://www.nature.com/naturephysics


ARTICLES NATURE PHYSICS

Non-trivial phantom helix states also exist for non-hypercubic 
lattices, for example, triangular and kagome lattices, provided  
that the winding angle and anisotropy are ‘compatible’ with the 
geometry of the lattice (Extended Data Fig. 4). Specifically, this 
requires anisotropy Δ = −1/2, giving rise to ϕ = ±2π/3 (Methods 
and refs. 28,29).

Our experimental protocol can be extended to phantom states 
in higher dimensions to observe the associated quantum scarred 
dynamics. After initializing a spin-polarized sample at high fields 
near a Feshbach resonance, we would ramp to a low field where 
we can wind spin helices in arbitrary directions, not limited by the 
direction of the high bias field. Subsequently, we would return to 
high Feshbach fields where we can simulate the XXZ model, and 
finally return to a low field to unwind and measure the contrast for 
different evolution times. The full procedure and current technical 
limitations are described in Methods.

Lastly, we mention that there exist certain long-range defor-
mations to the spin-1/2 model in 1D which break integrability 
yet retain the phantom helix as an exact eigenstate (Methods and 
Extended Data Fig. 5).

Measurement of anisotropy. Besides being of fundamental interest, 
the phantom helix states also have applications in quantum simula-
tions. We can use the sensitivity of the phantom helix states to mea-
sure the spin-exchange anisotropy Δ = Jz/Jxy precisely as a function 
of the applied magnetic field B (Fig. 5). Until now, there has been 
no protocol to directly measure Δ. It could only be estimated16,17  
from measured scattering lengths a↑↑, a↑↓ and a↓↓ (refs. 23,27) using 
equation (4). Figure 5 compares our measured Δ with the predic-
tions based on scattering lengths. They agree quite well away from 
Feshbach resonances, where we expect equation (4) to be accurate 
with some well-established corrections (Methods and Fig. 5). This 
validates the method of using the phantom phenomenon to deter-
mine Δ even in situations where a microscopic theory is not avail-
able or not accurate, for example, when there are strong interactions 
near Feshbach resonances (Methods).

We first discuss the accuracy of our determination of Δ and 
possible systematic errors. Repeated measurements of Δ are repro-
ducible to better than 0.1, as is clearly visible by the small random 
scatter of the data points in Fig. 5. In addition, there are possible 
systematic effects. For one, the observed decay is non-exponential 
and our fit function ( ) = |Δ− ( )|+  was derived 
from a short-time quadratic expansion of the decay of contrast17. 
Experimentally, however, we can only observe the contrast at inter-
mediate times where the decay is more linear (as already discussed 
in previous work16,17,24). The most robust and consistent fits were 
obtained with a linear function (1 − γt), where γ is the decay rate. 
Additionally, some of the contrast decay curves have an oscillatory 
component which averages out for long but not shorter decay times. 
By using different fit functions (exponential, linear, with or without 
oscillating terms and different constraints for the fit parameters) for 
our data and numerically simulated data, we find that ∣Δ∣ in Fig. 5 
could be overestimated. At ∣Δ∣ ≈ 0.5, the overestimation is the most 
severe and can be up to 0.15 (30%), but it is smaller (≈0.05) for ∣Δ∣ 
closer to 0 and 1.

Furthermore, a systematic shift of ∣Δ∣ could also occur if there 
were a Q-dependent background decay mechanism, although pre-
liminary investigations provide no evidence that such an effect 
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exists (Methods). Several of these issues could be addressed experi-
mentally in the future by using a quantum gas microscope and 
observing the dynamics in single isolated spin chains.

The ‘dispersive’ shape of Δ near the two Feshbach resonances in 
Fig. 5 cannot be explained by the ‘standard’ superexchange model of 
equation (4), since these spin coupling parameters depend on 1/U↑↑ 
and therefore vary smoothly across the resonance. The leading-order 
corrections to the underlying standard Hubbard model16,30,31 include 
bond-charge tunnelling32, higher-band corrections to U (refs. 33,34) 
and off-site contact interactions V (ref. 16). As long as the extended 
Hubbard model involves only nearest-neighbour terms, the spin 
physics of a Mott insulator phase at unity filling is still described by 
the anisotropic Heisenberg model of equation (1) (Methods).

Of the various corrections to the standard Hubbard model30, only 
contributions from off-site interactions have the correct symme-
try and sign to explain the observed dispersive feature (Methods). 
Therefore, the phantom helix states reveal that spin–spin interac-
tions near a Feshbach resonance are caused by off-site interactions 
which have never been observed for contact interactions (they have 
only been observed for long-range dipolar interactions35) or a new 
form of interactions. Off-site interactions originate from the small 
overlap of a Wannier function on one site with those of its near-
est neighbours36 and add a correction term to Jz in equation (4) of 
2(V↑↑ + V↓↓ − 2V↑↓) (ref. 16), where V↑↑, V↑↓ and V↓↓ are the off-site 
interaction energies. However, as we will explore in future work, the 
current model for off-site interactions30,31,36 cannot fully explain our 
observations, and a more elaborate theory is needed to account for 
the correct spin Hamiltonian near a Feshbach resonance.

Discussion and outlook. Previous studies of the Heisenberg model 
have focused on the ground state37–39, low-lying elementary excita-
tions including magnons40,41 and Bethe strings42,43, or on unstable 
dynamics far from equilibrium14,16,17,24,44. This work captures a new 
class of excitations: phantom spin-helix states. These are highly 
excited yet long-lived metastable states whose stability is not the 
result of symmetry but rather due to a delicate cancellation of inter-
actions. In fact, such atypical, slow dynamics are not only specific 
to the Heisenberg model but also expected to be exhibited by other 
integrable systems, as expounded in ref. 15. Our experimental find-
ings thus constitute a concrete demonstration of this novel, general 
dynamical phenomenon.

More broadly, we have theoretically explored spin-helix states 
in systems with higher spatial dimensions, for different spin quan-
tum numbers, in various lattice geometries and with longer-range 
interactions, all of which are not integrable. Nevertheless, we find 
that, for the special initial condition of a phantom helix state, the  

system does not relax at all, despite the presence of strong interactions. 
Such non-thermalizing dynamics in non-integrable, many-body 
systems constitute examples of ‘weak ergodicity-breaking’, or what 
are now known as ‘quantum many-body scars’18. While various 
toy models hosting exact quantum many-body scars have already 
been discussed in literature, such models are primarily theoreti-
cal constructs which are difficult to realize experimentally45–48. 
In contrast, we demonstrate that one of the simplest examples of 
a many-body system (the XXZ Heisenberg model) can support 
quantum many-body scars, a fact which has been overlooked 
thus far. The relative simplicity implies that probing such scarred 
dynamics experimentally is relatively straightforward, and in 
Methods we propose how our current protocol can be extended to  
higher dimensions.

We expect phantom helix states to have applications in quantum 
simulations of spin physics. We have demonstrated the potential 
of the phantom helix states as a sensitive tool to directly measure 
the anisotropy Δ. They have revealed that even short-range interac-
tions can lead to strong off-site interactions in spin models. This can 
now be used to realize extended Hubbard models31,36 including the 
quantum lattice gas (or t–V) model49 which supports a supersolid 
phase50. In the future, these long-lived helix states could be an inter-
mediate step in preparing other many-body quantum states or be 
used for robust quantum sensing51. It has been shown that phantom 
helix states maintain the classical topological protection of winding 
patterns52. An intriguing question is what will ultimately limit the 
stability of these states if periodic boundary conditions are realized 
with ring-shaped atom arrays53. Such studies are likely to provide 
new insight into spin dynamics far from equilibrium.
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Methods
Experimental methods. As described in previous work16, we prepare 4.5 × 1047 Li 
atoms in an optical lattice with spacing a = 532 nm in the Mott insulating regime 
with one atom per site in the |↑⟩ state. The lowest and second-lowest hyperfine 
states of 7Li realize the |↓⟩ and |↑⟩ state, respectively. The Mott insulator diameter is 
approximately 44 lattice sites, of which doublons account for less than 0.5% while 
holes are estimated to represent 5–10%. The density degree of freedom is frozen 
out after loading into the deep optical lattice (35ER, where ER/h = 25.12 kHz), and 
the on-site interactions U↑↑, U↑↓ and U↓↓ can be varied freely by using an externally 
applied magnetic field B to adjust the anisotropy Δ without affecting the global 
atom distribution, as long as the atoms stay in the Mott insulating regime54. We 
profiled the Feshbach resonance extensively in our previous work27. The finite size 
of the lattice beams introduces small inhomogeneities of the lattice depths, which 
has been described in detail in ref. 16.

In a deep lattice, a global radiofrequency pulse is used to rotate all the spins by 
an angle θ away from the initial |↑⟩ state

|ψ⟩ =
∏

i
[cos(θ/2)|↑⟩i + sin(θ/2)|↓⟩i]. (5)

Most of our experiments are on purely transverse spin patterns where θ = π/2, 
generating an Sx polarized state |ψ⟩ =

∏
i[|↑⟩i + |↓⟩i]/

√
2. An applied magnetic 

field gradient in the z direction causes spin precession at rates which depend 
linearly on the position zi of the spin, thus creating a spin helix17,24–26

|ψ⟩ =
∏

i
[cos(θ/2)|↑⟩i + e−iQzi sin(θ/2)|↓⟩i]. (6)

We apply a magnetic field gradient of up to 39 G cm−1 over a time of up to 8 ms to 
wind the spin helix. We calibrate the spin winding process against the duration and 
magnitude of the applied gradient by overwinding the spin helix beyond Qa ≈ 2π. 
Since the wavevectors Q and Q + 2π/a correspond to the same state, we obtain an 
absolute calibration of winding angle versus time-integrated gradient. In other 
words, our wavevectors Q are measured directly in units of the lattice spacing a, 
independent of the (less accurately known) imaging magnification. All helices with 
directly observable Q fall on a line in Extended Data Fig. 1. This allows us to find 
the winding time and gradient required for helices with wavevectors Q which we 
cannot image directly.

After winding the spin helix, we initiate spin dynamics in 1D chains by 
ramping down the lattice depth along one direction to 9ER or 11ER, which is small 
to enable fast superexchange but still large enough to stay in the Mott insulating 
regime. The ramp time is 0.5 ms, fast compared to the superexchange time ℏ/Jxy 
(ranging from 1 to 4 ms) but slower than the inverse of the interaction energies 
ℏ/U↑↑, ℏ/U↑↓ and ℏ/U↓↓ (<0.05 ms), thus realizing a quantum quench for the spin 
sector of the Mott insulator. At a lattice depth of 11ER, the tunnelling rate is 
t̃/h ≈ 380Hz and the on-site interactions U↓↓ and U↑↓ vary weakly as a function 
of the external magnetic field (ranging from U↓↓/h = −6.8 to −3.0 kHz and from 
U↑↓/h = −11.0 to −2.9 kHz in the magnetic field range of B = 830 to 1,150 G used in 
our experiments), whereas U↑↑ can be tuned via Feshbach resonances to arbitrary 
positive and negative values. After a variable evolution time t, the spin dynamics 
is frozen by increasing the lattice depth back to 35ER (where the tunnelling rate is 
t̃/h = 5Hz) within 0.5 ms, followed by an unwinding step to a resolvable readout 
wavevector Q ≈ 2π × 0.1/a, which allows us to measure the contrast of high-Q spin 
helices indirectly.

As described in refs. 16,17, we determine the contrast C by a fit 
f(z) = g(z)[1 + C cos(Qz)]/2, where g(z) is a Gaussian envelope function that 

accounts for the spatial distribution of all atoms. During the evolution time 
t, the contrast C(t) decays. We fit the decay rate of the normalized contrast 
c(t) ≔ C(t)/C(0). The decay rate at early times should be quadratic (see discussion 
below and ref. 17), but because we cannot observe the system at t = 0 and the exact 
decay shape is not known, we use a linear fit to phenomenologically determine a 
decay rate. For long evolution times t the contrast c(t) approaches an experimental 
detection noise floor on the level of ~0.06.

Discussion of decay rates. In the main text, we found that the measured decay 
rates of spin helices obeyed well the fit function

γ(Q) = γ1|∆ − cos(Qa)| + γ0. (7)

Here, we discuss the physical interpretation of the terms associated with γ1 and 
γ0. We also discuss which experimental techniques can eliminate the mechanisms 
that contribute to γ0 which would lead to very long lifetime of the phantom helix 
state. In our experiment, the bulk-intrinsic dephasing rate γ1 and the background 
decay γ0 are comparable. Nevertheless, γ0 is small enough that the signature 
γ1|∆ − cos(Qa)| of the phantom helix states can clearly be observed and 
distinguished from the background decay γ0.

Bulk decay rate γ1. As mentioned above, the contribution γ1|∆ − cos(Qa)| was 
derived via a short-time expansion of the contrast c(t) for general spin helices 
evolving under the 1D Heisenberg model17. Therefore, this term can be understood 
as arising from the intrinsic decay associated with a spin helix with wavevector not 

equalling the phantom wavevector Q ≠ Qp. The rate γ1 scales as Jxy but is also set by 
the effective exchange coupling of spins, determined by the quasiparticle (magnon) 
density in the system, which can be tuned by the polar angle θ. In particular, at low 
densities (which translates to θ ≈ 0 or π), γ1 is small. Indeed, for θ = 0 (π), the spin 
helix for any Q is a spin-polarized state in the +Sz (−Sz) direction, which is trivially 
an eigenstate for any anisotropy Δ. Hence γ1 = 0 for these angles. That is, such a 
‘spin helix’ does not decay.

Boundary conditions. The derivation of this decay mechanism assumed an 
infinitely long chain. For finite chains, precise boundary conditions matter. The 
phantom helix state is only an eigenstate if the system has periodic boundary 
conditions and its wavevector is commensurate with the system size, or if the 
system has open boundary conditions with appropriate pinning fields at the ends 
of the chains15. Therefore, for generic finite, open chains, even a phantom helix 
(that is, with Q satisfying ∆ = cos(Qa)) will decay as spins at the boundaries 
will start to precess and disturb neighbouring spins, and such perturbations 
propagate into the bulk and destroy the spin-helix pattern17. This contribution to 
γ0 should scale as ~Jxy/L and can be suppressed by long chains or using ring-shaped 
geometries53 realizing periodic boundary conditions.

Effective magnetic field. The situation of finite, open chains is realized in our 
experimental platform. Important contributions to γ0 originate from an effective 
magnetic field hz = 4̃t2/U

↑↑
− 4̃t2/U

↓↓
 as described in our previous work17. This 

effective field has only half its value at the ends of the chain and therefore modifies 
the boundary condition by acting as a pinning field.

The effective magnetic field can lead to another contribution to γ0 if it is 
inhomogeneous across the cloud. This causes inhomogeneous broadening across 
different chains and a beat note between the chains and isolated atoms17. Such 
effects can be eliminated by using spin-echo techniques (see previous work17 
detailing this), or by experiments where individual chains are resolved by using 
imaging with single-site resolution. The effective magnetic field is absent for 
hyperfine states with U↑↑ = U↓↓, often fulfilled in experiments with rubidium atoms.

Holes. An additional contribution can come from the presence of holes (with an 
estimated fraction of 5–10%) in the Mott insulator. Holes near the ends of the 
chain are localized by the trapping potential54, effectively shortening the chains 
(Extended Data Fig. 2)17. Mobile holes give rise to a number of effects. First, they 
create effectively fluctuating spin couplings and local magnetic fields. This leads 
to a dephasing of transverse spin, leading to a loss of contrast. Second, when holes 
move around, they can create ‘phase slips’ in the spin-helix pattern, mismatches 
in the winding angles between adjacent spins, such that interaction from two 
neighbouring spins do not cancel but instead cause dephasing. The effects of 
mobile holes can be reduced by pinning them to their original locations using a 
sufficiently strong potential gradient, as we showed in previous work54.

Q dependence of γ0. If the background decay rate γ0 has a Q dependence, it can 
shift the minimum of the decay rate from the phantom condition ∆ = cos(Qpa) 
and hence lead to a systematic error in the measurement of Δ. We investigate 
the edge effect by numerically simulating spin dynamics on open chains, and 
extract the total decay rate γ(Q) through an early-time fit (Extended Data Fig. 3). 
We see that there is no shift in the decay minimum, even though there is now a 
finite decay rate at the phantom condition. For the experimental data, we must 
extend fitting to longer times. Applying this to simulated decay curves, which 
have a non-exponential shape, can lead to differences in ∣Δ∣ of up to 0.15 when the 
contrast decay c(t) is fitted with different functions.

Note that, when random phase shifts are applied to each spin, the contrast 
reduction does not depend on Q. This is a simplified model for the fluctuating 
effective magnetic field due to mobile holes17. Our understanding of the Q 
dependence or Q independence of decay rates is incomplete, but it is consistent 
with the experimental observation that γ0 appears to be independent of Q (owing 
to the goodness of the fit of equation (7) to the experimental data). This gives us 
confidence in the ability to determine Δ reliably from the phantom condition.

Decay rates for 2D spin helices. We expect the bulk decay rate γ1 to exhibit 
similar behaviour and magnitude as in 1D. For the background decay rate γ0, the 
contribution from boundary effects should also be comparable. Although the 
boundary of a 2D system is 1D in nature (and thus scales with the linear  
dimension L of the system), the ‘signal’ (~L2) to ‘noise’ (~L) ratio scales in  
the same fashion as in 1D (L:1). The effect of mobile holes can potentially be more 
severe in 2D because phase slips can proliferate. A hole that has moved l sites 
typically leaves O(l) phase slips in its wake. In contrast, in 1D, such phase slips are 
localized (but mobile) objects. Mobile holes can be pinned by a potential gradient 
(see above).

Decay rates for polar angles θ ≠ π/2. We discussed above that a transverse spin helix 
with finite Sz magnetization should exhibit a reduced decay rate γ1. This should also 
apply to the background decay rate γ0 associated with the edges of the chain. This 
expectation is consistent with our observation in Fig. 3c,d. However, the observed 
effect is comparable to long-term experimental drifts in γ0 due to changes in atom 
number and hole fraction.
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Symmetry in decay rates. We elaborate on our comment made in the main text 
that the decay rate at wavevector Q and anisotropy Δ is equal to that at π − Q and 
anisotropy −Δ. Here we set the lattice spacing to a = 1 for brevity.

This symmetry in fact stems from a symmetry of the contrast c(t) between 
parameters (Q, Δ) and (π − Q, −Δ). To see this, consider the extraction of the 
contrast at (Q, Δ). This first involves a measurement of the local magnetization in the 
transverse plane, which without loss of generality we take to be in the Sx direction:

⟨Sxn(t)⟩Q,∆ = ⟨ψ(Q)| eiH(∆)tSxne
−iH(∆)t

|ψ(Q)⟩ . (8)

In the above, H(Δ) is the Heisenberg model with anisotropy Δ and |ψ(Q)⟩ is the 
spin-helix state with wavevector Q. We can insert identity operators 1 = U†U = UU† 
in between the states, time-evolution operators and observable, in the above 
expression, where U is the unitary transformation U =

∏
ne

iπnSzn. Now, under U, 
we have the following transformations: |ψ(Q)� �→ |ψ(Q − π)�, H(Δ) ↦ −H(−Δ) 
and Sxn �→ (−1)nSxn. We can further take a complex conjugation over the 
entire quantity, which is invariant due to it being real-valued (as it constitutes 
a measurement), however now its individual constituents change as follows: 
|ψ(Q − π)� �→ |ψ(π − Q)�, i ↦ −i, −H(−Δ) ↦ −H(−Δ) and Sxn �→ Sxn.  
Therefore, we have

⟨Sxn(t)⟩Q,∆ = (−1)n⟨Sxn(t)⟩π−Q,−∆
. (9)

Next, the contrast is determined from the Fourier component at wavevector Q:

c(t)Q,∆ =
2
L
∑

n
⟨Sxn(t)⟩Q,∆ cos(Qn + ϕ), (10)

where ϕ is the initial phase of the helix. Using equation (9) and the trigonometric 
identity (−1)n cos(Qn + ϕ) = cos((π − Q)n − ϕ) for n ∈ Z, we have

c(t)Q,∆ = 2
L
∑
n
⟨Sxn(t)⟩π−Q,−∆

(−1)n cos(Qn + ϕ)

= 2
L
∑
n
⟨Sxn(t)⟩π−Q,−∆

cos((π − Q)n − ϕ)

= c(t)π−Q,−∆
,

(11)

as claimed.

Higher dimensions, arbitrary spin quantum numbers and non-hypercubic 
geometries. In this section, we extend the phenomenology of stable phantom 
helices to Heisenberg models in higher dimensions, arbitrary spin quantum 
numbers and non-hypercubic geometries. Specifically, we prove that, for any given 
anisotropy in the easy plane ∣Δ∣ ≤ 1, there exist phantom helices which are exact 
many-body eigenstates of the model, provided the phantom condition (equation 
(2)) holds and appropriate boundary conditions are taken.

Model and spin-helix states. We consider the quantum Heisenberg XXZ model 
for any spatial dimensionality d, spin S and lattice geometry. The Hamiltonian 
is given by a sum over pairwise nearest-neighbour interactions (we set Jxy = 1 for 
simplicity):

H(∆) :=
∑

⟨ij⟩

(Sxi S
x
j + Syi S

y
j ) + ∆Szi S

z
j , (12)

where Sα
i  (α = x, y, z) are spin-S operators.

The generalization of a spin-helix state from the spin-1/2 case (equation (3)) is 
given by

|ψ(Q)⟩ =
∏

i

[
e−iQ·riSzi e−iθSyi |S⟩i

]
. (13)

Here, |S⟩i is the local maximal spin state satisfying (Si · Si)|S⟩i = S(S + 1)|S⟩i 
and Szi |S⟩i = S|S⟩i. Q = (Q1, ⋯, Qd) is a d-dimensional wavevector parameterizing 
the winding rate and direction of the helix, and ri is the coordinate of the spin at 
site i. Therefore, equation (13) locally describes a state created by rotation by angle 
θ from the z-polarized state around the Sy axis, before a winding in the Sx–Sy plane 
by a site-dependent angle Q⋅ri.

Statement of results. For the model and state above, we have the following 
statements (where we set the lattice spacing to a = 1 for brevity):

Theorem 1. (phantom spin helices for the hypercubic lattice). Consider a 
d-dimensional hypercubic lattice of volume L1 × L2 × ... × Ld and the anisotropic 
spin-S Heisenberg model with anisotropy Δ defined on it. Let ∣Δ∣ ≤ 1, which we 
parameterize as ∆ = cos(Qp) (the ‘phantom condition’) for Qp ∈ [0, π). Define 
the wavevector Qp ≔ Qpx where x is a binary vector x = (x1, ⋯, xd) ∈ {−1, 1}d, and 
suppose that the linear dimensions Li are such that Li = 2πi/Qp for some mi ∈ N. 
Then, the spin helix with wavevector Qp and any polar angle θ is an exact eigenstate 
of the model with energy E = S2 cos(Qp) × #Links.

Theorem 2. (phantom spin helices for the 2D triangular and kagome lattices). 
Consider a 2D regular triangular or kagome lattice and the anisotropic spin-S 
Heisenberg model with anisotropy Δ = −1/2 defined on it. Define Qp = 2π/3 so  
that cos(2π/3) = −1/2 = ∆. Then the spin helix with wavevector Qp = (2Qp, 0)  
or (4Qp, 0) and any polar angle θ, is an exact eigenstate of the model with  
energy E = S2 cos(Qp) × #Links, provided the lattice dimensions are such that it 
is commensurate with the helix pattern.

Remarks. Figure 4 shows an illustration of the phantom helix for a 2D square lattice, 
while Extended Data Fig. 4 shows the phantom helix for the 2D triangular and 
kagome lattices. Note that the phantom helix state for the triangular lattice is known 
as the 120° Néel ordered state in condensed matter physics, which is the ground 
state of the classical antiferromagnetic Heisenberg model. For the kagome lattice, 
it is also known as the 

√
3 ×

√
3 state (Extended Data Fig. 4). We show here that 

they are exact eigenstates for the quantum Heisenberg model at Δ = −1/2. Note that 
the phantom helix states that we discuss here for triangular and kagome lattices 
are in fact special cases of more general, so-called three-colour states, discussed 
in refs. 28,29, which can be shown to be exact ground states of the spin-1/2 model at 
Δ = −1/2. Our result recovers this result and extends it by showing that the phantom 
spin helices are also exact eigenstates of the model for all spin quantum numbers.

Proof. Define the local term of the Hamiltonian

hij = (Sxi S
x
j + Syi S

y
j ) + cos(Qp)Szi S

z
j (14)

so that H(cos(Qp)) =
∑

⟨ij⟩hij. Consider a local part of the spin-helix state with 
wavevector Qp, specifically on a pair of neighbouring spins i and j:

|ψ⟩ij = e−iΦiSzi e−iθSyi |S⟩i ⊗ e−iΦjSzj e−iθSyj |S⟩j

= e−iΦi(Szi+Szj )
(
e−iθSyi |S⟩i ⊗ e−iδΦjiSzj e−iθSyj |S⟩j

)
,

(15)

where Φi = Q⋅ri and δΦji = (Φj − Φi). A simple but key property is that, for 
the set-ups described in either theorem, e−iδΦji = e−iQp or eiQp for any 
nearest-neighbour pair of sites. (Clearly this is true for any hypercubic lattice. 
For the triangle lattice with primitive vectors b1 = (1, 0) and b2 = (1/2,

√
3/2), we 

have e±i4π/3 = e∓iQp. For the kagome lattice, the primitive vectors are b1 = (2, 0) 
and b2 = (1,

√
3) while the lattice vectors within each unit cell are a1 = 1

2b1 and 
a2 = 1

2b2, so the result is the same as for the triangular lattice.)
With this in mind, we evaluate the action of hij on the state

e−iΦi(Szi+Szj )(Sxi Sxj + Syi S
y
j + cos(Qp)Szi Szj )

[
e−iθSyi |S⟩i ⊗ e∓iQpSzj e−iθSyj |S⟩j

]

= e−iΦi(Szi+Szj )e∓iQpSzj

×
(
Sxi (Sxj cos(Qp) ∓ Syj sin(Qp)) + Syi (S

y
j cos(Qp) ± Sxj sin(Qp)) + cos(Qp)Szi Szj

)

×
[
e−iθSyi |S⟩i ⊗ e−iθSyj |S⟩j

]

= e−iΦi(Szi+Szj )e∓iQpSzj

×
(
cos(Qp)(Sxi Sxj + Syi S

y
j + Szi Szj ) ∓ sin(Qp)(Sxi S

y
j − Syi S

x
j )
)

×
[
e−iθSyi |S⟩i ⊗ e−iθSyj |S⟩j

]
.

(16)
The term proportional to cos(Qp) is Si⋅Sj, and the state on the right-hand side of 
the last line of the above equation is a uniformly polarized state, so it evaluates to 
the original state up to a multiplicative factor

S2 cos(Qp)|ψ⟩ij . (17)

Now we just have to evaluate the term proportional to sin(Qp). Ignoring the factor 
e−iΦi(Szi+Szj )e∓iQpSzj , we have

∓ sin(Qp)(Sxi S
y
j − Syi S

x
j )
[
e−iθSyi |S⟩i ⊗ e−iθSyj |S⟩j

]

= ∓ sin(Qp)(e−iθSyi e−iθSyj )

×
[
(Sxi cos(θ) + Szi sin(θ))Syj − Syi (S

x
j cos(θ) + Szj sin(θ))

]

× |S⟩i ⊗ |S⟩j

= ∓ sin(Qp)(e−iθSyi e−iθSyj )

×
[
cos(θ) (Sxi S

y
j − Syi S

x
j ) + sin(θ) S(Syj − Syi )

]

× |S⟩i ⊗ |S⟩j .

(18)
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Now we make use of the fact that

Syi |S⟩i = iSxi |S⟩i (19)

(this follows from the definition of |S⟩i as the highest-weight state, 
Sxi = 1

2 (S
+
i + S−i ), and Syi = 1

2i (S
+
i − S−i )). Therefore

(Sxi S
y
j − Syi S

x
j ) |S⟩i |S⟩j = 0 (20)

and equation (18) becomes

∓ sin(Qp) e−iθSyi e−iθSyj i sin(θ) S(Sxj − Sxi ) |S⟩i |S⟩j . (21)

We add a trivial term

∓ sin(Qp) e−iθSyi e−iθSyj i cos(θ) S(Szj − Szi ) |S⟩i |S⟩j (22)

to it, so that equation (18) is equal to

±iS sin(Qp)(Szj − Szi ) e
−iθSyi e−iθSyj |S⟩i |S⟩j . (23)

Reinstating the factor e−iΦi(Szi+Szj )e∓iQpSzj  which commutes with (Szj − Szi ), we 
hence have

hij|ψ⟩ij = S2 cos(Qp)|ψ⟩ij ± iS sin(Qp)
(
Szj − Szi

)
|ψ⟩ij . (24)

This is our final result. The (Szi − Szj ) term cancels out in the bulk when summed 
over all sites (it telescopes), so

H(cos(Qp))
∣∣ψ(Qp)

〉
= (S2 cos(Qp) × #Links)

∣∣ψ(Qp)
〉

(25)

as claimed.
Lastly, we discuss the physical implications of these results. The more general 

spin systems considered here are expected to be non-integrable, and so now these 
phantom helices constitute exceptional initial states that do not thermalize. That 
is, they are examples of quantum many-body scars, first discussed in the context 
of a Rydberg atom array55, where a special Neél configuration of spins exhibited 
anomalously long-lived many-body revivals. In our present case, the helix states 
can be made to display similar phenomenology by considering them outside 
the rotating frame. They are no longer exact many-body eigenstates due to the 
extra global Zeeman term and acquire dynamics consisting of coherent, perfect 
many-body revivals.

Experimental protocol for phantom helix states in two dimensions. Our 
experimental protocol can be extended to two (or three) spatial dimensions to 
directly observe higher-dimensional phantom helices and the associated quantum 
scarred dynamics. The protocol includes:

	1.	 Prepare atoms deep in a Mott insulator state.
	2.	 Wind a spin helix with an arbitrary Q = (Qx, Qy, Qz) vector by applying a 

magnetic field gradient in the direction of Q.
	3.	 Enable spin dynamics in two (or three) spatial dimension by reducing the 

lattice depth of two (or three) lattice beams. After an evolution time t, freeze 
the dynamics again by rapidly increasing the lattice depth.

	4.	 Unwind the spin modulation to a resolvable wavevector Qmeasure which is also 
perpendicular to the imaging axis. This allows measuring the contrast of spin 
helices with any wavevector Q, without adjusting the imaging axis each time.

	5.	 Image the spin modulation to measure the contrast.

A possible technical challenge is the switching of high magnetic fields. 
Many atoms, including 7Li, have Feshbach resonances at high bias fields, which 
can usually be created only along one specific direction. Any added gradient is 
projected along the strong bias field. Therefore, to apply gradients in arbitrary 
directions, the high magnetic field has to be switched off, and additional small coils 
can then provide a low bias field in any direction.

For 7Li, the Mott insulator condition is best met at high field. Furthermore, the 
polarization-rotation imaging technique16 works best at high fields. Therefore, the 
extension of our experiment to studies of phantom states in higher dimensions 
requires a protocol with three steps at high field, interlaced with steps at low field. 
In the 1D experiment, all steps could be done at high field.

During the field ramps, the atoms must be isolated, that is, stay in a Mott 
insulator state. However, during the magnetic field ramp, the atomic scattering 
lengths will change. If this involves small scattering lengths, the lattice depth must 
be increased. 7Li atoms have very small scattering lengths at low fields (smaller than 
a few Bohr radii a0) and would require lattice depths of at least 70ER, which requires 
very high laser power due to the light mass and therefore large recoil energy of 7Li.

Extended Hubbard model. For small scattering lengths a↑↑, a↑↓, a↓↓ ≪ aosc ~1,000a0 
(that is, far from any Feshbach resonances), the mapping from the Bose–Hubbard 
model to a spin Hamiltonian is well understood. We use this regime to compare 

the values of Δ obtained from the minimum of the observed decay rate and the 
phantom condition versus the predictions of the microscopic model. This validates 
the phantom phenomenon as a protocol to determine the anisotropy Δ. For the 
needed accuracy, we must add corrections to the most basic superexchange model 
of equation (4). Those corrections can be found in ref. 30 and in the Methods 
section of ref. 16 and are summarized here.

The standard Hubbard model in the single-band approximation is fully 
parameterized by the tunnelling matrix element t̃(0) and the on-site interaction 
U(0)

σσ′ and is almost exactly realized with cold atoms in optical lattices. These 
parameters can be calculated using the lowest-band Wannier functions 
w(r) = wx(x)wy(y)wz(z) along each lattice depth using the expressions

t̃(0) = −

∫
dz wz(z − a)

[
−

h̄2

2m
d2

dz2 + V0sin2(kz)
]
wz(z) (26)

and

U(0)
σσ′ = gσσ′

∫
d3r |w(r)|4, (27)

where σ, σ′ ∈ {↑, ↓}, gσσ′ = 4π h̄2aσσ′ /m and k = π/a is the wavevector of the 
lattice. The standard Hubbard model results in the spin-independent tunnelling 
parameter t̃(0) → t̃ that is used in equation (4). The three largest corrections 
to the standard superexchange model correspond to bond-charge tunnelling, 
higher-order bands and off-site contact interactions.

Correction 1. The largest correction to tunnelling is the so-called bond-charge 
tunnelling term, which for an n = 1 Mott insulator is30,32

t̃(1)σσ′ = −gσσ′

∫
d3r w∗

(r − δr)w∗

(r)w(r)w(r). (28)

where δr = (0, 0, a). Note that this correction, unlike t̃(0), is spin dependent.  
Even far from the Feshbach resonance, this term results in a correction to the 
calculated Δ.

Correction 2. Using second-order perturbation theory, higher-order band 
corrections to Uσσ′ occur via virtual excitations to higher Wannier bands due to 
interactions between two atoms. Admixtures of these higher bands are, to the 
lowest order,

U(1)
σσ′ = −

∑

n1n2

g2σσ′

En1n2

∣∣∣∣
∫

d3r w∗

n1 (r)w
∗

n2 (r)w(r)w(r)
∣∣∣∣
2
, (29)

where n1 and n2 are the three-dimensional band indices of the two particles and 
En1n2 is the sum of the band gaps of particles in bands n1 and n2 relative to the 
lowest band n0 = (0, 0, 0) (ref. 16).

Correction 3. Nearest-neighbour off-site interactions are given by the expression

Vσσ′ = gσσ′

∫
d3r w∗

(r − δr)w∗

(r)w(r − δr)w(r). (30)

For a Mott insulator state, the spin physics is still described by a Heisenberg model 
with modified parameters in equation (4) (see next section)

Jz = (4̃t2
↑↓

/U
↑↓

− 4V
↑↓

) − (4̃t2
↓↓

/U
↓↓

− 2V
↓↓

) − (4̃t2
↑↑

/U
↑↑

− 2V
↑↑

)

Jxy = −4̃t2
↑↓

/U
↑↓

,
(31)

where t̃σσ′ = t̃(0) + t̃(1)σσ′ and Uσσ′ = U(0)
σσ′ + U(1)

σσ′. Next-order corrections 
such as correlated-pair tunnelling and corrections to on-site energies due to 
next-nearest-neighbour interactions30 are two and four orders of magnitude smaller 
than bond-charge tunnelling t̃(1)σσ′ and nearest-neighbour off-site interactions Vσσ′, 
respectively, and therefore not included in our analysis.

We now discuss the physical origin of the strong variation of Δ observed 
near Feshbach resonance (Fig. 5). Near a Feshbach resonance, the interaction 
term gσσ′ ∝ aσσ′ becomes large. However, the contribution via U to the spin 
interactions is small due to the (̃t(0))2/U(0)

σσ′ ∝ 1/aσσ′ dependence of the spin 
interactions. In contrast, both the bond-charge tunnelling and the off-site 
corrections increase ∝ aσσ′ and provide corrections to the spin interactions 
∝ aσσ′. However, due to the signs in equation (31), near a ↑↑ Feshbach resonance, 
the bond-charge terms are proportional to −a↑↑ while the off-site terms are 
proportional to +a↑↑ and therefore have the opposite dispersive shape when 
plotted versus magnetic field. Calculations based on equation (31) show that the 
off-site terms dominate, in agreement with the experimentally observed dispersive 
shape in Fig. 5. Note that the two ↑↑ Feshbach resonances in Fig. 5 have the same 
dispersive shape, as can be seen in Fig. 3 of ref. 23. Also, note that higher-order band 
corrections slightly modify the magnitude of the superexchange and bond-charge 
contributions by replacing the denominator U(0)

σσ′ → U(0)
σσ′ + U(1)

σσ′ but have very 
little effect on their scaling with a↑↑.
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Therefore, we conclude that only the off-site interactions in equation (30) have 
the correct ‘symmetry’ to qualitatively explain the observed variation of Δ near the 
two Feshbach resonances in Fig. 5.

General nearest-neighbour spin-1/2 model in 1D. Here we discuss under which 
assumptions an extended Bose–Hubbard model effectively realizes a Heisenberg 
XXZ Hamiltonian in the Mott insulating regime. For ultracold atoms, the 
underlying Bose–Hubbard model, even near Feshbach resonances, is formulated as 
a nearest-neighbour model. That is, direct next-nearest-neighbour interactions and 
direct tunnelling between non-neighbouring sites are neglected.

Deep in the Mott insulator regime near unity filling and assuming a 
two-component system, charge transport is suppressed, and the only remaining 
dynamics is that of spin degrees of freedom.

The effective spin model is then also nearest neighbour in nature, and 
furthermore conserves the total Sz component (that is, the number of bosons in 
each hyperfine state). This has the following general form

H =
∑

⟨ij⟩

[J1(Sxi S
x
j + Syi S

y
j ) + J2(Sxi S

y
j − Syi S

x
j ) + JzSzi S

z
j + giSzi + gjSzj ]. (32)

The term parameterized by J2 represents a Dzyaloshinskii–Moriya term and 
breaks time-reversal symmetry since it is odd under complex conjugation. 
Therefore, under the additional assumption that the underlying Bose–Hubbard 
model is time-reversal invariant, the most general spin model must be the XXZ 
Hamiltonian, with the possible addition of effective local magnetic fields Szi . 
Breaking of time-reversal invariance would require a complex hopping matrix 
element, that is a Peierl’s phase, usually introduced by spin–orbit coupling or 
Floquet-type time modulation of the lattice.

Non-integrable long-range spin-1/2 model in 1D. The existence of phantom 
states in higher dimensions demonstrates that integrability is not necessary for 
their stability. This raises the question of what would happen in 1D if additional 
interactions were added to the nearest-neighbour spin-1/2 XXZ Hamiltonian. 
Here, we present a model where integrability is broken through the addition of 
long-range interactions, while still retaining the phantom spiral with wavevector Qp 
as a quantum many-body eigenstate. This elevates the phantom spiral to a genuine 
quantum many-body scar even in 1D.

We consider the Hamiltonian

H =
∑

n>0
Jn
∑

i
[Sxi S

x
i+n + Syi S

y
i+n + ∆nSzi S

z
i+n], (33)

where Jn are arbitrary amplitudes and Δn is the anisotropy associated with each 
n, which is a general long-range Heisenberg XXZ model. (Note that the model 
considered in the paper is specified by J1 ≠ 0, Jn≠1 = 0 and ∆1 = ∆ = cos(Qp). 
We set the lattice spacing to a = 1 for brevity.) Now, if ∆n = cos(nQp) for all n, 
the phantom spiral with wavevector Qp will again be an exact eigenstate of the 
Hamiltonian, assuming an infinite lattice. The proof follows mutatis mutandis 
the one in the paper. For a finite lattice, it will be a metastable state due to the 
effect of boundary terms which break the exact solvability. While we note that 
this Hamiltonian would be extremely difficult to realize experimentally because 
Δn for each distance n must be fine-tuned, it does however provide an illustrative 
example of a deformation to the original Heisenberg Hamiltonian that preserves 
the phantom helix as an eigenstate of the system while breaking integrability.

We can show that the presence of longer-range interactions renders the 
model non-integrable by numerically computing the model’s level-spacing 
statistics. Specifically, we resolve all global symmetries of the system and 

compute the level-spacing ratio rn =
min(δEn,δEn+1)

max(δEn,δEn+1)
∈ [0, 1] where δEn = En+1 − En 

and En is the ordered list of many-body energies56. In Extended Data Fig. 5, 
we plot the average r value, 〈r〉, for the model with parameters J1 = 1, Jn>2 = 0, 
∆n = cos(nQp) and variable J2. As can be seen, for the Hamiltonian with purely 
nearest-neighbour interactions (J2 = 0), one gets 〈r〉 ≈ 0.39, consistent with the 
Poissonian statistics expected of an integrable system. In contrast, in the presence 
of next-nearest-neighbour interactions (J2 ≠ 0), 〈r〉 ≈ 0.53 for large enough J2, 
consistent with Wigner–Dyson statistics in the Gaussian orthogonal ensemble, 
indicating that the model is non-integrable.
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Extended Data Fig. 1 | Calibration of the wavevector Q. Starting with all spin aligned, under a constant magnetic field gradient ′, the wavevector Q grows 

linearly starting from 0 as a function of winding time twind until at time twind�=�T�=�15.608(4)�ms we reach a wavevector Q�=�2π/a and all spins are aligned 

again. All observed wavevectors fall on a line which determines the magnetic field gradient as ′ ¯ = ( ) = × ( )  at a bias field 

of B�=�882.612�G. The error bar of T implies an uncertainty in Q of at most�±�0.001�×�2π/a.
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Extended Data Fig. 2 | Dephasing at the chain ends and holes. If a spin has only one nearest neighbour, it experiences a torque and dephases rapidly at a 

rate�~Jxy (as opposed to a spin with two nearest neighbours, whose interactions cancel exactly in a phantom helix). This is the case for the spins at the two 

ends of the spin chain, as well as next to a hole. Additionally, the same spins experience an effective magnetic field = ˜
↑↑ − ˜

↓↓ (created by 

superexchange), which is reduced by a factor of two, compared to the bulk. This modifies the boundary condition at the ends, and can lead to dephasing.

NATURE PHYSICS | www.nature.com/naturephysics

http://www.nature.com/naturephysics


ARTICLESNATURE PHYSICS

Extended Data Fig. 3 | Numerically calculated contrast decay of finite, open chains. The simulation is performed using spin chains with 8 sites (blue) and 

15 sites (red), for Δ�=�0 (left) and 0.5 (right). The decay rate γ(Q) is determined using a short-time quadratic expansion as derived in ref. 17. The open chain 

boundary condition introduces a finite contrast decay even when the phantom condition is met (dashed line), but does not shift the Q-value at which the 

minimum decay rate occurs.
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Extended Data Fig. 4 | Phantom spin helices for triangular and kagome lattices. As in the case of the square lattice (see Fig. 4), we label each vertex 

with its azimuthal angle in the transverse plane. However, in the case of a triangular lattice (top) or kagome lattice (bottom), only ϕ�=�Qp�=�±2π/3 and 

Δ�=�−1/2 defines a valid phantom spin helix. Thus, the spin can only point in one of three directions in the Sx-Sy plane (denoted by three different colours), 

with relative angle 2π/3 between them. Note that the colinear neighbours of each red spin are blue and green spins, and the interactions of the blue and 

green spins with the red spin cancel for each line. In this way, one can understand the 2D phantom helix states as arising from simple ‘stacking’ together of 

phantom helices of 1D chains.
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Extended Data Fig. 5 | Level spacing statistics for the extended spin-1/2 XXZ model. The model is defined by equation (33) with J1 = 1, Jn > 2 = 0, 
∆n = cos(nQp), and variable J2. We numerically simulate a system of N = 22 spins on a ring, and choose Qp = 2πm/N where m = 3, which gives Δ1 ≈ 0.654 
and Δ2 ≈ − 0.142. The spin helix with wavevector Qp can be proven to be an exact quantum many-body eigenstate for any J2. We resolve global symmetries 
and compute eigenvalues in the sector with momentum k = 0, spin-flip G = 1, reflection parity R = 1, and magnetization M = 0. As can be seen, at J2 = 0 the 
average r-parameter 〈r〉 ≈ 0.39 (bottom dashed line), consistent with Poissonian statistics indicating an integrable system. When J2 ≠ 0, 〈r〉 → 0.53 (top 
dashed line) for large enough J2, consistent with Wigner-Dyson statistics in the Gaussian Orthogonal Ensemble (GOE), indicating that integrability has 
been broken. We expect the behaviour of 〈r〉 at J2 = 0 to be singular in the limit of very large system sizes; that is, any infinitesimal perturbation J2 in the 
thermodynamic limit will be sufficient to render the model non-integrable.
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