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Long-lived phantom helix states in Heisenberg
quantum magnets
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Exact solutions for quantum many-body systems are rare but provide valuable insights for the description of universal phenomena
such as the non-equilibrium dynamics of strongly interacting systems and the characterization of new forms of quantum matter.
Recently, specific solutions of the Bethe ansatz equations for integrable spin models were found. They are dubbed phantom Bethe
states and can carry macroscopic momentum yet no energy. Here, we show experimentally that there exist special helical spin
patterns in anisotropic Heisenberg chains which are long-lived, relaxing only very slowly in dynamics, as a consequence of such
states. We use these phantom spin-helix states to directly measure the interaction anisotropy, which has a major contribution from
short-range off-site interactions. We also generalize the theoretical description to higher dimensions and other non-integrable
systems and find analogous stable spin helices, which should show non-thermalizing dynamics associated with so-called quantum

many-body scars. These results have implications for the quantum simulation of spin physics, as well as many-body dynamics.

tems is an active frontier of research. It has broad implica-

tions ranging from understanding fundamental phenomena
such as quantum thermalization or the lack thereof = to realizing
new forms of matter (for example, time crystals®’) and to control-
ling entanglement for quantum information processing®’. However,
analysing such systems in full is difficult due to their complexity.

A large class of models which allows us to make significant prog-
ress is that of integrable systems. These systems feature stable qua-
siparticles at finite temperatures and occur generally in one spatial
dimension. Indeed, a wealth of dynamical phenomena has been
uncovered in them, such as generalized quantum thermalization'
and spin transport belonging to various universality classes such as
ballistic, diffusive and even superdiffusive lying in the celebrated
Kardar-Parisi-Zhang class, the latter of which was only recently
predicted''~* and experimentally observed'‘.

Another recent development is the theoretical discovery that
many integrable models host a special set of many-body eigen-
states that are degenerate, that is, so-called phantom Bethe states'.
These states are composed of multiple quasiparticles which carry
momentum but contribute zero energy (relative to the reference
‘vacuum’ state), akin to ghost particles, hence the term ‘phantom’
The existence of such states implies that there are special initial,
far-from-equilibrium configurations which do not thermalize to a
(generalized) Gibbs ensemble, hence representing an exception to
(generalized) quantum thermalization.

An integrable model which is paradigmatic for this behaviour
is the spin-1/2 anisotropic Heisenberg model in one dimension,
whose Hamiltonian is given by

| he dynamics of strongly interacting quantum many-body sys-

H=Jy > [SISf+ 8] + AS;Sf). (1)
(i)

Here, the transverse and longitudinal spin couplings (between
neighbouring sites i and j) are ], and J,:=], 4, respectively, where A

is the spin-exchange anisotropy. For this model, simple patterns of
spins winding in the transverse plane, that is, spin-helix states, share
the properties of the phantom Bethe states if their pitch A or wave-
vector Q:=2mn/A= Q, satisfies the ‘phantom condition’

A = cos(Qpa), 2)

where a is the lattice spacing. These ‘phantom helix states” are exact
many-body eigenstates of the system and do not decay.

In this work, we utilize our versatile ultracold atom quantum
simulator platform with tunable anisotropy'®’ to search for the
phantom helix states in the Heisenberg model (equation (1)). We
systematically explore the dynamics of spin-helix states and study
their decay as a function of wavevector Q for different fixed aniso-
tropies A, finding a non-monotonic decay rate with a pronounced
minimum near the expected special value Q,. This is the signature
of the phantom spin-helix state, confirming the theoretical predic-
tions of ref. '* and providing the first experimental evidence for this
novel general feature of integrable systems.

We further investigate whether the phenomenon of phan-
tom spin helices persists beyond integrable systems. We theoreti-
cally establish generalizations of the phantom spin-helix states to
Heisenberg models of higher dimensions, with higher spin quan-
tum numbers, and for non-cubic lattice geometries. The existence
of stable far-from-equilibrium helices in such systems, which are
non-integrable in general, leads to genuinely non-thermalizing
dynamics associated with so-called quantum many-body scars'. We
propose an experimental protocol to realize such scarred dynamics
with ultracold atoms.

In addition to the fundamental importance of phantom helices
for spin physics, the dynamics of phantom helices can be applied as
an important tool for quantum simulations of spin physics. Using
the phantom condition (equation (2)), we demonstrate how it is
now possible to experimentally determine the anisotropy A of the
Heisenberg model. Our measurements show that the anisotropy
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Fig. 1| Preparation and observation of spin-helix states. a-g, We prepare
a transverse spin helix where the spin vector winds within the $*-$ plane
with @=m/2 (a) or with arbitrary polar angle 8 (b). Black arrows indicate
the direction of the spins of the atoms (spheres) aligned along +S” (blue),
—S¥ (red) or intermediate directions (purple); grey ribbon is to guide the
eye. An initially spin-polarized state in the S direction (¢) is wound into a
spin helix with variable wavevector Q using a magnetic field gradient (black
triangles). Here, we illustrate a winding of Qa=x/2 (d). This state evolves
under the XXZ Heisenberg Hamiltonian (e). After unwinding the remaining
spin modulation to a resolvable wavevector (f), the local S magnetization
is imaged in situ (g) where dark blue indicates spins along +5’. Only the S
and & components of the spin are shown in c-f.

is strongly affected by nearest-neighbour (off-site) interactions
of the underlying Hubbard model which have not been observed
before for contact interactions (and therefore all alkali atoms) and
can be an important, general effect for quantum simulations with
ultracold atoms.

Spin-helix states and the phantom condition. In this work, we
study transverse spin-helix states

w(Q) =[] [cost@2)I), + sin@2)e ). 3

1

The polar angle 6 determines the local longitudinal spin component
(§7) = cos 0, which is initially constant along the chain, and z; is the
position of the ith spin (Fig. 1a,b). In the classical limit, any trans-
verse spin helix is stable for any anisotropy since the torques exerted
on a given spin by its neighbours cancel exactly'”. Therefore, the
decay of a spin helix is due to quantum fluctuations. However, for

200

wavevectors Q, fulfilling the phantom condition for |4] <1 (equa-
tion (2)), the fluctuations from the two nearest neighbours also
cancel exactly, making these special helices particularly long-lived
compared with helix states with any other wavevector. Intriguingly,
one can show that they are in fact exact many-body eigenstates of
the Heisenberg model (equation (1)) for infinite systems, or for
finite systems with appropriate boundary conditions". For the finite
chains with open boundaries that we prepared in our experiments,
the phantom spin helix is only metastable, as spins at the boundar-
ies have only one neighbour and dephase rapidly. This perturbation
propagates into the bulk', resulting in a finite decay rate.

For the isotropic system (A =1), the phantom spin helix has a
wavevector Q, =0 and thus reduces to a spin-polarized product state
for all angles 6 (for example, in the S direction for §=n/2), which
is a trivial eigenstate of this model. For A =0, the phantom condi-
tion yields Q,a =m/2, so that angles between neighbouring spins are
90° (assuming that all spins lie in the $*-§” plane, that is, §=m/2).
To explain intuitively how this state is metastable, consider a spin
which points, for example, in the S* direction, with quantum fluc-
tuations in the §-§° plane. Since J,=0, there is no interaction from
the S§¢ component, while the $ component causes no precession on
the neighbouring spins, which also point along the +& direction.
In the following, we demonstrate the existence of these long-lived
phantom helices for general A and confirm the predictions of the
phantom condition (equation (2)).

Experimental methods. As in our previous work'®"’, the spin model
is implemented by loading ultracold "Li atoms in the two lowest
hyperfine states into a three-dimensional optical lattice. This sys-
tem is well described by a two-component Bose-Hubbard model.
Two of the three lattice potentials are kept high at 35E;, where
E,=h?/(8ma?) is the recoil energy for atomic mass m with h being
the Planck constant, creating a bundle of isolated one-dimensional
(ID) chains. The lattice depth of the third axis V; is set to a
value between 9E; and 11E;, which is deep enough that the sys-
tem remains in the Mott insulating regime while still allowing for
spin dynamics.

Because particle motion is suppressed in the Mott insulator, the
dynamics of the remaining degrees of freedom can be described
using a pure spin model. By mapping the two hyperfine states onto
spin |1) and |].), we can realize the spin-1/2 Heisenberg XXZ model
(equation (1)) in which the interactions are mediated by super-
exchange'**?. The longitudinal and transverse spin couplings are
given by

J. = +482/Usy — 482/U, | — 48/Usy

- (4)
Joy = — 48/Usy,

where t is the tunnelling matrix element between neighbour-
ing sites and U,;, U,, and U,, are the on-site interaction energies.
The spin couplings (equation (4)) can be varied over two orders of
magnitude by changing the lattice depth V|, which scales the entire
Hamiltonian. We control the anisotropy A:=],/J,, via an applied
magnetic field B, which tunes the interactions through Feshbach
resonances'®'”*. In our realization, the transverse coupling is anti-
ferromagnetic (/,,>0).

The transverse spin helix is created by radiofrequency pulses to
tilt the spins to a finite polar angle 6, followed by magnetic field
gradients to wind a helix'”*** (Fig. 1¢,d and Extended Data Fig. 1).
Time evolution is initiated by rapidly lowering V,. The dynamics
following this quench are governed by the 1D XXZ model (equation
(1); Fig. 1e) with a selected anisotropy A. After a variable evolution
time ¢, the dynamics are frozen by rapidly increasing V;. The sam-
ple is then imaged. Experimental parameters are given in refs. '*
and Methods.

NATURE PHYSICS | VOL 18 | AUGUST 2022 | 899-904 | www.nature.com/naturephysics


http://www.nature.com/naturephysics

NATURE PHYSICS ARTICLES

a b c

L I B R B §

S B A R

Time, t (i)

Fig. 2 | Decay of spin-helix states. a-c, The spin-helix contrast c(t)
measured for A~ 0 and =mx/2 at two different lattice depths 9E; (red)
and 11E; (blue), with corresponding spin-exchange times h/J,,=1.06
and 2.91ms, for three wavevectors: Qa= 0 with all spins aligned (a),
Qa=m/2 with neighbouring spins perpendicular (b), which is a many-body
eigenstate for A=0, and Qa=r with all spins anti-aligned (c). Their
respective spin patterns in the S-S plane are illustrated by the arrows
above each panel. The decay curves at different lattice depths collapse
when times are normalized in units of #/J,,. The contrast lifetime is
significantly longer for Qa=mr/2 compared with Qa=0 or &. The linear
fit function captures the decay and averages over an oscillatory beat
note between the spin chains and isolated atoms as discussed in ref. V.
An experimental detection noise floor is on the level of ~0.06. Error bars
represent 1o uncertainty of the fits.

Our imaging system limits the direct observation of spin modula-
tions to a wavelength of 4> 6a. To image spin helices at any value of
Q, we first unwind the remaining spin modulation to a wavelength
of A~ 10a by applying a z-pulse followed by a magnetic field gradi-
ent as in Fig. 1f. After unwinding, we turn the transverse helix into
a population modulation by applying a /2 pulse. Finally, we detect
the spatial distribution of spin |1) atoms in situ with state-selective
polarization-rotation imaging (Fig. 1g). Compared with our previ-
ous work'®", this novel unwinding step extends our observable range
of wavevectors Q all the way to Qa=mn, where neighbouring spins
are anti-aligned. Integrating the images along a direction perpen-
dicular to the chains yields a 1D spatial profile of sinusoidal popula-
tion modulation over all spin chains (Fig. 1g). The observable is the
normalized contrast ¢(f) of this sinusoidal spin modulation. Due to
the lack of exact theory for the decay shape, we fit the whole decay
curve by a linear function (1 —yt) to phenomenologically determine
a decay rate y, while accounting for a constant experimental detec-
tion noise floor for long times ¢. (See Methods for details of the fit-
ting.) For the data in Figs. 2 and 3b-d, we measure the spin dynamics
at two different lattice depths V, and verify that the decay curves c(¢)
collapse when time is rescaled by the spin-exchange time #/J,, con-
firming that the spin dynamics is driven by superexchange.

Experimental observations of phantom helices. Figure 2 illustrates
the contrast decay c(t) for spin helices with different wavevectors Q
at A= 0. We see that the decay for Qa=n/2 is noticeably slower than
that for Qa=0 or n. This non-monotonic behaviour is the signa-
ture of phantom spin helices. This feature is emphasized in Fig. 3 by
comparing the contrast decay rates y as a function of Q for various A.
Since the superexchange interactions in equation (4) depend on the
scattering lengths, we can tune A smoothly by varying the magnetic
field. In the next section, we confirm that the value of A obtained
from the observed minimum of the decay rate agrees with the value
of A derived from equation (4) (with appropriate higher-order cor-
rections) and previously determined scattering lengths”. Figure 3 is
consistent with a predicted exact symmetry (Methods) in that the
decay rate at a wavevector of Q and an anisotropy of 4 is equal to
that at a wavevector of n/a — Q and an anisotropy of —A.
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We employ a fit function y(Q) = y,|A — cos(Qa)| + y,, derived
previously from a short-time expansion of the spin-helix contrast
c(t) (ref. 7). Here, 4, y, and y, are treated as free fit parameters. y,
represents a bulk-intrinsic dephasing decay (for spin helices away
from the phantom condition) originating from quantum fluctua-
tions of the spins. Therefore, its magnitude is on the order of the
spin coupling J,./h. y, represents a background decay rate account-
ing for effects such as finite chain length, holes in the spin chains
and inhomogeneous lattice depth, which enable dephasing induced
by an effective magnetic field h, = 4£/Uyy — 482/U, (ref. V),
which is also created by superexchange and, for our experimental
situation, is comparable to J,, (Methods and Extended Data Figs. 2
and 3).

We also observe phantom helix states for various polar angles
in Fig. 3b-d. This confirms the prediction’ that there is a whole
family of phantom helix states for a given value of A. We find that
a larger absolute value of the total §* magnetization (that is, 6 close
to 0 or =) leads to an overall slower decay. This is expected since
such values of 6 correspond to states that are almost uniformly
polarized along the §° direction with a small density of quasipar-
ticles (magnons), which gives rise to a small rate of inter-particle
scattering events.

For anisotropies |A| > 1 (Fig. 3a,e, open symbols) there is no lon-
ger a stable spin-helix eigenstate’®. We see instead that the mini-
mum decay rate always occurs at Q=0 (for A>1) and Qa=m (for
A <—1). Comparing decay rates across A in this range, we find a
Q-independent increase relative to the |A|=1 case which is mono-
tonicin |A|—1.

Our improved imaging protocol allows us to access new param-
eter regimes beyond previous work. For the isotropic system
(A=1), we had observed diffusive spin transport characterized by
7(Q)ry,Q%a*/2+y, (refs. ''7**). However, we now see this qua-
dratic behaviour break down for large Q when the wavelength 4
becomes comparable to the lattice spacing a (Fig. 3a). The fastest
decay occurs for the Néel state (Qa=m), where neighbouring spins
are anti-aligned. This directly demonstrates that this classical anti-
ferromagnetic state is not the ground state of the quantum antifer-
romagnetic Heisenberg Hamiltonian. Nevertheless, the Néel state is
an exact highly excited eigenstate for A=—1 (Fig. 3e).

Extension to higher dimensions and long-range systems. The
phantom spin-helix states were originally discovered in 1D as a
coherent superposition of Bethe phantom states, which are special
degenerate solutions to the Bethe ansatz equations'. This raises
the question of whether this phenomenon is tied exclusively to
integrability. We find that this is not the case. We can rigorously
show that stationary phantom helix states exist for the anisotropic
Heisenberg model defined on hypercubic lattices in arbitrary spa-
tial dimensions and for arbitrary spin quantum numbers. A valid
phantom spin-helix state in d dimensions is specified by a wavevec-
tor Q=(Q,,*+-,Q,), such that Q=Q,:=Q,x, where xe{-1,1}*is a
binary vector of +1s and Q, (0 < Q,a <) satisfies the phantom con-
dition A = cos(Qpa) (equation (2)). The precise statement as well
as the corresponding proof is presented in Methods.

Figure 4 demonstrates an example of a two-dimensional spin helix
on a two-dimensional (2D) square lattice with a particular winding
angle ¢ = Q,a=40° which is a phantom helix state for the aniso-
tropic Heisenberg model with A = cos(40°) ~ 0.771. Spins along
each (horizontal and vertical) line in fact form a one-dimensional
phantom helix state with a winding angle of ¢=Q,a. Additionally,
note that the 2D model, owing to the nearest-neighbour pairwise
nature of its interactions, can be written as a sum of 1D Heisenberg
Hamiltonians along each line. One can therefore understand the
stability of these 2D phantom helices (as well as higher-dimensional
generalizations) as arising from the 1D mechanism of pairwise can-
cellation of fluctuations demonstrated above.
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Fig. 3 | Observation of phantom helix states. a-e, The decay rate y as a function of the wavevector Q, shown for fitted anisotropies A ranging from positive
(a,b) through zero (¢) to negative values (d,e) measured at lattice depths of 9E; (red) and 11E; (blue). The decay rate minimum occurs at a wavevector

Q, which increases smoothly from Q,a=0 for Ax1(a) to Q,a=n for A=~ —1 (e). Error bars represent 1o uncertainty of the fits. The long-lived spin pattern
in the S-S plane is illustrated above each panel. Fits y(Q) = y;|A — cos(Qa)| + y( (lines) are used to find Q, and the anisotropies 4 shown in Fig. 5. In
addition to the purely transverse helices (polar angle §=nr/2, circles), b-d also show the decay of spin helices with polar angles §="5x/12 (green triangles)
and 0=2n/3 (orange triangles). The curves above were measured at applied magnetic fields of B=847.887G (A >1) and 847.286 G (4~ 1) (a), 845.760G

(b), 842.905G (c), 839.376 G (d), 833.004 G (A~ —1) and 827.287 G (4 < —1) (e). The shape of the decay rates y(Q) for A>1(4 <1) is identical to
those for A =1(A =-1). Both are pure cosines with an offset. In the absence of a full theory for the amplitude of oscillation y, and the offset y,, we cannot

determine the value of A for |A]>1.
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Fig. 4 | A 2D phantom spin helix for the anisotropic Heisenberg

model with A = cos(40°) ~ 0.771. The spin helix has a wavevector
Q=(Q,Q)=(Q, Q)), with ¢ =Q,a=40°. The azimuthal angle of the spin
in the transverse plane is labelled for each vertex. Spins with the same
angle are encoded with the same colour to guide the eye.

Non-trivial phantom helix states also exist for non-hypercubic
lattices, for example, triangular and kagome lattices, provided
that the winding angle and anisotropy are ‘compatible’ with the
geometry of the lattice (Extended Data Fig. 4). Specifically, this
requires anisotropy A=-1/2, giving rise to ¢==+2n/3 (Methods
and refs. 2%%).

Our experimental protocol can be extended to phantom states
in higher dimensions to observe the associated quantum scarred
dynamics. After initializing a spin-polarized sample at high fields
near a Feshbach resonance, we would ramp to a low field where
we can wind spin helices in arbitrary directions, not limited by the
direction of the high bias field. Subsequently, we would return to
high Feshbach fields where we can simulate the XXZ model, and
finally return to a low field to unwind and measure the contrast for
different evolution times. The full procedure and current technical
limitations are described in Methods.
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Lastly, we mention that there exist certain long-range defor-
mations to the spin-1/2 model in 1D which break integrability
yet retain the phantom helix as an exact eigenstate (Methods and
Extended Data Fig. 5).

Measurement of anisotropy. Besides being of fundamental interest,
the phantom helix states also have applications in quantum simula-
tions. We can use the sensitivity of the phantom helix states to mea-
sure the spin-exchange anisotropy A=]/J,, precisely as a function
of the applied magnetic field B (Fig. 5). Until now, there has been
no protocol to directly measure A. It could only be estimated'®"”
from measured scattering lengths a,,, 4,, and a,, (refs. **’) using
equation (4). Figure 5 compares our measured A with the predic-
tions based on scattering lengths. They agree quite well away from
Feshbach resonances, where we expect equation (4) to be accurate
with some well-established corrections (Methods and Fig. 5). This
validates the method of using the phantom phenomenon to deter-
mine A even in situations where a microscopic theory is not avail-
able or not accurate, for example, when there are strong interactions
near Feshbach resonances (Methods).

We first discuss the accuracy of our determination of A and
possible systematic errors. Repeated measurements of A are repro-
ducible to better than 0.1, as is clearly visible by the small random
scatter of the data points in Fig. 5. In addition, there are possible
systematic effects. For one, the observed decay is non-exponential
and our fit function y(Q) = y,|A — cos(Qa)| + 7, was derived
from a short-time quadratic expansion of the decay of contrast'’.
Experimentally, however, we can only observe the contrast at inter-
mediate times where the decay is more linear (as already discussed
in previous work'®'”**). The most robust and consistent fits were
obtained with a linear function (1 —yt), where y is the decay rate.
Additionally, some of the contrast decay curves have an oscillatory
component which averages out for long but not shorter decay times.
By using different fit functions (exponential, linear, with or without
oscillating terms and different constraints for the fit parameters) for
our data and numerically simulated data, we find that |A| in Fig. 5
could be overestimated. At |A| 0.5, the overestimation is the most
severe and can be up to 0.15 (30%), but it is smaller (~0.05) for |A|
closer to 0 and 1.

Furthermore, a systematic shift of |A| could also occur if there
were a Q-dependent background decay mechanism, although pre-
liminary investigations provide no evidence that such an effect
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Fig. 5 | Tuning the anisotropy with magnetic fields. Measured anisotropies A (blue circles) compared with the standard model for superexchange given

by equation (4) (solid line) using previously measured scattering lengths?’. Error bars represent 1o uncertainty of the fits. The dashed black line includes
next-order corrections to the underlying Hubbard model including bond-charge tunnelling, higher-order band corrections and off-site interactions®, as well
as a small adjustment of the background scattering length of a,,, which was not tightly constrained by previous measurements. The dashed lines are not
shown near Feshbach resonances because equation (4), even with corrections, is no longer valid. Major deviations near the two 11 Feshbach resonances at
845.506 and 893.984 G (vertical dotted lines) are evidence for off-site interactions.

exists (Methods). Several of these issues could be addressed experi-
mentally in the future by using a quantum gas microscope and
observing the dynamics in single isolated spin chains.

The ‘dispersive’ shape of A near the two Feshbach resonances in
Fig. 5 cannot be explained by the ‘standard’ superexchange model of
equation (4), since these spin coupling parameters depend on 1/U;
and therefore vary smoothly across the resonance. The leading-order
corrections to the underlying standard Hubbard model'****' include
bond-charge tunnelling®, higher-band corrections to U (refs. ****)
and off-site contact interactions V (ref. '°). As long as the extended
Hubbard model involves only nearest-neighbour terms, the spin
physics of a Mott insulator phase at unity filling is still described by
the anisotropic Heisenberg model of equation (1) (Methods).

Of the various corrections to the standard Hubbard model®, only
contributions from off-site interactions have the correct symme-
try and sign to explain the observed dispersive feature (Methods).
Therefore, the phantom helix states reveal that spin-spin interac-
tions near a Feshbach resonance are caused by off-site interactions
which have never been observed for contact interactions (they have
only been observed for long-range dipolar interactions®) or a new
form of interactions. Off-site interactions originate from the small
overlap of a Wannier function on one site with those of its near-
est neighbours™ and add a correction term to J, in equation (4) of
2(Vy +V,, —2V,) (ref. '), where V,,, V,, and V|, are the off-site
interaction energies. However, as we will explore in future work, the
current model for off-site interactions***"*¢ cannot fully explain our
observations, and a more elaborate theory is needed to account for
the correct spin Hamiltonian near a Feshbach resonance.

Discussion and outlook. Previous studies of the Heisenberg model
have focused on the ground state” -, low-lying elementary excita-
tions including magnons'®"" and Bethe strings'>*, or on unstable
dynamics far from equilibrium'#'®'7?**_ This work captures a new
class of excitations: phantom spin-helix states. These are highly
excited yet long-lived metastable states whose stability is not the
result of symmetry but rather due to a delicate cancellation of inter-
actions. In fact, such atypical, slow dynamics are not only specific
to the Heisenberg model but also expected to be exhibited by other
integrable systems, as expounded in ref. '*. Our experimental find-
ings thus constitute a concrete demonstration of this novel, general
dynamical phenomenon.

More broadly, we have theoretically explored spin-helix states
in systems with higher spatial dimensions, for different spin quan-
tum numbers, in various lattice geometries and with longer-range
interactions, all of which are not integrable. Nevertheless, we find
that, for the special initial condition of a phantom helix state, the
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system does notrelaxatall, despite the presence of strong interactions.
Such non-thermalizing dynamics in non-integrable, many-body
systems constitute examples of ‘weak ergodicity-breaking, or what
are now known as ‘quantum many-body scars’®. While various
toy models hosting exact quantum many-body scars have already
been discussed in literature, such models are primarily theoreti-
cal constructs which are difficult to realize experimentally’*.
In contrast, we demonstrate that one of the simplest examples of
a many-body system (the XXZ Heisenberg model) can support
quantum many-body scars, a fact which has been overlooked
thus far. The relative simplicity implies that probing such scarred
dynamics experimentally is relatively straightforward, and in
Methods we propose how our current protocol can be extended to
higher dimensions.

We expect phantom helix states to have applications in quantum
simulations of spin physics. We have demonstrated the potential
of the phantom helix states as a sensitive tool to directly measure
the anisotropy A. They have revealed that even short-range interac-
tions can lead to strong off-site interactions in spin models. This can
now be used to realize extended Hubbard models®* including the
quantum lattice gas (or ~V) model* which supports a supersolid
phase™. In the future, these long-lived helix states could be an inter-
mediate step in preparing other many-body quantum states or be
used for robust quantum sensing®'. It has been shown that phantom
helix states maintain the classical topological protection of winding
patterns®. An intriguing question is what will ultimately limit the
stability of these states if periodic boundary conditions are realized
with ring-shaped atom arrays®. Such studies are likely to provide
new insight into spin dynamics far from equilibrium.
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Methods
Experimental methods. As described in previous work'®, we prepare 4.5 10" Li
atoms in an optical lattice with spacing a=532nm in the Mott insulating regime
with one atom per site in the |1) state. The lowest and second-lowest hyperfine
states of ’Li realize the ||) and | 1) state, respectively. The Mott insulator diameter is
approximately 44 lattice sites, of which doublons account for less than 0.5% while
holes are estimated to represent 5-10%. The density degree of freedom is frozen
out after loading into the deep optical lattice (35Ey, where Ey/h=25.12kHz), and
the on-site interactions Uy, U,, and U}, can be varied freely by using an externally
applied magnetic field B to adjust the anisotropy A without affecting the global
atom distribution, as long as the atoms stay in the Mott insulating regime™. We
profiled the Feshbach resonance extensively in our previous work”. The finite size
of the lattice beams introduces small inhomogeneities of the lattice depths, which
has been described in detail in ref. '°.

In a deep lattice, a global radiofrequency pulse is used to rotate all the spins by
an angle 6 away from the initial | 1) state

ly) = [ Jlcos(672)[1), + sin(6/2) |4),]. ®)

Most of our experiments are on purely transverse spin patterns where 0 =m/2,
generating an §* polarized state [y) = [T,[|1); + |4),1/v/2. An applied magnetic
field gradient in the z direction causes spin precession at rates which depend
linearly on the position z; of the spin, thus creating a spin helix'**-¢

ly) = ] Jlcos(672)[1); + e =¥ sin(6/2)[1)]. (6)

We apply a magnetic field gradient of up to 39 Gcm™ over a time of up to 8 ms to
wind the spin helix. We calibrate the spin winding process against the duration and
magnitude of the applied gradient by overwinding the spin helix beyond Qa ~ 2x.
Since the wavevectors Q and Q+ 2n/a correspond to the same state, we obtain an
absolute calibration of winding angle versus time-integrated gradient. In other
words, our wavevectors Q are measured directly in units of the lattice spacing a,
independent of the (less accurately known) imaging magnification. All helices with
directly observable Q fall on a line in Extended Data Fig. 1. This allows us to find
the winding time and gradient required for helices with wavevectors Q which we
cannot image directly.

After winding the spin helix, we initiate spin dynamics in 1D chains by
ramping down the lattice depth along one direction to 9E; or 11Ej, which is small
to enable fast superexchange but still large enough to stay in the Mott insulating
regime. The ramp time is 0.5 ms, fast compared to the superexchange time #/],,
(ranging from 1 to 4ms) but slower than the inverse of the interaction energies
h/U,y, kU, and A/U,| (<0.05ms), thus realizing a quantum quench for the spin
sector of the Mott insulator. At a lattice depth of 11E;, the tunnelling rate is
#/h ~ 380 Hz and the on-site interactions Uy, and U,, vary weakly as a function
of the external magnetic field (ranging from U, ,/h=—6.8 to —3.0kHz and from
U, /h=-11.0 to —2.9kHz in the magnetic field range of B==830 to 1,150 G used in
our experiments), whereas U, can be tuned via Feshbach resonances to arbitrary
positive and negative values. After a variable evolution time t, the spin dynamics
is frozen by increasing the lattice depth back to 35E, (where the tunnelling rate is
#/h = 5Hz) within 0.5 ms, followed by an unwinding step to a resolvable readout
wavevector Q=21 X 0.1/a, which allows us to measure the contrast of high-Q spin
helices indirectly.

As described in refs. '*'7, we determine the contrast C by a fit
f(z) = g(z)[1 + Ccos(Qz)]/2, where g(2) is a Gaussian envelope function that
accounts for the spatial distribution of all atoms. During the evolution time
t, the contrast C(t) decays. We fit the decay rate of the normalized contrast
c(t):= C(t)/C(0). The decay rate at early times should be quadratic (see discussion
below and ref. ), but because we cannot observe the system at t=0 and the exact
decay shape is not known, we use a linear fit to phenomenologically determine a
decay rate. For long evolution times ¢ the contrast c(t) approaches an experimental
detection noise floor on the level of ~0.06.

16,17

Discussion of decay rates. In the main text, we found that the measured decay
rates of spin helices obeyed well the fit function

7(Q) =714 — cos(Qa)| + 7o @

Here, we discuss the physical interpretation of the terms associated with y, and
7o- We also discuss which experimental techniques can eliminate the mechanisms
that contribute to y, which would lead to very long lifetime of the phantom helix
state. In our experiment, the bulk-intrinsic dephasing rate y, and the background
decay y, are comparable. Nevertheless, y, is small enough that the signature

7114 — cos(Qa)| of the phantom helix states can clearly be observed and
distinguished from the background decay y,.

Bulk decay rate y,. As mentioned above, the contribution y,|A — cos(Qa)| was
derived via a short-time expansion of the contrast c(t) for general spin helices
evolving under the 1D Heisenberg model”. Therefore, this term can be understood
as arising from the intrinsic decay associated with a spin helix with wavevector not

NATURE PHYSICS | www.nature.com/naturephysics

equalling the phantom wavevector Q# Q,. The rate y, scales as J,, but is also set by
the effective exchange coupling of spins, determined by the quasiparticle (magnon)
density in the system, which can be tuned by the polar angle 6. In particular, at low
densities (which translates to @~ 0 or ), 7, is small. Indeed, for #=0 (=), the spin
helix for any Q is a spin-polarized state in the +5° (—§°) direction, which is trivially
an eigenstate for any anisotropy A. Hence y, =0 for these angles. That is, such a
‘spin helix” does not decay.

Boundary conditions. The derivation of this decay mechanism assumed an
infinitely long chain. For finite chains, precise boundary conditions matter. The
phantom helix state is only an eigenstate if the system has periodic boundary
conditions and its wavevector is commensurate with the system size, or if the
system has open boundary conditions with appropriate pinning fields at the ends
of the chains". Therefore, for generic finite, open chains, even a phantom helix
(that is, with Q satisfying A = cos(Qa)) will decay as spins at the boundaries
will start to precess and disturb neighbouring spins, and such perturbations
propagate into the bulk and destroy the spin-helix pattern'’. This contribution to
7o should scale as ~J, /L and can be suppressed by long chains or using ring-shaped
geometries™ realizing periodic boundary conditions.

Effective magnetic field. The situation of finite, open chains is realized in our
experimental platform. Important contributions to y, originate from an effective
magnetic field h, = 47/Uyy — 4#/U | as described in our previous work'”. This
effective field has only half its value at the ends of the chain and therefore modifies
the boundary condition by acting as a pinning field.

The effective magnetic field can lead to another contribution to , if it is
inhomogeneous across the cloud. This causes inhomogeneous broadening across
different chains and a beat note between the chains and isolated atoms'”. Such
effects can be eliminated by using spin-echo techniques (see previous work'”
detailing this), or by experiments where individual chains are resolved by using
imaging with single-site resolution. The effective magnetic field is absent for
hyperfine states with U,, = U, , often fulfilled in experiments with rubidium atoms.

Holes. An additional contribution can come from the presence of holes (with an
estimated fraction of 5-10%) in the Mott insulator. Holes near the ends of the
chain are localized by the trapping potential®, effectively shortening the chains
(Extended Data Fig. 2)"”. Mobile holes give rise to a number of effects. First, they
create effectively fluctuating spin couplings and local magnetic fields. This leads
to a dephasing of transverse spin, leading to a loss of contrast. Second, when holes
move around, they can create ‘phase slips’ in the spin-helix pattern, mismatches
in the winding angles between adjacent spins, such that interaction from two
neighbouring spins do not cancel but instead cause dephasing. The effects of
mobile holes can be reduced by pinning them to their original locations using a
sufficiently strong potential gradient, as we showed in previous work™.

Q dependence of y,. If the background decay rate y, has a Q dependence, it can
shift the minimum of the decay rate from the phantom condition A = cos(Q,a)
and hence lead to a systematic error in the measurement of A. We investigate

the edge effect by numerically simulating spin dynamics on open chains, and
extract the total decay rate y(Q) through an early-time fit (Extended Data Fig. 3).
We see that there is no shift in the decay minimum, even though there is now a
finite decay rate at the phantom condition. For the experimental data, we must
extend fitting to longer times. Applying this to simulated decay curves, which
have a non-exponential shape, can lead to differences in |A| of up to 0.15 when the
contrast decay c(t) is fitted with different functions.

Note that, when random phase shifts are applied to each spin, the contrast
reduction does not depend on Q. This is a simplified model for the fluctuating
effective magnetic field due to mobile holes'”. Our understanding of the Q
dependence or Q independence of decay rates is incomplete, but it is consistent
with the experimental observation that y, appears to be independent of Q (owing
to the goodness of the fit of equation (7) to the experimental data). This gives us
confidence in the ability to determine A reliably from the phantom condition.

Decay rates for 2D spin helices. We expect the bulk decay rate y, to exhibit

similar behaviour and magnitude as in 1D. For the background decay rate ,, the
contribution from boundary effects should also be comparable. Although the
boundary of a 2D system is 1D in nature (and thus scales with the linear
dimension L of the system), the ‘signal’ (~L?) to ‘noise’ (~L) ratio scales in

the same fashion as in 1D (L:1). The effect of mobile holes can potentially be more
severe in 2D because phase slips can proliferate. A hole that has moved [ sites
typically leaves O(!) phase slips in its wake. In contrast, in 1D, such phase slips are
localized (but mobile) objects. Mobile holes can be pinned by a potential gradient
(see above).

Decay rates for polar angles 0#n/2. We discussed above that a transverse spin helix
with finite §* magnetization should exhibit a reduced decay rate y,. This should also
apply to the background decay rate y, associated with the edges of the chain. This
expectation is consistent with our observation in Fig. 3¢,d. However, the observed
effect is comparable to long-term experimental drifts in y, due to changes in atom
number and hole fraction.
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Symmetry in decay rates. We elaborate on our comment made in the main text
that the decay rate at wavevector Q and anisotropy A is equal to that at 1— Q and
anisotropy —A. Here we set the lattice spacing to a=1 for brevity.

This symmetry in fact stems from a symmetry of the contrast c(t) between
parameters (Q,4) and (m— Q,—A). To see this, consider the extraction of the
contrast at (Q,A). This first involves a measurement of the local magnetization in the
transverse plane, which without loss of generality we take to be in the S* direction:

(S5(0)ga = W(Q) M isre Dy (Q)) . ®)

In the above, H(A) is the Heisenberg model with anisotropy A and |y (Q)) is the
spin-helix state with wavevector Q. We can insert identity operators 1 = U'U= UU"
in between the states, time-evolution operators and observable, in the above
expression, where U is the unitary transformation U = Hnei""si. Now, under U,
we have the following transformations: |y(Q)) — |w(Q — n)), H(4) — —H(-A4)
and Sy — (—1)"S;. We can further take a complex conjugation over the

entire quantity, which is invariant due to it being real-valued (as it constitutes

a measurement), however now its individual constituents change as follows:

W(Q — 7)) > [y(x — Q)), ir>—i, ~H(—A) > —H(—4) and S > S,

Therefore, we have

(S50 ga = (DS D) g a- ©

Next, the contrast is determined from the Fourier component at wavevector Q:
2

c(Hon = 7 > TS .a cOS(Qn + p), (10)

n

where ¢ is the initial phase of the helix. Using equation (9) and the trigonometric
identity (—1)" cos(Qn + ¢) = cos((x — Q)n — ¢) for n € Z, we have

N = 2 (S0, q_a(—1)"cos(Qn+ )

PIKS
=12 (S0 e_qcos((m = Qn — ) (11)

=c(Dr_q_a

as claimed.

Higher dimensions, arbitrary spin quantum numbers and non-hypercubic
geometries. In this section, we extend the phenomenology of stable phantom
helices to Heisenberg models in higher dimensions, arbitrary spin quantum
numbers and non-hypercubic geometries. Specifically, we prove that, for any given
anisotropy in the easy plane |A| <1, there exist phantom helices which are exact
many-body eigenstates of the model, provided the phantom condition (equation
(2)) holds and appropriate boundary conditions are taken.

Model and spin-helix states. We consider the quantum Heisenberg XXZ model
for any spatial dimensionality d, spin S and lattice geometry. The Hamiltonian
is given by a sum over pairwise nearest-neighbour interactions (we set J,,=1 for
simplicity):
H(A) =) (5/S] +8iS)) + AS(S], (12)
(i)

where S (a=x, y,z) are spin-S operators.

The generalization of a spin-helix state from the spin-1/2 case (equation (3)) is
given by

(@) =[] [ ™ s)].

i

(13)

Here, |S), is the local maximal spin state satisfying (S; - S;)[S); = S(S + 1)S);
and S7|S); = SIS);. Q=(Q,, -+, Q,) is a d-dimensional wavevector parameterizing
the winding rate and direction of the helix, and r; is the coordinate of the spin at
site i. Therefore, equation (13) locally describes a state created by rotation by angle
6 from the z-polarized state around the & axis, before a winding in the $*-§ plane
by a site-dependent angle Q-r;.

Statement of results. For the model and state above, we have the following
statements (where we set the lattice spacing to a=1 for brevity):

Theorem 1. (phantom spin helices for the hypercubic lattice). Consider a
d-dimensional hypercubic lattice of volume L, X L, X ... X L, and the anisotropic
spin-S Heisenberg model with anisotropy A defined on it. Let |A| <1, which we
parameterize as A = cos(Qp) (the ‘phantom conditior’) for Q, € [0, 7). Define

the wavevector Q, := Q,x where x is a binary vector x=(x,, -+, x,) €{-1, 1}4, and
suppose that the linear dimensions L, are such that L,=2mr/Q, for some m; € N.
Then, the spin helix with wavevector Q, and any polar angle @ is an exact eigenstate
of the model with energy E = §? cos(Q,) x #Links.

Theorem 2. (phantom spin helices for the 2D triangular and kagome lattices).
Consider a 2D regular triangular or kagome lattice and the anisotropic spin-S
Heisenberg model with anisotropy A =—1/2 defined on it. Define Q,=2n/3 so
that cos(27/3) = —1/2 = A. Then the spin helix with wavevector Q,=(2Q,,0)
or (4Q,,0) and any polar angle 6, is an exact eigenstate of the model with

energy E = §? cos(Q,) x #Links, provided the lattice dimensions are such that it
is commensurate with the helix pattern.

Remarks. Figure 4 shows an illustration of the phantom helix for a 2D square lattice,
while Extended Data Fig. 4 shows the phantom helix for the 2D triangular and
kagome lattices. Note that the phantom helix state for the triangular lattice is known
as the 120° Néel ordered state in condensed matter physics, which is the ground
state of the classical antiferromagnetic Heisenberg model. For the kagome lattice,

it is also known as the /3 x /3 state (Extended Data Fig. 4). We show here that
they are exact eigenstates for the quantum Heisenberg model at A =—1/2. Note that
the phantom helix states that we discuss here for triangular and kagome lattices

are in fact special cases of more general, so-called three-colour states, discussed

in refs. ***, which can be shown to be exact ground states of the spin-1/2 model at
A=—1/2. Our result recovers this result and extends it by showing that the phantom
spin helices are also exact eigenstates of the model for all spin quantum numbers.

Proof. Define the local term of the Hamiltonian

hij = (SIS} + 8]S)) + cos(Q,)S7S; (14)

so that H(cos(Qp)) = > G hij. Consider a local part of the spin-helix state with
wavevector Q,, specifically on a pair of neighbouring spins i and j:
ks 08 —i®;57_ —i6S]
W)y = e e s), @ e T e T S),

e , I (15)
— IS (eﬂgs; Is), ® e—lsqb,,sje—ms]ymj) ,

where @,=Q-r;and 8@;;= (®,— ®,). A simple but key property is that, for

the set-ups described in either theorem, e ~%i = e =% or /% for any

nearest-neighbour pair of sites. (Clearly this is true for any hypercubic lattice.
For the triangle lattice with primitive vectors b, =(1,0) and b, = (1/2, v/3/2), we
have e*#%3 = ¢¥i, For the kagome lattice, the primitive vectors are b, = (2,0)
and b, = (1, \/5) while the lattice vectors within each unit cell are a; = %bl and
a = %bz, so the result is the same as for the triangular lattice.)

With this in mind, we evaluate the action of h; on the state

e MO (5157 + 5)) + cos(Qp)S7S))

[e—iosf‘ 1S), ® e FiQS; o —i6s] \S>j]

— PSS FIQS
x (s;‘(s; cos(Qy) F 8/ sin(Qy)) + 8 (8] cos(Qy) £ 5 sin(Qy)) + cos(Qp)sfs;)

x [ 1s), @ e 9)))

o IPSHS) TFIQS
x (cos(Qp)(st; + 88 + 8i87) F sin(Qp)(S]S] — S?Sf))
« |:e—i€S,y 1S), ® o608 |S>j] )

(16)

The term proportional to cos(Qp) is S;+S;, and the state on the right-hand side of
the last line of the above equation is a uniformly polarized state, so it evaluates to
the original state up to a multiplicative factor

§ cos(Qp) ). (17)

Now we just have to evaluate the term proportional to sin(Qp ). Ignoring the factor
—id (S5 [ FiQyS
e i e 7, we have

F5in(Qp) (18] = SI57) [ [3), @ 7 15) ]

= Fsin(Qp) (e e ™)
x [(s;f cos(6) + S sin(6))] — §/(S; cos(8) + S sin(a))]
x 18, ®9), (18)

=F Sin(Qp)(e—ias{e—iesj)

X [008(9) (S7S] — S/S) + sin(6) (S, — s{)]

X 1), ®18),;.
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Now we make use of the fact that

S8y, = S} [S); (19)
(this follows from the definition of |S), as the highest-weight state,
S =1(S" +87)and & = L (S — ;7). Therefore
(S8 — 857 18),18), = 0 (20)
and equation (18) becomes
Fsin(Qp) e e isin(0) (S — S7) [9), 1S); (1)
We add a trivial term
Fsin(Qp) e e icos(0) S(ST — ) I), 19); (22)
to it, so that equation (18) is equal to
+iSsin(Qp) (8] — §) e e |5),15),. (23)
Reinstating the factor e TIPS+ e TS which commutes with (S — 7). we
hence have
Byl = S cos(@p) Iy}, + Ssin(Qp) (S = 57) vy, (24)

This is our final result. The (S; — S7) term cancels out in the bulk when summed
over all sites (it telescopes), so

H(cos(Qp)) [w(Qp)) = (5 cos(Qp) x #Links) |w(Qp)) (25)

as claimed.

Lastly, we discuss the physical implications of these results. The more general
spin systems considered here are expected to be non-integrable, and so now these
phantom helices constitute exceptional initial states that do not thermalize. That
is, they are examples of quantum many-body scars, first discussed in the context
of a Rydberg atom array*, where a special Neél configuration of spins exhibited
anomalously long-lived many-body revivals. In our present case, the helix states
can be made to display similar phenomenology by considering them outside
the rotating frame. They are no longer exact many-body eigenstates due to the
extra global Zeeman term and acquire dynamics consisting of coherent, perfect
many-body revivals.

Experimental protocol for phantom helix states in two dimensions. Our
experimental protocol can be extended to two (or three) spatial dimensions to
directly observe higher-dimensional phantom helices and the associated quantum
scarred dynamics. The protocol includes:

1.  Prepare atoms deep in a Mott insulator state.

2. Wind a spin helix with an arbitrary Q=(Q,, Q,, Q,) vector by applying a
magnetic field gradient in the direction of Q.

3. Enable spin dynamics in two (or three) spatial dimension by reducing the
lattice depth of two (or three) lattice beams. After an evolution time t, freeze
the dynamics again by rapidly increasing the lattice depth.

4. Unwind the spin modulation to a resolvable wavevector Qmeasure Which is also
perpendicular to the imaging axis. This allows measuring the contrast of spin
helices with any wavevector Q, without adjusting the imaging axis each time.

5. Image the spin modulation to measure the contrast.

A possible technical challenge is the switching of high magnetic fields.

Many atoms, including 7Li, have Feshbach resonances at high bias fields, which
can usually be created only along one specific direction. Any added gradient is
projected along the strong bias field. Therefore, to apply gradients in arbitrary
directions, the high magnetic field has to be switched off, and additional small coils
can then provide a low bias field in any direction.

For Li, the Mott insulator condition is best met at high field. Furthermore, the
polarization-rotation imaging technique'® works best at high fields. Therefore, the
extension of our experiment to studies of phantom states in higher dimensions
requires a protocol with three steps at high field, interlaced with steps at low field.
In the 1D experiment, all steps could be done at high field.

During the field ramps, the atoms must be isolated, that is, stay in a Mott
insulator state. However, during the magnetic field ramp, the atomic scattering
lengths will change. If this involves small scattering lengths, the lattice depth must
be increased. 'Li atoms have very small scattering lengths at low fields (smaller than
a few Bohr radii a,) and would require lattice depths of at least 70E,, which requires
very high laser power due to the light mass and therefore large recoil energy of "Li.

Extended Hubbard model. For small scattering lengths a,,, a,,, a,, < a,,. ~1,0004,
(that is, far from any Feshbach resonances), the mapping from the Bose-Hubbard

model to a spin Hamiltonian is well understood. We use this regime to compare
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the values of A obtained from the minimum of the observed decay rate and the
phantom condition versus the predictions of the microscopic model. This validates
the phantom phenomenon as a protocol to determine the anisotropy A. For the
needed accuracy, we must add corrections to the most basic superexchange model
of equation (4). Those corrections can be found in ref. ** and in the Methods
section of ref. '* and are summarized here.

The standard Hubbard model in the single-band approximation is fully
parameterized by the tunnelling matrix element #®) and the on-site interaction
U{(X?;), and is almost exactly realized with cold atoms in optical lattices. These
parameters can be calculated using the lowest-band Wannier functions
w(r) =w,(x)w,(y)w,(z) along each lattice depth using the expressions

10 = —/dzw (z—a) —h—Zd—z + Vosin® (kz) | w2 (2) (26)
a ‘ 2m dz? 0 ‘

and

US;), = g0 / &Eriw)]’, (27)
where 6,6’ € {1, 1}, g,o = 47h*a,,+/mand k=x/a is the wavevector of the
lattice. The standard Hubbard model results in the spin-independent tunnelling
parameter #¥) —  that is used in equation (4). The three largest corrections

to the standard superexchange model correspond to bond-charge tunnelling,
higher-order bands and off-site contact interactions.

Correction 1. The largest correction to tunnelling is the so-called bond-charge
tunnelling term, which for an n=1 Mott insulator is’**

i) = g, / Erw* (r — dr)w* ()w(r)w(r). (28)

where r=(0,0, a). Note that this correction, unlike OB spin dependent.
Even far from the Feshbach resonance, this term results in a correction to the
calculated A.

Correction 2. Using second-order perturbation theory, higher-order band
corrections to U,,,, occur via virtual excitations to higher Wannier bands due to
interactions between two atoms. Admixtures of these higher bands are, to the
lowest order,

2

Lo / &y (ws, OwEw)| |

E"lﬂz

v — _

oo T

(29)

nny

where n, and n, are the three-dimensional band indices of the two particles and
En,n, is the sum of the band gaps of particles in bands n, and n, relative to the
lowest band n,= (0,0, 0) (ref. '°).

Correction 3. Nearest-neighbour off-site interactions are given by the expression

Voot = oot /dgr w* (r — dr)w™ (r)w(r — dr)w(r). (30)
For a Mott insulator state, the spin physics is still described by a Heisenberg model
with modified parameters in equation (4) (see next section)

Jo= (4B /Uy —4Vyy) — (48 /Uy — 2Vyy) — (454/Upy — 2V3y) 61
Ly = _42%‘.1,/UTL’

where 7, = 1© + ?((,L), and U, = US;), + UL(TL), Next-order corrections
such as correlated-pair tunnelling and corrections to on-site energies due to
next-nearest-neighbour interactions™ are two and four orders of magnitude smaller
than bond-charge tunnelling ;(1), and nearest-neighbour off-site interactions Vs,
respectively, and therefore not included in our analysis.

We now discuss the physical origin of the strong variation of A observed
near Feshbach resonance (Fig. 5). Near a Feshbach resonance, the interaction
term g,/  a,, becomes large. However, the contribution via U to the spin
interactions is small due to the () )2/ U,(:;)’ o 1/a,,, dependence of the spin
interactions. In contrast, both the bond-charge tunnelling and the off-site
corrections increase o 4, and provide corrections to the spin interactions
x a,,. However, due to the signs in equation (31), near a 11 Feshbach resonance,
the bond-charge terms are proportional to —a,; while the off-site terms are
proportional to +a,, and therefore have the opposite dispersive shape when
plotted versus magnetic field. Calculations based on equation (31) show that the
off-site terms dominate, in agreement with the experimentally observed dispersive
shape in Fig. 5. Note that the two 11 Feshbach resonances in Fig. 5 have the same
dispersive shape, as can be seen in Fig. 3 of ref. . Also, note that higher-order band
corrections slightly modify the magnitude of the superexchange and bond-charge
contributions by replacing the denominator U{(’?, — Uf:,), + Ufri), but have very
little effect on their scaling with a,,.


http://www.nature.com/naturephysics

ARTICLES

NATURE PHYSICS

Therefore, we conclude that only the off-site interactions in equation (30) have
the correct ‘symmetry’ to qualitatively explain the observed variation of A near the
two Feshbach resonances in Fig. 5.

General nearest-neighbour spin-1/2 model in 1D. Here we discuss under which
assumptions an extended Bose-Hubbard model effectively realizes a Heisenberg
XXZ Hamiltonian in the Mott insulating regime. For ultracold atoms, the
underlying Bose-Hubbard model, even near Feshbach resonances, is formulated as
a nearest-neighbour model. That is, direct next-nearest-neighbour interactions and
direct tunnelling between non-neighbouring sites are neglected.

Deep in the Mott insulator regime near unity filling and assuming a
two-component system, charge transport is suppressed, and the only remaining
dynamics is that of spin degrees of freedom.

The effective spin model is then also nearest neighbour in nature, and
furthermore conserves the total §* component (that is, the number of bosons in
each hyperfine state). This has the following general form

H=) (S5 + stﬁ') + ]2(5?SJX - stf) + 1257 + &iS; + S]] (32)
(if)

The term parameterized by J, represents a Dzyaloshinskii-Moriya term and
breaks time-reversal symmetry since it is odd under complex conjugation.
Therefore, under the additional assumption that the underlying Bose—-Hubbard
model is time-reversal invariant, the most general spin model must be the XXZ
Hamiltonian, with the possible addition of effective local magnetic fields S.
Breaking of time-reversal invariance would require a complex hopping matrix
element, that is a Peierl’s phase, usually introduced by spin-orbit coupling or
Floquet-type time modulation of the lattice.

Non-integrable long-range spin-1/2 model in 1D. The existence of phantom
states in higher dimensions demonstrates that integrability is not necessary for
their stability. This raises the question of what would happen in 1D if additional
interactions were added to the nearest-neighbour spin-1/2 XXZ Hamiltonian.
Here, we present a model where integrability is broken through the addition of
long-range interactions, while still retaining the phantom spiral with wavevector Q,
as a quantum many-body eigenstate. This elevates the phantom spiral to a genuine
quantum many-body scar even in 1D.

We consider the Hamiltonian

H= Z]n Z[stf+n + S{S{H + A"sfsfﬁ»n]’

n>0 i

(33)

where ], are arbitrary amplitudes and A, is the anisotropy associated with each
n, which is a general long-range Heisenberg XXZ model. (Note that the model
considered in the paper is specified by J, #0, J,,,=0and A; = A = cos(Qy).
We set the lattice spacing to a =1 for brevity.) Now, if A, = cos(nQp) for all ,
the phantom spiral with wavevector Q, will again be an exact eigenstate of the
Hamiltonian, assuming an infinite lattice. The proof follows mutatis mutandis
the one in the paper. For a finite lattice, it will be a metastable state due to the
effect of boundary terms which break the exact solvability. While we note that
this Hamiltonian would be extremely difficult to realize experimentally because
A, for each distance n must be fine-tuned, it does however provide an illustrative
example of a deformation to the original Heisenberg Hamiltonian that preserves
the phantom helix as an eigenstate of the system while breaking integrability.
We can show that the presence of longer-range interactions renders the
model non-integrable by numerically computing the model’s level-spacing
statistics. Specifically, we resolve all global symmetries of the system and

%ﬁi:; € [0, 1] where 8E,=E,,,— E,
and E,, is the ordered list of many-body energies™. In Extended Data Fig. 5,

we plot the average r value, (), for the model with parameters J; =1, J,.,=0,

A, = cos(nQp) and variable J,. As can be seen, for the Hamiltonian with purely
nearest-neighbour interactions (J,=0), one gets (r) % 0.39, consistent with the
Poissonian statistics expected of an integrable system. In contrast, in the presence
of next-nearest-neighbour interactions (J,#0), (r) x0.53 for large enough J,,
consistent with Wigner-Dyson statistics in the Gaussian orthogonal ensemble,
indicating that the model is non-integrable.

compute the level-spacing ratio r, =
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Extended Data Fig. 1| Calibration of the wavevector Q. Starting with all spin aligned, under a constant magnetic field gradient B’, the wavevector Q grows
linearly starting from O as a function of winding time t,;., until at time t,;.,,=T=15.608(4) ms we reach a wavevector Q=2xn/a and all spins are aligned
again. All observed wavevectors fall on a line which determines the magnetic field gradient as uB’/h = (2n/a)/T = 2n x 64.068(15) Hz/a at a bias field
of B=882.612G. The error bar of T implies an uncertainty in Q of at most +0.001x 2x/a.
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Extended Data Fig. 2 | Dephasing at the chain ends and holes. If a spin has only one nearest neighbour, it experiences a torque and dephases rapidly at a
rate~J,, (as opposed to a spin with two nearest neighbours, whose interactions cancel exactly in a phantom helix). This is the case for the spins at the two

ends of the spin chain, as well as next to a hole. Additionally, the same spins experience an effective magnetic field h, = 4?2/U¢¢ — 4?2/Uu (created by
superexchange), which is reduced by a factor of two, compared to the bulk. This modifies the boundary condition at the ends, and can lead to dephasing.
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Extended Data Fig. 3 | Numerically calculated contrast decay of finite, open chains. The simulation is performed using spin chains with 8 sites (blue) and
15 sites (red), for A=0 (left) and 0.5 (right). The decay rate y(Q) is determined using a short-time quadratic expansion as derived in ref. . The open chain
boundary condition introduces a finite contrast decay even when the phantom condition is met (dashed line), but does not shift the Q-value at which the

minimum decay rate occurs.
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Extended Data Fig. 4 | Phantom spin helices for triangular and kagome lattices. As in the case of the square lattice (see Fig. 4), we label each vertex

with its azimuthal angle in the transverse plane. However, in the case of a triangular lattice (top) or kagome lattice (bottom), only ¢ =Q,==+2xn/3 and
A=-1/2 defines a valid phantom spin helix. Thus, the spin can only point in one of three directions in the $*-S” plane (denoted by three different colours),
with relative angle 2n/3 between them. Note that the colinear neighbours of each red spin are blue and green spins, and the interactions of the blue and
green spins with the red spin cancel for each line. In this way, one can understand the 2D phantom helix states as arising from simple 'stacking’ together of
phantom helices of 1D chains.
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Extended Data Fig. 5 | Level spacing statistics for the extended spin-1/2 XXZ model. The model is defined by equation (33) with J;=1, J,.,=0,

Ap = cos(nQp), and variable J,. We numerically simulate a system of N=22 spins on a ring, and choose Q,=2nm/N where m=3, which gives 4,~0.654
and A,~—0.142. The spin helix with wavevector Q, can be proven to be an exact quantum many-body eigenstate for any J,. We resolve global symmetries
and compute eigenvalues in the sector with momentum k=0, spin-flip G=1, reflection parity R=1, and magnetization M=0. As can be seen, at J,=0 the
average r-parameter (r) ~ 0.39 (bottom dashed line), consistent with Poissonian statistics indicating an integrable system. When J,#0, (r) — 0.53 (top
dashed line) for large enough J,, consistent with Wigner-Dyson statistics in the Gaussian Orthogonal Ensemble (GOE), indicating that integrability has
been broken. We expect the behaviour of (r) at J,=0 to be singular in the limit of very large system sizes; that is, any infinitesimal perturbation J, in the
thermodynamic limit will be sufficient to render the model non-integrable.
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