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Bosonic stimulation of atom-light scattering
inanultracoldgas
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Forbosons, the transition rate into an already occupied quantum state
isenhanced by its occupation number: the effect of bosonic stimulation.
Bosonic stimulation of light scattering was predicted more than 30 years ago
but has proven elusive to direct observation. Here we investigate this effect
inanultracold gas of bosons. We show that the bosonic enhancement factor
for aharmonically trapped gas is bounded by a universal constant above the
phase transition to a Bose-Einstein condensate and depends linearly on the
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condensate fraction just below the phase transition. We observe bosonic
enhanced light scattering both above and below the phase transition, and
we show how interactions can alter the bosonic stimulation and optical
properties of the gas. Lastly, we demonstrate that, for amulti-level system
prepared in asingle internal state, the bosonic enhancementis reduced
becauseit occurs only for Rayleigh scattering but not for Raman scattering.

Bosonic stimulation occurs for bosonic particles transitioning into a
final state withnon-zero occupation number n, where the transition rate
isenhanced by afactor of n + 1. Since most elementary particles are fer-
mions, most observations of bosonic stimulation have been related to
photons, withthelaser as the most dramatic manifestation. The field of
ultracold atoms has created new opportunities to realize other paradig-
matic phenomena for bosonic stimulation. It has been observedin the
formation of Bose-Einstein condensate (BEC)' and enhanced density
fluctuations™*. Bosonicstimulation can also lead to super-radiance* and
matter-wave amplification>. However, these phenomena occur also for
non-condensed thermal clouds, and for fermions and distinguishable
particles, are therefore not directly connected to quantum statistics
(Supplementary Information and refs.”°). They have a mainly classical
originand canallbe traced back to the diffraction of light from a peri-
odic density modulation, whichin the case of Rayleigh super-radianceis
created by astrong light pulse (Supplementary Information). The basic
phenomenon of bosonic enhancement of light scattering which occurs
inagasinthermal equilibrium, although predicted more than 30 years
ago, has not been observed before™ . One previous, unsuccessful
attempt to observe bosonically enhanced light scattering monitored
theloss of atoms™, whereas here we detect the scattered light directly.
One reason why such experimental observation has been elusive™"
is the requirement for temperatures comparable to or higher than
the recoil temperature. Quantum degeneracy at such temperatures

implies high densities in the range of one or more atoms per #* (where
A=A/2nisthe reduced wavelength). At such densities, ultracold atomic
clouds become short-lived due toinelastic collisions*>*'. For the same
reason, the fermionic counterpart (Pauli blocking of light scattering)
was demonstrated only very recently'>*,

In this work, we theoretically investigate and experimentally
observebosonicenhancement of light scatteringinanultracold Bose
gas of sodium atoms. We obtain new analytic results for the enhance-
ment factor for non-interacting bosons in several regimes. Experimen-
tally, we prepared a dense cloud of bosons with a peak density of up to
2 x10" cm™and a BEC transition temperature of T=10 pK, achieving
the highest critical density in ultracold atomsincluding spin-polarized
hydrogen. The bosonicenhancement of light scattering was observed
intwo different regimes: for scattering within the thermal cloud, and
forscattering between the BEC and thermally occupied states. We show
how interactions modify the bosonic stimulation by modifying the
overlap between the condensate and thermal cloud and by changing
the pair correlation function.

The principle behind bosonic stimulation in light scattering is
illustrated in Fig. 1. Light scattering is a two-photon process in which
an atom absorbs a photon (with momentum k;) from the probe beam
and emits ascattered photon (momentum k¢). The momentum of the
atom changes due to the photon recoil by q = k; — k¢ (Fig. 1a). Ingen-
eral, the (normalized) light scattering rate is given by the structure
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Fig.1|Schematic of bosonic stimulation in light scattering. Momentum-space
pictures of the cloud above and below the phase transition. When a photon s
scattered, the photon recoil changes the momentum of the atom by q(red
arrow). a, Above the phase transition (7> T.), both the initial and final momentum
states arein the thermal cloud. b, Below the phase transition (T<T,),a
condensate emerges around zero momentum, and scattering between the
condensate and the thermal cloud is also possible. In either case, light scattering
isenhanced if the final state is occupied.

factor, which can be obtained in the local density approximation by
averaging over the phase space*:

S(q) =1+ (n(r,p + @), @

where the plus (minus) sign corresponds to bosons (fermions). The
phase-space average is weighted by the occupation number n(r, p).In
the limit of zero recoil momentum, the second term reduces to the
average phase-space density (PSD). This termbecomes1for fermions
at zero temperature, predicting complete Pauliblocking?. For bosons,
the physics is richer because of the presence of the BEC phase transi-
tion. For anon-degenerate thermal gas, the averaged PSD is nA2/23?
(where nis the density and A, is the thermal de Broglie wavelength).
Extrapolating this formulato the BEC phase transition with the criterion
n/lf’ = {(3/2) ~ 2.612 gives an enhancement factor of 1.92 (where {is
the Riemann zeta function). However, we will show that the enhance-
ment factor at the transition temperature can diverge (in free space)
oris limited to {(2)/7(3) = 1.37 for harmonic confinement.

The phase-space occupation number n(r, p) in equation (1) is
given by the Bose-Einstein occupation number in the thermal
cloud ny, = [exp [(ep + UX) — p) /kg T] — 1]_1. The presence of a non-
interacting condensate adds a 6 function in phase space:

) = e (F, P) T>T, (2)
’ R (F, Pumo + NS, p) T < T,

Here €, = p?/2m, U(r) and p represent the kinetic energy, potential
energy, and chemical potential, respectively. N, = f(T/T)Nis the num-
ber of atoms in the condensate, with fbeing the condensate fraction
and hbeing Planck’s constant.

Above T, scattering occurs between two thermally occupied states
(Fig.1a). Thescattering rateis enhanced as the temperature approaches
T.because of theincrease of n., (r, p)atlow momenta. Below the transi-
tiontemperature, scattering into and out of the condensate becomes
possible (Fig. 1b). Combining the expression for n(r, p) with equation
(1), the total scattering rate below T, reads

S(q) = 1+ 2fn;,(0,q) + (nep (£, p + Q)=o) (3)

The first term represents the contribution of single-particle Rayleigh
scattering events, the second term denotes the condensate-to-thermal

scattering events and the third term describes thermal-to-thermal
scattering events. For aharmonically trapped Bose gas, the scattering
is dominated by scattering events involving the condensate already
formoderate condensate fractions. As the temperature becomes lower,
the condensate fraction fincreases but the occupation number n, (0, q)
(nh(0,q) ~ kg T/Eecfor kyT> E,.) inthe thermal cloud decreases. Asa
result, the total scattering rate first increases and then decreases as
thetemperatureis further decreased below T.. Ultimately, at zero tem-
perature, all the atoms arein the condensate and bosonic stimulation
is absent because of the zero occupation of the final states. Figure 2b
shows the theoretical calculation for a non-interacting Bose gas in a
harmonic trap.

Bosonic enhancement increases monotonically as the (normal-
ized) recoil momentum k = +/E,../ks T, decreases (where E,.. = g*/2m
istheatomicrecoil energy).Inaharmonictrap, forx > 0, the enhance-
ment above the BEC phase transition is bounded by {(2)/{(3) = 1.37,
while the enhancement factor below T, diverges as 1/«% In contrast, in
free space (with athree-dimensional (3D) box potential), the enhance-
ment factor diverges as w>%/{(3/2) already at T = T,. This major dif-
ferenceillustrates that, inaharmonictrap at T, only asmall volume s
ator near the conditions for the phase transition. A derivation of these
results, as well as a generalization to arbitrary power-law potentials,
can be found in Methods.

Inthe experiment, around 4 x 10° partially condensed >Na atoms
in the hyperfine state |F = 2, m = 2)are prepared in an optical dipole
trap (Methods). The cloudis then heated up to different temperatures
by modulatingthe trap intensity while keeping the atom number almost
constant. Light is scattered by exciting the cycling transition with
o,-polarized light. Due to the large detuning 4 = 25.7 GHz (or 2,600
linewidths I, shifts and broadenings due to dipolar interactions are
negligible. The optical setup is described in ref. . For the measure-
ments to be perturbative, the scattering rate was kept below 0.08
photons per atom during 4 ms. We observed light scattering for four
different densities over a range of temperatures (Fig. 2a). The density
is controlled by adjusting the depth of the optical dipole trap and
determines T.and k. The red linein Fig. 2 shows the parameters of these
measurements (where the traces for the different values of T,
overlap).

ThedatainFig. 2, even without quantitative analysis, show the sali-
ent features of light scattering for bosons. Above the phase transition,
thereisamodestenhancementinscatteringduetotheincreaseinthe
phase-space density as the temperatureis reduced. Once the conden-
sate forms, the enhancementis more substantial due to scatteringinto
and out of the condensate. We also observed the absence of enhanced
lightscattering for analmost pure Bose-Einstein condensate. However,
duetothestrongincrease of three-body losses at high density, we could
prepare such condensates only at lower densities in more weakly con-
fining traps where the maximum enhancement is small owing to the
larger value of k. When the cloud was compressed to higher densities
(Fig.2b, black trajectory), anincrease of light scattering was observed,
qualitatively consistent with the prediction (Methods).

Fortemperatures above T, light scattering occurs within the ther-
maldistribution. InFig.3a, we compare theresults with the predictions
for an ideal gas and an interacting gas, without any free parameters
except the overall scaling. Data with different 7, are binned together
because of their small difference in k. Usually, thermal Bose gases away
from Feshbach resonances are treated as non-interacting. However, at
our high densities, the mean-field (MF) repulsion is relevant even for
thermal clouds. It softens the trapping potential and increases the
bosonic enhancement by up to 50% because of the higher density of
states at low energy (Methods). Bosonic stimulation is reduced by a
second effect of interactions: the reduction of the pair correlation
functionsuppresses the enhancementbyafactor1 — 8\/5(1//1t ~ 0.6at
high temperatures (where a is the s-wave scattering length)*
(Methods). Close to the phase transition, the thermal de Broglie
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Fig.3|Bosonic enhancement of light scattering above and below the BEC
phase transition. a, Above the phase transition, scattering occurs within the
thermal cloud. The dashed curve represents the theoretical prediction for ideal
gas, while the solid curve represents the interacting theory. The interaction
effect appears to be small, but thisis due to coincidental cancellation between
the contributions from the MF effect and pair correlations. The data are

identical to those in Fig. 2 with T> T_but averaged over nearby points. The

error along the temperature axis is around 2%. b, Below the phase transition,

the scattering between the BEC and thermal cloud dominates. The dashed
curves are predictions for ideal gas, while the solid curves use a semi-ideal gas
approximation and the modified pair correlation function. The dataare identical
tothoseinFig.2with T<T.

wavelength A, is effectively replaced by the correlation length §. The
divergence of  at the phase transition will diminish the suppression
caused by pair correlation. To the best of the authors’ knowledge, the
suppression of bosonic stimulation by repulsive interactions has not
been discussed before. In Methods, we discuss some evidence for the
effect of pair correlations. Figure 3a demonstrates that the two effects
of interactions almost cancel each other.

For temperatures below the BEC phase transition, the scattering
between the condensate and the thermal cloud dominates the bosonic
enhancement. For a non-interacting Bose gas, the enhancement
factor increases almost linearly with the condensate fraction close
to the critical point: S(q) ~ 1 + 2fkg T/E,. (Fig. 3b, dashed curves).
However, because of the MF repulsion between the thermal cloud
and the condensate, the density of thermal atoms inside the
condensate volume is strongly reduced?®, diminishing the bosonic
enhancement. The enhancement S(q) — listhusreduced by the factor

(fdr no(r)n&"t)(r, q))/(Nong,(0, @), with no(r)being the density distri-
bution oftheinteracting BEC, and nEL"o(r, q)the phase-space occupa-
tion number for the interacting thermal cloud. The experimentally
observed enhancementis reduced by up toafactor of 3compared with
thenon-interacting theory (Fig.3b). We model the effect of interactions
using the semi-ideal gas approximation®, which assumes aninteracting
condensate and repulsion of the thermal cloud by the condensate, and
include the modified pair correlation function® (Fig. 3b). Note that the
theoretical curvesin Fig.3b have no free parameters (the overall scaling
beingthe same asinFig.3a). Our model explains most of the reduction
inlight scattering compared with the predictions for anon-interacting
gas. Theremaining difference could be due to the back-action fromthe
thermal cloud to the BEC, which will further reduce their overlap and
can be treated approximately using a Hartree-Fock approximation
(Methods). However, a fully consistent treatment of the interacting
Bose gasis challenging both theoretically and numerically. Note that,
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blue curveisafitto the o, data (using an exponential function as a convenient
trial function), the red dashed line is obtained from the blue fit and equation (4).
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foraninteracting condensate, light scattering can be strongly modified
by the spectrum of collective excitations. For example, for momentum
transfers which create phonons, light scattering is suppressed?.

Untilnow, we have assumed atwo-level system, realized by exciting
the initial |F = 2, m; = 2) hyperfine state on a cycling transition with
o,-polarized light (Fig. 4a, blue). We now discuss the situation in which
the atoms are excited with light of different polarization. In the limit
of detunings muchlarger thanthe hyperfine interactionin the excited
state, the nuclear hyperfine structure can be neglected since the
nuclear spin state does not change during the light scattering. There-
fore, we realize the simplified level diagram shown in Fig. 4a.

When the atoms are initially prepared in a single internal state,
only Rayleigh scattering shows bosonic enhancement. Raman scat-
tering (or optical pumping) populates initially empty states and is
not enhanced. We therefore expect the enhancement factor  to be
reduced to yn + (1-y), where y represents the branching ratio (the
ratio of Rayleigh scattering to Raman scattering). To describe our
experimental situation, we express the observed scattering rate for o,
lightas R, = nR, with Rrepresenting the Rayleigh scattering rate without
any enhancement. The expected observed scattering rate for o_light
isthen predicted as

R_ %(qu +21-p)R). 4)

Here, the prefactor of 1/3 results from the reduced matrix element, the
branching ratio of y =1/3, and an extra factor of 2 from the different
angular distributions for the scattered o and m light. By comparing
equation (4) in the high-temperature and low-temperature limit, we
find the enhancement factor for o_polarized light to be (4 + )/5. The
results presented in Fig. 4b confirm that the bosonic enhancement
for o_probe light is always below the enhancement for ¢,. We can use
equation (4) and regard y as a fitting parameter that characterizes
the bosonic enhancement. The best fit to the data gives y = 0.4(2)
and is consistent with the theoretical prediction (y =1/3) within the
experimental uncertainty (which is larger for o_scattering owing
to the small number of photons observed). If the light scattering is
non-perturbative, the population can build up in the initially empty
state via optical pumping, which will then lead to super-radiantly
enhanced Raman scattering®®%,

In conclusion, we have shown how quantum statistics and inter-
action modifies the optical properties of a Bose gas. We have worked
in aregime where the effect of quantum statistics dominates over
other effects such as dipole-dipole interactions®, super-radiance*,
light-assisted collisions®, multiple scattering and atomic lensing.
Super-radiance is another form of enhanced light scattering but is
not directly connected to quantum statistics. It is caused by coher-
ence (in the form of symmetric Dicke states®). These coherences are
created by light-atom interactions due to non-linear light scattering.
In contrast, our experiment was done in the perturbative limit and
probed the quantum statistical pair correlations of an equilibrium
quantum gas. Besides the fundamental interest, understanding light
scattering is crucial for quantitative diagnostics of bosonic systems.
For future work, it would be promising to study bosonic enhancement
oflightscatteringin abox potential® because of the absence of density
inhomogeneity. The large extension of the critical region will give much
stronger enhancement and enable studies of the 1/k divergence of the
enhancement factor. In addition, in a box potential, interactions can
affect light scattering only through the modification of the pair cor-
relation function. It should be possible to clearly observe how bosonic
enhancement is reduced above the phase transition, but not right at
the critical point. Furthermore, for strong repulsive interactions near a
Feshbachresonance, light scattering in bosons could possibly be even
suppressed below the single-particle Rayleigh rate, in analogy with
Pauliblocking for fermions. Both Pauliblocking and stronginteractions
reduce the pair correlation function. More generally, light scattering
provides a way to measure the static structure factor, which could be
used to characterize strongly interacting systems, including systems
withstrong dipolarinteractions which are anisotropic and long range.
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Methods

Sample preparation

Around1billion sodium atoms are loaded into a magneto-optical trap
(MOT) and transferred into aquadrupole magnetic trap with an optical
plug where they are cooled by microwave evaporative cooling. Subse-
quently,around10” atoms in the hyperfine state |F = 2, m; = 2)are trans-
ferredintoasingle-beam1,064 nmoptical dipole trap (ODT). Thebeam
waist andintensity of the trapping beamare controlled by a variable-size
irisand anacousto-optic modulator, respectively. The beam waist was
initially chosentobelarge toincrease theloading efficiencyintoalarge
trap volume. Because the bosonic enhancement effect requires
ks T.>» E,..,theatomic gasis compressed to a higher density with ahigher
T. by fully opening up the iris. Decreasing the intensity of the optical
trapping beam induces evaporative cooling to a Bose-Einstein con-
densed cloud with around 4 x 10° atoms and around 30% condensate
fraction. The final T, can be adjusted from 6.8 pK to 11 uK by changing
thefinal power of the optical trap. Subsequent heating of the cloud was
doneby sinusoidally modulating the power of the optical trappingbeam
by 50% at1kHz frequency with variable duration (from 1 ms to 49 ms).

Light scattering and collection

The probelight was generated fromanindependent 1,178 nmlaser with
frequency doubling. The frequency of the probe light was red detuned
from the D2 transition of sodium by 4 =25.7 GHz. The large detuning
was chosen to avoid multiple scattering of photons, to minimize the
lensing effect and photo-associationloss. Inaddition, since the detun-
ing is much larger than the hyperfine interaction in the electronically
excited state (4 » Ay =18.5 MHz), the nuclear spin of the atom s pre-
served during the light scattering. The 1/e’ diameter of the probe beam
is3.3 mminthe atoms’ plane. The intensity of the beam was stabilized
to avoid shot-to-shot fluctuations.

Fluorescencelightis collected at a90° angle relative to the probe
beam with a collection efficiency of 0.6(1)%, obtained from a calcula-
tion based on geometry, optical losses, etc. This value agrees with an
experimental value derived from the laser intensity and the observed
fluorescence signal at high temperatures. To detect the small number
of scattered photons, we used an electron multiplying charge-coupled
device (EMCCD) camera with quantum efficiency of 97% and read-
out noise of 3-5 electrons per pixel. Hardware binning of pixels was
implemented to ensure that the photon shot noise dominates over the
readout noise. Background noise was suppressed by choosing aregion
of interest only slightly larger than the image of the cloud.

For thelight scattering in Figs. 2 and 3, at most 0.08 photons were
scattered per atom. The pulse durationwas 4 ms. For the datain Fig. 4,
since the o_-polarized probe light will cause optical pumping, we used
weaker pulses with at most 0.03 (0.01) photons per atom for Rayleigh
(Raman) scattering and a pulse duration of 3 ms.

We verified that the atoms were probed in the perturbative regime
inwhich optical pumping and non-linear effects such as super-radiance
are absent, by measuring the scattered light as afunction of probe beam
power (Extended Data Fig. 1). The measurement was done for both a
cloud with and without BEC. The linear behaviour shows that the light
scattering isindeed perturbative.

Atom count and thermometry
The atom number and temperature of the cloud (and their uncertain-
ties) were determined from time-of-flight absorption measurements at
the end of each experimental cycle. Thefitting of absorptionimages was
done using the Bose function for the thermal cloud and the Thomas-
Fermi distribution for the BEC**. The temperature in the presence of
BECis calculated from the measured BEC fractionfby 7/T.= (1-H">.
Experimentally, the atoms werereleased from the trap 8 ms after
the light pulse. The hold time was chosen to allow the atoms to ther-
malize, and was also necessary for a mechanical camera shutter to
open. The shutter was necessary to block the probe beam which was

collinear to the imaging beam during the light scattering. Because of
the three-body loss during the light pulse and hold time, corrections
are needed to obtain the atom number and temperature during the
light pulse. These corrections are below 10% for most of the data. They
were obtained by directly measuring the change of temperature and
atom number during a few milliseconds and extrapolating this for the
10 msdelay (halfthelight pulse plus the hold time) in the actual experi-
ment. For the atom number, this was done shot by shot, whereas for
temperature, for robustness, we used the temperature averaged over
clouds withidentical preparation.

Properties of the high-density cloud

Substantial Bose enhancement of light scattering requires the critical
temperature to be higher than therecoil energy. Therefore, the density
n of our sample needed to be around 10" cm™. Since the three-body
loss rate coefficient for thermal sodium atom in F =2 states at zero
magnetic field is 9.6 x 107 cm®s™ (ref. *), the estimated lifetime of
the cloudranges from15 ms to140 ms, depending onthe temperature
and trap depth. Since the typical trap frequencies in the radial (axial)
direction are 9.5 kHz (290 Hz), the density drops quickly in the initial
stage of time of flight and the three-body loss becomes negligible.
Another consequence of the high density is the short mean free path
(I=1/no=1um,wheregis the cross-section for elastic collisions). Since
the typical size of the cloud is around 1 um in the radial direction and
30 pminthe axial direction, thisimplies slow hydrodynamic transport
inthe axial direction. Due to hydrodynamic collisional effects, the equi-
librium time scale in the axial direction is much slower than the trap-
ping period and can potentially lead to non-fully equilibrated clouds
incombination with fast three-body loss. More precise measurement
of bosonic light scattering should therefore be done at lower densi-
ties and smaller scattering angles, or by choosing atoms with an even
lower three-body loss rate (for example, ®>Nain the F = 1state or **Dy).

Light scattering for a pure BEC and adiabatic compression

A pure Bose-Einstein condensate shows no bosonic enhancement of
light scattering. We therefore studied light scattering using an almost
pure condensate, and then compressed the condensate adiabatically
by ramping up the power of the optical trap. An almost pure BEC could
be prepared only in a shallow trap. Subsequently, the trap power was
ramped up to increase the density and therefore T.. Light scattering
was measured for different final trap depths. Without compression,
the photon count rate is identical to the signal for a non-degenerate
thermal gas (Extended DataFig.2), demonstrating the absence of bos-
onicenhancementinapure condensate. However, for the large values
of k=1.5, the maximum predicted enhancement for a mixed cloud is
only 9%. For higher densities, bosonic enhancement of light scattering
was observed, in qualitative agreement with the theory. During com-
pression, the cloud approximately followed the black trajectory in Fig.
2. 0wing to losses and heating during compression, the condensate
fraction decreased and light scattering was enhanced. Because of the
heating, we were not able to map out the region of low 7/7.and low k,
where the enhancement would increase with temperature.

Theory for the bosonic enhancement factor

The bosonic enhancement factor approaches zero in the limit of low
density orlarge recoil, k > e, and is maximized in the high-density limit
k =0 where the normalized light scattering is given by the S(q = 0) at
zeromomentum. We now rigorously calculate S(0) for power-law densi-
tiesof stateg(e) = Ae*. For ageneric power-law trapping potential V(r) e« r*
in d-dimensional space, the exponent xin the density of state reads**

-1 (5

Thebox potential has a =, and in three dimensions x =1/2.
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Rewriting theintegralsin equation (1) in terms of energy €, we have

S den(e)’g(e)

S(q=0)=1+=2_ )
@=0=1+ Jo den(e)ge)

(6)

Here n(e) = (z ! exp(Be) — 1)_lis the occupation number with z = exp(Bu)
being the fugacity and S =1/k;T.
Theintegrals have the following analytic solutions:

f den(e)g(e) = AT (L + g2/, @
0

f den(e)’g(e) = AL(L + X)(~Zuex(2) + &)™, ®
0

Here g,(2) represents the nth-order polylogarithm function.
Finally, we get the following simple expression for the bosonic enhance-
ment factor:

S(O) - g1+x(z)'

It can be shown that g,(2)/g..,(z) has its maximum at the
BEC phase transition z=1. The behaviour of the polylogarithm
functions at z=1divides the physics into three regimes depending
on the value of x. The results are summarized in Extended Data
Tablel.

When x <0, both g(z) and g,.,(2) diverge at z=1. The divergence
of g,.,(z) implies the absence of the BEC phase transition. Therefore,
z<1for all temperatures, and the enhancement factor g,(2)/g,..(2) is
always finite.

When 0 <x<1, g(2) diverges at z=1but g, (z) remains finite.
This implies the presence of a BEC phase transition and (for k= 0) an
unbounded light scattering rate with adivergent enhancement factor
atthe BEC phase transition point.

Whenx >1,bothg,(z) and g,.,(z) remainfinite atz=1. Thisimplies
the presence of aBEC phase transition and abounded light scattering
rate. The maximum possible enhancement factor at the transition
temperature is {(x)/{(1 + x).

For the relevant case of the 3D box potential (x =1/2), light scat-
tering can diverge, whereas for the 3D harmonic trapping potential
(x=2),the maximum enhancement factor is {(2)/{(3) =1.37. Extended
DataFigs.3 and 4 illustrate those cases.

Tostudy the divergence of the enhancement factor near the phase
transition for 0 <x <1, we now determine the behaviour for small but
non-zero recoil momentumx.

We start with the exact expression for the enhancement factor at
finite recoil k at the phase transition:

1 a<-12

S =1+ Joo da f% dy (10)

1
VI (x+1/2){(x+1) exp(a+y2)—1 exp(a+(y+x)’)-1"

Hereyrepresents the dimensionless momentumintherecoil direction,
and a represents the total energy from all other dimensions in phase
space. Since the enhancement factor diverges as k¥ > for 0 <x <1, we
need to calculate

K22

© d f°° d ax-12
a ly .
o o eXP@+y) —lexpa+ (y+ 1)) -1

I=lim
k=0

an

After transforming to polar coordinates a = r?sin(6)° and
y = —rcos(6), one obtains / = lim,_ ;" dr fy dOfr,@)with

K 2r(rsin(8))™

. 12
exp(r?2) — 1 exp(r2 — 2rk cos(0) + k2) — 1 (12)

fr.6) =

We first perform the integral over r. The function f(r, 8) has
a branch cut from r=0 to r=+e. It also has poles at

ren =Kkcos(0) £/ —k2 sin(9)2+2rmi , with n being an integer. The

residuesatr=r, ,are

2622 5in (O (ry)>™!

. 13)
exp((r)) -1 T+ =1~

Res(f(r. ) =+

Inthelimit of k > O, the residues vanishif n # 0. For n = 0, the resi-
dues remain finite:

(kexp(£i0))™+

2k>2 sin (B)ZX
=+
Res (f(r+,0)) 2ixsin(0)

" exp(k2 exp(£2i6))-1

(14)
~ — + i(exp(i0) sin(8)> .

By using the Hankel contour in the complex r plane, the
integral / can be related to the sum of all residues in the complex
plane by

n
I(1 — expRizx)) = 2xi Z / dORes (f(rep,0)), 15)
n Jo
with theresult:
JEL i d0 (~i(exp(i6) sin(8))" " +i(exp(~if) sin()) ")
- 1—exp(2inx) (16)

2722

= 4xsin(zx)

Puttingallthe pre-factorsin, one obtains the divergent behaviour
of the bosonic enhancement factor as

2,312 262
4xsin(zx)IN(x +1/2){(x +1)°

Sk - 0) ~ 17)

For 0 <x<1,thedivergenceinequation (17) canbeunderstoodin
an intuitive way. In d spatial dimensions, the first-order correlation
function of the non-interacting Bose gas approaches g¥(r) < 1/r*2 at
the critical point. Because the structure factor of a homogeneous
sampleS,,,(q) isrelated to the Fourier transform of the pair correlation
functiong®(r) - 1=1gY(r)? < 1/r74*, S, (q) diverges as ¥ *when k - 0.
For a Bose gas trapped in a power-law potential V(r) = V,(r/L)* (where
L is the characteristic length of the system), only a fraction of the gas
isclose tolocal criticality at 7= T.. This fraction can be estimated from
the characteristic length scale r, where the trapping potential energy
issimilar to therecoil energy: V,(ro/L)* ~ q*/2m. Therefore, the fraction
fox (ro/L)! « k24 Qualitatively, we can treat the sample within r, as
homogeneous and apply the result for S, () at criticality to this small
region. In the end, we get the structure factor for the trapped gas as
S( q) o sz/aKd—4 oc (X2,

For x >1, the bosonic enhancement mainly comes from regions
outside the critical region which is very small, therefore the overall
enhancement factor is finite.

Density distribution

Therepulsive interaction between atoms modifies the density distribu-
tionin the trapping potential and greatly reduces the overlap between
the thermal cloud and the condensate. The density distribution of the
cloud was obtained using the local density approximation. Locally, the
Bose gasistreated asahomogeneous gas with aHartree-Fock (HF) MF
Hamiltonian® of

noN,
Hye — uN = —gnN — gOTO + (e —p+2gn)alay. 18)
7
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Here nyrepresents the density of the BEC while nis the total density.
is the chemical potential, and g = 4th*a/m represents the interaction
strength. N and N, are the total atom number and the atom
number in the condensate, respectively. “Z and a, are the creation
and annihilation operators for a free particle with momentum k and
kinetic energy €, = k*/2m. For a given chemical potential, the local
density is obtained by solving the following pair of equations
self-consistently:

1 _
n=ng+ /ng/z(eﬁ(” 2m)
t

19)
U =2gn-gn,

We used an open-source package to solve these equations numeri-
cally for aharmonic trapping potential®®. Note that here all calculations
were done by assuming an isotropic harmonic trap with mean trap
frequency of w = (wxwywz)m. Unlike in our previous work with fermi-
ons?, the anharmonicity corrections for bosons here are much smaller
and will be neglected. Extended Data Fig. 5 shows the density profiles
of aBose gas for anideal gas, in the semi-ideal gas approximation and
HF approximation. Reference* discusses the differences between the
three models and compares them with experimental data. The ideal
gas approximation assumes no interaction between atoms. The
semi-ideal gas approximation considers theinteraction withinthe BEC
and between the BEC and the thermal cloud, but not the interaction
within the thermal cloud and the back-action of the thermal cloud on
the condensate. The MF repulsion of the thermal cloud by the conden-
sate substantially reducestheir overlap, causing the reduction of Bose
enhancement. As acomparison, the HF approximation takes allinterac-
tions into account at the MF level. The calculations in Extended Data
Fig. 5 show that the back-action from the thermal cloud compresses
the BEC to higher densities and further reduces their overlap by around
20%. However, the HF calculation predicts an unphysical jump in the
BEC density (Extended DataFig. 5). For modelling the density distribu-
tioninthe presence of acondensate, we used the semi-ideal gas approx-
imation since it is numerically a much simpler approach. For a fully
consistent calculation of the density profiles, one would have to go
beyond the HF approximation.

Tounderstand theimportance of the differentinteraction terms,
itisusefulto compare the peak density of the thermal cloud at the phase
transition (n,,) with the peak density of the BEC at T=0 (n,). By using
gy & Ni(ks To/mw?)” and kyT, = ho(N/I3))", we get ng, NV2/a} (where
an, = Vh/mwis the oscillator length). For the condensate, we can use
No = Ho/g With po = hw(15Na/an)”*/2 and g = 4mh%a/m to obtain
ng N2/5/(a3/5a1h20/5) Thus, theratio of the densities of the thermal cloud
and the BEC becomes n,/n, =< N"°a/a,,. Although the conventional
wisdom is that the density of the BEC is usually much higher than the
thermal cloud, n,, and n, differ by only a factor of 2 in our experiment
because of the tight confinement (Extended DataFig. 5). Since the MF
interaction of the thermal cloud has an extra factor of 2 due to the
exchange term, we have a situation where the interactions in the con-
densate and the thermal cloud are equally important.

Pair correlation function

Atomic interactions will affect light scattering also through the pair
correlation function. The exact expression for the pair correlation
function for the non-interacting Bose gas reads®

o olpp =
GO(r) = Z ie w
=N

(20)

Athigh temperatures, the [=1term dominates, so the correlation
function is a Gaussian with a correlation length 1,/v/2z. Close to the
critical point, the correlation function decays exponentially with a
correlationlength & (ref. *°):

A 1 A
Vi) r oe—e, £= =— 21
£ {3/2)r ¢ —2mu —47Pu @

Here g2(r) = G®(r)/G™(0) is the normalized first-order correlation
function. The correlation length € diverges as [T - T.|™ near the
critical point for the non-interacting Bose gas. Using the correlation
function for the non-interacting gas, we can calculate the structure
factor S(g) for theideal gas and the first-order correction of the structure
factor withinteractions®, S;,.(q). Near the critical point, we obtain

—2r/§
£ 4mr2dr

S(q = 0) = /= |g0(r) 4nrdr o« A2 [

r
= 271/136,

0 2 22
Sine@ =0) # S(q = 0) — /i |gV(r)| 2 4nr2dr (22)

2 ¢
o« 2m2¢ — 16milar (0. %) ~ 20€ - 16x2aln -

This expression shows that the relative correction due to inter-
actions S;,./S — 1~ —8aln(&/A,)/€ vanishes as we approach the critical
point. Note that the calculations were done by assuming g = 0 because
the correction for finite momentum is quadratic in k and can
be neglected.

Athightemperatures, g0(r) x e~**/%and the structure factorand
itsinteracting correction are given by*

(g = 0) = [ |g0(r) 4nrdr o« f° e 2R az2dr
x

-2,
Sin(q = 0) = S(q = 0) — /= |80 2 4nr2dr

T
o (-0v32).

(23)

Therefore, the correction factor for interaction effects approaches
1- 82a/Aat hightemperatures. Note that the interacting pair correla-
tion function describes thetrue correlationinthe position of the atoms,
whereas the non-interacting second-order correlation function
ggz)(r = 0), whichis1for a pure condensate and 2 for a thermal cloud,
appears in the interaction parameters for the condensate and the
thermal cloud, respectively*'.

Comparing interacting models with experimental data above
the phase transition
The bosonic enhancement of light scattering is about 30% just
above the phase transition temperature. The MF modification of
the density distribution increases the light scattering by about
10%, whereas the modification of the pair correlation function leads
to a decrease by about 10%. This is why the predictions for the full
theory for interactions are close to the ideal gas prediction. This is
shown in Extended Data Fig. 6, where three different models are
compared with theideal gas: (1) the MF modelincluding only the modi-
fied density distribution of the cloud but not the pair correlation
function, (2) the MF + overall suppression model that approximates
the effect of the modified pair correlation as an overall reduction
factor of 1 - 8v2a/A, and (3) the full interacting theory model that
includes the dependence of the pair correlation function on the local
chemical potential. So, we locally calculated the pair correlation func-
tion (without assuming a Gaussian or exponential form) and the
structure factor S;,,(q) which gives the local scattering rate. The total
light scattering rate is obtained by integrating the local rates across
the cloud.

We fit the data using different models by only adjusting the overall
scaling. A comparison of the x> values for the fits shows that the model
with only the MF interaction has the worst x* (Extended Data Table 2).
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Therefore, if one assumes the validity of the MF term, then our observa-
tions provide some evidence for the modification of pair correlations
by interactions. Note that some of the differences in Extended Data
Fig. 6a disappeared because the high-temperature asymptotic value
is a fit parameter in Extended Data Fig. 6b. Unfortunately, we could
not measure the asymptotic value at higher temperatures because of
the limitation of the trap depth. We suggest that future experimental
studies use abox potential instead of aharmonic potential to avoid the
partial cancellation of MF and pair correlation effects.

Details of the interacting model below the phase transition
The full interacting theory below the phase transition becomes very
complex, and we did not aim for a fully quantitative description. There-
fore, we used the following approximations for the theory curves in
Fig. 3b: (1) the density distribution was obtained using the semi-ideal
gas approximation and (2) the effect of the pair correlation function
was introduced by a reduction factor of 1 — 8v2a/A, (equation (23)).
Note that the theory curves in Fig. 3b have no free parameters (the
overall scaling being the same as in Fig. 3a).

Data availability
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thisstudy are available from the corresponding authors upon reason-
ablerequest and through Zenodo*.

Code availability

The codes that support the findings of this study are available from
the corresponding authors upon reasonable request and through
Zenodo®.
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Extended Data Fig. 1| Linearity check for light scattering. Scattered photons are measured for different probe beam powers. The blue (red) data points represent a
cloud with (without) BEC. The absence of nonlinearity shows that we are working in the perturbative regime. Data points here are each averaged over 3 samples.
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Extended Data Fig. 2| Light scattering after compressing the cloud. The photon scattering signal was measured for different final trap depths. The dashed line
represents the signal observed for anon-degenerate cloud with no bosonic enhancement. Each data point was averaged over 6 samples.
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Extended Data Fig. 3 | Bosonic enhancement factor for anideal gasin a 3D box potential for different recoil momenta k. At the phase transition point, the bosonic
enhancement factor diverges as 1/x.
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Extended Data Fig. 4 | Bosonic enhancement factor for anideal gas in a 3D harmonic trapping potential for different recoil momenta k. The enhancement factor
is bounded at and above the phase transition, but will diverge as 1/k* below the phase transition.
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Extended Data Fig. 5| The density distribution of the condensate and thermal cloud for different models. In the calculations we used the following values:
scattering length of a = 85a, (a, is the Bohr radius), trap frequency w = 2 x 2.7kHz, atom number N = 4 x 10° and condensate fraction of 30%.
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Extended DataFig. 6 | Comparison between different models above the phase
transition. (a) Predictions for the Bose enhancement factor for different models.
(b) Fitting of the models to the experimental data. The only free parameter is the
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overall scaling. In the calculations we used the following parameters: scattering
length a = 85a, (a, is the Bohr radius), atom number N = 4 x 10°and dimensionless

recoilmomentumk = 0.51.
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BEC phase transition No Yes Yes
Bosonic enhancement Bounded Diverges as x2*~2 when T' — T, Bounded by ((z)/¢(1+ ) for T > T,

Extended Data Table 1| Bosonic enhancement factor for different exponent x in the density of states. In the limit of zero recoil momentum, the enhancement
factor is bounded forx < 0 and x > 1while diverging forO <x<1.
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Ideal gas Mean-field (MF) only MF + overall suppression Full interacting theory

x? value 13.2 21.7 12.9 13.5
Normalized x2 value 12.7 20.1 12.4 13
Degrees of freedom (dof) 13 13 13 13

Extended Data Table 2 | x> values for fits using different models. The x* values are normalized in such a way that it becomes dof =13 for the full interacting model.
Asacomparison, the probability for x? (dof=13) to be larger than18.5is 10%.
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