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Bosonic stimulation of atom–light scattering 
in an ultracold gas

Yu-Kun Lu      , Yair Margalit     & Wolfgang Ketterle    

For bosons, the transition rate into an already occupied quantum state 
is enhanced by its occupation number: the effect of bosonic stimulation. 
Bosonic stimulation of light scattering was predicted more than 30 years ago 
but has proven elusive to direct observation. Here we investigate this effect 
in an ultracold gas of bosons. We show that the bosonic enhancement factor 
for a harmonically trapped gas is bounded by a universal constant above the 
phase transition to a Bose–Einstein condensate and depends linearly on the 
condensate fraction just below the phase transition. We observe bosonic 
enhanced light scattering both above and below the phase transition, and 
we show how interactions can alter the bosonic stimulation and optical 
properties of the gas. Lastly, we demonstrate that, for a multi-level system 
prepared in a single internal state, the bosonic enhancement is reduced 
because it occurs only for Rayleigh scattering but not for Raman scattering.

Bosonic stimulation occurs for bosonic particles transitioning into a 
final state with non-zero occupation number n, where the transition rate 
is enhanced by a factor of n + 1. Since most elementary particles are fer-
mions, most observations of bosonic stimulation have been related to 
photons, with the laser as the most dramatic manifestation. The field of 
ultracold atoms has created new opportunities to realize other paradig-
matic phenomena for bosonic stimulation. It has been observed in the 
formation of Bose–Einstein condensate (BEC)1 and enhanced density 
fluctuations2,3. Bosonic stimulation can also lead to super-radiance4 and 
matter-wave amplification5,6. However, these phenomena occur also for 
non-condensed thermal clouds, and for fermions and distinguishable 
particles, are therefore not directly connected to quantum statistics 
(Supplementary Information and refs. 7–10). They have a mainly classical 
origin and can all be traced back to the diffraction of light from a peri-
odic density modulation, which in the case of Rayleigh super-radiance is 
created by a strong light pulse (Supplementary Information). The basic 
phenomenon of bosonic enhancement of light scattering which occurs 
in a gas in thermal equilibrium, although predicted more than 30 years 
ago, has not been observed before11–17. One previous, unsuccessful 
attempt to observe bosonically enhanced light scattering monitored 
the loss of atoms18, whereas here we detect the scattered light directly. 
One reason why such experimental observation has been elusive18,19 
is the requirement for temperatures comparable to or higher than 
the recoil temperature. Quantum degeneracy at such temperatures 

implies high densities in the range of one or more atoms per ƛ3 (where 
ƛ = λ/2π is the reduced wavelength). At such densities, ultracold atomic 
clouds become short-lived due to inelastic collisions20,21. For the same 
reason, the fermionic counterpart (Pauli blocking of light scattering) 
was demonstrated only very recently19,22,23.

In this work, we theoretically investigate and experimentally 
observe bosonic enhancement of light scattering in an ultracold Bose 
gas of sodium atoms. We obtain new analytic results for the enhance-
ment factor for non-interacting bosons in several regimes. Experimen-
tally, we prepared a dense cloud of bosons with a peak density of up to 
2 × 1015 cm−3 and a BEC transition temperature of T ≈ 10 μK, achieving 
the highest critical density in ultracold atoms including spin-polarized 
hydrogen. The bosonic enhancement of light scattering was observed 
in two different regimes: for scattering within the thermal cloud, and 
for scattering between the BEC and thermally occupied states. We show 
how interactions modify the bosonic stimulation by modifying the 
overlap between the condensate and thermal cloud and by changing 
the pair correlation function.

The principle behind bosonic stimulation in light scattering is 
illustrated in Fig. 1. Light scattering is a two-photon process in which 
an atom absorbs a photon (with momentum ki) from the probe beam 
and emits a scattered photon (momentum kf). The momentum of the 
atom changes due to the photon recoil by q = ki − kf (Fig. 1a). In gen-
eral, the (normalized) light scattering rate is given by the structure 
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scattering events and the third term describes thermal-to-thermal 
scattering events. For a harmonically trapped Bose gas, the scattering 
is dominated by scattering events involving the condensate already 
for moderate condensate fractions. As the temperature becomes lower, 
the condensate fraction f increases but the occupation number nth(0,q) 
(nth(0,q) ≈ kBT/Erec for kBT ≫ Erec) in the thermal cloud decreases. As a 
result, the total scattering rate first increases and then decreases as 
the temperature is further decreased below Tc. Ultimately, at zero tem-
perature, all the atoms are in the condensate and bosonic stimulation 
is absent because of the zero occupation of the final states. Figure 2b 
shows the theoretical calculation for a non-interacting Bose gas in a 
harmonic trap.

Bosonic enhancement increases monotonically as the (normal-
ized) recoil momentum κ = √Erec/kBTc decreases (where Erec = q2/2m 
is the atomic recoil energy). In a harmonic trap, for κ → 0, the enhance-
ment above the BEC phase transition is bounded by ζ(2)/ζ(3) ≈ 1.37, 
while the enhancement factor below Tc diverges as 1/κ2. In contrast, in 
free space (with a three-dimensional (3D) box potential), the enhance-
ment factor diverges as π3/2κ−1/ζ(3/2) already at T = Tc. This major dif-
ference illustrates that, in a harmonic trap at Tc, only a small volume is 
at or near the conditions for the phase transition. A derivation of these 
results, as well as a generalization to arbitrary power-law potentials, 
can be found in Methods.

In the experiment, around 4 × 105 partially condensed 23Na atoms 
in the hyperfine state |F = 2,mF = 2⟩ are prepared in an optical dipole 
trap (Methods). The cloud is then heated up to different temperatures 
by modulating the trap intensity while keeping the atom number almost 
constant. Light is scattered by exciting the cycling transition with 
σ+-polarized light. Due to the large detuning Δ = 25.7 GHz (or 2,600 
linewidths Γ), shifts and broadenings due to dipolar interactions are 
negligible. The optical setup is described in ref. 22. For the measure-
ments to be perturbative, the scattering rate was kept below 0.08 
photons per atom during 4 ms. We observed light scattering for four 
different densities over a range of temperatures (Fig. 2a). The density 
is controlled by adjusting the depth of the optical dipole trap and 
determines Tc and κ. The red line in Fig. 2 shows the parameters of these 
measurements (where the traces for the different values of Tc 
overlap).

The data in Fig. 2, even without quantitative analysis, show the sali-
ent features of light scattering for bosons. Above the phase transition, 
there is a modest enhancement in scattering due to the increase in the 
phase-space density as the temperature is reduced. Once the conden-
sate forms, the enhancement is more substantial due to scattering into 
and out of the condensate. We also observed the absence of enhanced 
light scattering for an almost pure Bose–Einstein condensate. However, 
due to the strong increase of three-body losses at high density, we could 
prepare such condensates only at lower densities in more weakly con-
fining traps where the maximum enhancement is small owing to the 
larger value of κ. When the cloud was compressed to higher densities 
(Fig. 2b, black trajectory), an increase of light scattering was observed, 
qualitatively consistent with the prediction (Methods).

For temperatures above Tc, light scattering occurs within the ther-
mal distribution. In Fig. 3a, we compare the results with the predictions 
for an ideal gas and an interacting gas, without any free parameters 
except the overall scaling. Data with different Tc are binned together 
because of their small difference in κ. Usually, thermal Bose gases away 
from Feshbach resonances are treated as non-interacting. However, at 
our high densities, the mean-field (MF) repulsion is relevant even for 
thermal clouds. It softens the trapping potential and increases the 
bosonic enhancement by up to 50% because of the higher density of 
states at low energy (Methods). Bosonic stimulation is reduced by a 
second effect of interactions: the reduction of the pair correlation 
function suppresses the enhancement by a factor 1 − 8√2a/λt ≈ 0.6 at 
high temperatures (where a is the s-wave scattering length)25  
(Methods). Close to the phase transition, the thermal de Broglie 

factor, which can be obtained in the local density approximation by 
averaging over the phase space24:

S(q) = 1 ± ⟨n(r,p + q)⟩, (1)

where the plus (minus) sign corresponds to bosons (fermions). The 
phase-space average is weighted by the occupation number n(r,p). In 
the limit of zero recoil momentum, the second term reduces to the 
average phase-space density (PSD). This term becomes 1 for fermions 
at zero temperature, predicting complete Pauli blocking22. For bosons, 
the physics is richer because of the presence of the BEC phase transi-
tion. For a non-degenerate thermal gas, the averaged PSD is nλ3t /23/2 
(where n is the density and λt is the thermal de Broglie wavelength). 
Extrapolating this formula to the BEC phase transition with the criterion 
nλ3t = ζ(3/2) ≈ 2.612  gives an enhancement factor of 1.92 (where ζ is 
the Riemann zeta function). However, we will show that the enhance-
ment factor at the transition temperature can diverge (in free space) 
or is limited to ζ(2)/ζ(3) ≈ 1.37 for harmonic confinement.

The phase-space occupation number n(r,p) in equation (1) is  
given by the Bose–Einstein occupation number in the thermal  
cloud nth = [exp [(ϵp + U(r) − μ) /kBT] − 1]−1. The presence of a non- 
interacting condensate adds a δ function in phase space:

n(r,p) = {
nth(r,p) T ≥ Tc

nth(r,p)|μ=0 + h3N0δ(r,p) T < Tc
. (2)

Here ϵp = p2/2m, U(r) and μ represent the kinetic energy, potential 
energy, and chemical potential, respectively. N0 = f(T/Tc)N is the num-
ber of atoms in the condensate, with f being the condensate fraction 
and h being Planck’s constant.

Above Tc, scattering occurs between two thermally occupied states 
(Fig. 1a). The scattering rate is enhanced as the temperature approaches 
Tc because of the increase of nth(r,p) at low momenta. Below the transi-
tion temperature, scattering into and out of the condensate becomes 
possible (Fig. 1b). Combining the expression for n(r,p) with equation 
(1), the total scattering rate below Tc reads

S(q) = 1 + 2fnth(0,q) + ⟨nth(r,p + q)|μ=0⟩. (3)

The first term represents the contribution of single-particle Rayleigh 
scattering events, the second term denotes the condensate-to-thermal 
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Fig. 1 | Schematic of bosonic stimulation in light scattering. Momentum-space 
pictures of the cloud above and below the phase transition. When a photon is 
scattered, the photon recoil changes the momentum of the atom by q (red 
arrow). a, Above the phase transition (T > Tc), both the initial and final momentum 
states are in the thermal cloud. b, Below the phase transition (T < Tc), a 
condensate emerges around zero momentum, and scattering between the 
condensate and the thermal cloud is also possible. In either case, light scattering 
is enhanced if the final state is occupied.
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wavelength λt is effectively replaced by the correlation length ξ. The ξξ
divergence of ξ at the phase transition will diminish the suppressionξ
caused by pair correlation. To the best of the authors’ knowledge, the
suppression of bosonic stimulation by repulsive interactions has not
been discussed before. In Methods, we discuss some evidence for the
effect of pair correlations. Figure 3a demonstrates that the two effects
of interactions almost cancel each other.

For temperatures below the BEC phase transition, the scattering
between the condensate and the thermal cloud dominates the bosonic
enhancement. For a non-interacting Bose gas, the enhancement
factor increases almost linearly with the condensate fraction close
to the critical point:  (Fig. 3b, dashed curves).
However, because of the MF repulsion between the thermal cloud
and the condensate, the density of thermal atoms inside the
condensate volume is strongly reduced26, diminishing the bosonic
enhancement. The enhancement  is thus reduced by the factor

, with being the density distri-
bution of the interacting BEC, and  the phase-space occupa-
tion number for the interacting thermal cloud. The experimentally
observed enhancement is reduced by up to a factor of 3 compared with
the non-interacting theory (Fig. 3b). We model the effect of interactions
using the semi-ideal gas approximation26, which assumes an interacting
condensate and repulsion of the thermal cloud by the condensate, and
include the modified pair correlation function25 (Fig. 3b). Note that the
theoretical curves in Fig. 3b have no free parameters (the overall scaling
being the same as in Fig. 3a). Our model explains most of the reduction
in light scattering compared with the predictions for a non-interacting
gas. The remaining difference could be due to the back-action from the
thermal cloud to the BEC, which will further reduce their overlap and
can be treated approximately using a Hartree–Fock approximation
(Methods). However, a fully consistent treatment of the interacting
Bose gas is challenging both theoretically and numerically. Note that,
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Fig. 2 | Bosonic stimulation of light scattering in a trapped 23Na gas 
across the phase transition. a, Experimental data of light scattering versus 
temperature at different densities (different colours) above (dots) and below
(diamonds) the phase transition. Data points here are each averaged over
12–16 samples. The vertical uncertainty is reflected by the scatter of the data,

while the horizontal error is around 2%. The error bars throughout the whole
paper are purely statistical and reflect the s.e.m. b, Theoretical prediction of 
the bosonic enhancement factor for a harmonically trapped non-interacting
gas, corresponding to the traces in a (red trajectory) or when an almost pure
condensate is prepared at low density and compressed (black trajectory).
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Fig. 3 | Bosonic enhancement of light scattering above and below the BEC
phase transition. a, Above the phase transition, scattering occurs within the
thermal cloud. The dashed curve represents the theoretical prediction for ideal
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for an interacting condensate, light scattering can be strongly modified 
by the spectrum of collective excitations. For example, for momentum 
transfers which create phonons, light scattering is suppressed27.

Until now, we have assumed a two-level system, realized by exciting 
the initial |F = 2,mF = 2⟩ hyperfine state on a cycling transition with 
σ+-polarized light (Fig. 4a, blue). We now discuss the situation in which 
the atoms are excited with light of different polarization. In the limit 
of detunings much larger than the hyperfine interaction in the excited 
state, the nuclear hyperfine structure can be neglected since the 
nuclear spin state does not change during the light scattering. There-
fore, we realize the simplified level diagram shown in Fig. 4a.

When the atoms are initially prepared in a single internal state, 
only Rayleigh scattering shows bosonic enhancement. Raman scat-
tering (or optical pumping) populates initially empty states and is 
not enhanced. We therefore expect the enhancement factor η to be 
reduced to γη + (1 − γ), where γ represents the branching ratio (the 
ratio of Rayleigh scattering to Raman scattering). To describe our 
experimental situation, we express the observed scattering rate for σ+ 
light as R+ = ηR, with R representing the Rayleigh scattering rate without 
any enhancement. The expected observed scattering rate for σ− light 
is then predicted as

R− = 1
3 (γηR + 2(1 − γ)R). (4)

Here, the prefactor of 1/3 results from the reduced matrix element, the 
branching ratio of γ = 1/3, and an extra factor of 2 from the different 
angular distributions for the scattered σ and π light. By comparing 
equation (4) in the high-temperature and low-temperature limit, we 
find the enhancement factor for σ− polarized light to be (4 + η)/5. The 
results presented in Fig. 4b confirm that the bosonic enhancement 
for σ− probe light is always below the enhancement for σ+. We can use 
equation (4) and regard γ as a fitting parameter that characterizes  
the bosonic enhancement. The best fit to the data gives γ = 0.4(2) 
and is consistent with the theoretical prediction (γ = 1/3) within the 
experimental uncertainty (which is larger for σ− scattering owing 
to the small number of photons observed). If the light scattering is 
non-perturbative, the population can build up in the initially empty 
state via optical pumping, which will then lead to super-radiantly 
enhanced Raman scattering28,29.

In conclusion, we have shown how quantum statistics and inter-
action modifies the optical properties of a Bose gas. We have worked 
in a regime where the effect of quantum statistics dominates over 
other effects such as dipole–dipole interactions30, super-radiance4, 
light-assisted collisions31, multiple scattering and atomic lensing. 
Super-radiance is another form of enhanced light scattering but is 
not directly connected to quantum statistics. It is caused by coher-
ence (in the form of symmetric Dicke states32). These coherences are 
created by light–atom interactions due to non-linear light scattering. 
In contrast, our experiment was done in the perturbative limit and 
probed the quantum statistical pair correlations of an equilibrium 
quantum gas. Besides the fundamental interest, understanding light 
scattering is crucial for quantitative diagnostics of bosonic systems. 
For future work, it would be promising to study bosonic enhancement 
of light scattering in a box potential33 because of the absence of density 
inhomogeneity. The large extension of the critical region will give much 
stronger enhancement and enable studies of the 1/κ divergence of the 
enhancement factor. In addition, in a box potential, interactions can 
affect light scattering only through the modification of the pair cor-
relation function. It should be possible to clearly observe how bosonic 
enhancement is reduced above the phase transition, but not right at 
the critical point. Furthermore, for strong repulsive interactions near a 
Feshbach resonance, light scattering in bosons could possibly be even 
suppressed below the single-particle Rayleigh rate, in analogy with 
Pauli blocking for fermions. Both Pauli blocking and strong interactions 
reduce the pair correlation function. More generally, light scattering 
provides a way to measure the static structure factor, which could be 
used to characterize strongly interacting systems, including systems 
with strong dipolar interactions which are anisotropic and long range.
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Methods
Sample preparation
Around 1 billion sodium atoms are loaded into a magneto-optical trap 
(MOT) and transferred into a quadrupole magnetic trap with an optical 
plug where they are cooled by microwave evaporative cooling. Subse-
quently, around 107 atoms in the hyperfine state |F = 2,mF = 2⟩ are trans-
ferred into a single-beam 1,064 nm optical dipole trap (ODT). The beam 
waist and intensity of the trapping beam are controlled by a variable-size 
iris and an acousto-optic modulator, respectively. The beam waist was 
initially chosen to be large to increase the loading efficiency into a large 
trap volume. Because the bosonic enhancement effect requires 
kBTc ≫ Erec, the atomic gas is compressed to a higher density with a higher 
Tc by fully opening up the iris. Decreasing the intensity of the optical 
trapping beam induces evaporative cooling to a Bose–Einstein con-
densed cloud with around 4 × 105 atoms and around 30% condensate 
fraction. The final Tc can be adjusted from 6.8 μK to 11 μK by changing 
the final power of the optical trap. Subsequent heating of the cloud was 
done by sinusoidally modulating the power of the optical trapping beam 
by 50% at 1 kHz frequency with variable duration (from 1 ms to 49 ms).

Light scattering and collection
The probe light was generated from an independent 1,178 nm laser with 
frequency doubling. The frequency of the probe light was red detuned 
from the D2 transition of sodium by Δ = 25.7 GHz. The large detuning 
was chosen to avoid multiple scattering of photons, to minimize the 
lensing effect and photo-association loss. In addition, since the detun-
ing is much larger than the hyperfine interaction in the electronically 
excited state (Δ ≫ AHFS = 18.5 MHz), the nuclear spin of the atom is pre-
served during the light scattering. The 1/e2 diameter of the probe beam 
is 3.3 mm in the atoms’ plane. The intensity of the beam was stabilized 
to avoid shot-to-shot fluctuations.

Fluorescence light is collected at a 90° angle relative to the probe 
beam with a collection efficiency of 0.6(1)%, obtained from a calcula-
tion based on geometry, optical losses, etc. This value agrees with an 
experimental value derived from the laser intensity and the observed 
fluorescence signal at high temperatures. To detect the small number 
of scattered photons, we used an electron multiplying charge-coupled 
device (EMCCD) camera with quantum efficiency of 97% and read-
out noise of 3–5 electrons per pixel. Hardware binning of pixels was 
implemented to ensure that the photon shot noise dominates over the 
readout noise. Background noise was suppressed by choosing a region 
of interest only slightly larger than the image of the cloud.

For the light scattering in Figs. 2 and 3, at most 0.08 photons were 
scattered per atom. The pulse duration was 4 ms. For the data in Fig. 4, 
since the σ−-polarized probe light will cause optical pumping, we used 
weaker pulses with at most 0.03 (0.01) photons per atom for Rayleigh 
(Raman) scattering and a pulse duration of 3 ms.

We verified that the atoms were probed in the perturbative regime 
in which optical pumping and non-linear effects such as super-radiance 
are absent, by measuring the scattered light as a function of probe beam 
power (Extended Data Fig. 1). The measurement was done for both a 
cloud with and without BEC. The linear behaviour shows that the light 
scattering is indeed perturbative.

Atom count and thermometry
The atom number and temperature of the cloud (and their uncertain-
ties) were determined from time-of-flight absorption measurements at 
the end of each experimental cycle. The fitting of absorption images was 
done using the Bose function for the thermal cloud and the Thomas–
Fermi distribution for the BEC34. The temperature in the presence of 
BEC is calculated from the measured BEC fraction f by T/Tc = (1 − f)1/3.

Experimentally, the atoms were released from the trap 8 ms after 
the light pulse. The hold time was chosen to allow the atoms to ther-
malize, and was also necessary for a mechanical camera shutter to 
open. The shutter was necessary to block the probe beam which was 

collinear to the imaging beam during the light scattering. Because of 
the three-body loss during the light pulse and hold time, corrections 
are needed to obtain the atom number and temperature during the 
light pulse. These corrections are below 10% for most of the data. They 
were obtained by directly measuring the change of temperature and 
atom number during a few milliseconds and extrapolating this for the 
10 ms delay (half the light pulse plus the hold time) in the actual experi-
ment. For the atom number, this was done shot by shot, whereas for 
temperature, for robustness, we used the temperature averaged over 
clouds with identical preparation.

Properties of the high-density cloud
Substantial Bose enhancement of light scattering requires the critical 
temperature to be higher than the recoil energy. Therefore, the density 
n of our sample needed to be around 1015 cm−3. Since the three-body 
loss rate coefficient for thermal sodium atom in F = 2 states at zero 
magnetic field is 9.6 × 10−29 cm6 s−1 (ref. 35), the estimated lifetime of 
the cloud ranges from 15 ms to 140 ms, depending on the temperature 
and trap depth. Since the typical trap frequencies in the radial (axial) 
direction are 9.5 kHz (290 Hz), the density drops quickly in the initial 
stage of time of flight and the three-body loss becomes negligible. 
Another consequence of the high density is the short mean free path 
(l = 1/nσ ≈ 1 μm, where σ is the cross-section for elastic collisions). Since 
the typical size of the cloud is around 1 μm in the radial direction and 
30 μm in the axial direction, this implies slow hydrodynamic transport 
in the axial direction. Due to hydrodynamic collisional effects, the equi-
librium time scale in the axial direction is much slower than the trap-
ping period and can potentially lead to non-fully equilibrated clouds 
in combination with fast three-body loss. More precise measurement 
of bosonic light scattering should therefore be done at lower densi-
ties and smaller scattering angles, or by choosing atoms with an even 
lower three-body loss rate (for example, 23Na in the F = 1 state or 164Dy).

Light scattering for a pure BEC and adiabatic compression
A pure Bose–Einstein condensate shows no bosonic enhancement of 
light scattering. We therefore studied light scattering using an almost 
pure condensate, and then compressed the condensate adiabatically 
by ramping up the power of the optical trap. An almost pure BEC could 
be prepared only in a shallow trap. Subsequently, the trap power was 
ramped up to increase the density and therefore Tc. Light scattering 
was measured for different final trap depths. Without compression, 
the photon count rate is identical to the signal for a non-degenerate 
thermal gas (Extended Data Fig. 2), demonstrating the absence of bos-
onic enhancement in a pure condensate. However, for the large values 
of κ = 1.5, the maximum predicted enhancement for a mixed cloud is 
only 9%. For higher densities, bosonic enhancement of light scattering 
was observed, in qualitative agreement with the theory. During com-
pression, the cloud approximately followed the black trajectory in Fig. 
2. Owing to losses and heating during compression, the condensate 
fraction decreased and light scattering was enhanced. Because of the 
heating, we were not able to map out the region of low T/Tc and low κ, 
where the enhancement would increase with temperature.

Theory for the bosonic enhancement factor
The bosonic enhancement factor approaches zero in the limit of low 
density or large recoil, κ → ∞, and is maximized in the high-density limit 
κ = 0 where the normalized light scattering is given by the S(q = 0) at 
zero momentum. We now rigorously calculate S(0) for power-law densi-
ties of state g(ϵ) = Aϵx. For a generic power-law trapping potential V(r) ∝ rα 
in d-dimensional space, the exponent x in the density of state reads36

x = d
2 + d

α
− 1. (5)

The box potential has α = ∞, and in three dimensions x = 1/2.
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Rewriting the integrals in equation (1) in terms of energy ϵ, we have

S(q = 0) = 1 +
∫∞
0 dϵ n(ϵ)2g(ϵ)
∫∞
0 d ϵn(ϵ)g(ϵ)

. (6)

Here n(ϵ) = (z−1 exp(βϵ) − 1)−1 is the occupation number with z = exp(βμ) 
being the fugacity and β = 1/kBT.

The integrals have the following analytic solutions:

∫
∞

0
dϵ n(ϵ)g(ϵ) = AΓ (1 + x)g1+x(z)/β1+x, (7)

∫
∞

0
dϵ n(ϵ)2g(ϵ) = AΓ (1 + x)(−g1+x(z) + gx(z))/β1+x. (8)

Here gn(z) represents the nth-order polylogarithm function. 
Finally, we get the following simple expression for the bosonic enhance-
ment factor:

S(0) = gx(z)
g1+x(z)

. (9)

It can be shown that gx(z)/g1+x(z) has its maximum at the  
BEC phase transition z = 1. The behaviour of the polylogarithm  
functions at z = 1 divides the physics into three regimes depending  
on the value of x. The results are summarized in Extended Data  
Table 1.

When x ≤ 0, both gx(z) and g1+x(z) diverge at z = 1. The divergence 
of g1+x(z) implies the absence of the BEC phase transition. Therefore, 
z < 1 for all temperatures, and the enhancement factor gx(z)/g1+x(z) is 
always finite.

When 0 < x ≤ 1, gx(z) diverges at z = 1 but g1+x(z) remains finite. 
This implies the presence of a BEC phase transition and (for κ = 0) an 
unbounded light scattering rate with a divergent enhancement factor 
at the BEC phase transition point.

When x > 1, both gx(z) and g1+x(z) remain finite at z = 1. This implies 
the presence of a BEC phase transition and a bounded light scattering 
rate. The maximum possible enhancement factor at the transition 
temperature is ζ(x)/ζ(1 + x).

For the relevant case of the 3D box potential (x = 1/2), light scat-
tering can diverge, whereas for the 3D harmonic trapping potential 
(x = 2), the maximum enhancement factor is ζ(2)/ζ(3) ≈ 1.37. Extended 
Data Figs. 3 and 4 illustrate those cases.

To study the divergence of the enhancement factor near the phase 
transition for 0 < x ≤ 1, we now determine the behaviour for small but 
non-zero recoil momentum κ.

We start with the exact expression for the enhancement factor at 
finite recoil κ at the phase transition:

S(q) = 1 + 1
√πΓ (x+1/2)ζ(x+1)

∫∞
0 da ∫∞

−∞ dy 1
exp(a+y2)−1

ax−1/2

exp(a+(y+κ)2)−1
. (10)

Here y represents the dimensionless momentum in the recoil direction, 
and a represents the total energy from all other dimensions in phase 
space. Since the enhancement factor diverges as κ2−2x for 0 < x ≤ 1, we 
need to calculate

I = lim
κ→0

∫
∞

0
da ∫

∞

−∞
dy κ2−2x

exp(a + y2) − 1
ax−1/2

exp(a + (y + κ)2) − 1
. (11)

After transforming to polar coordinates a = r2 sin (θ)2  and 
y = −r cos(θ), one obtains I = limκ→0 ∫

∞
0 dr ∫π

0 dθ f(r,θ) with

f(r,θ) = κ2−2x

exp(r2) − 1
2r(r sin(θ))2x

exp(r2 − 2rκ cos(θ) + κ2) − 1
. (12)

We first perform the integral over r. The function f(r, θ) has  
a branch cut from r  = 0 to r  = +∞.  It also has poles at  

r±,n = κ cos(θ) ±√−κ2 sin (θ)2 + 2πni , with n being an integer. The  

residues at r = r±.n are

Res (f (r±,n)) = ±2κ2−2x sin (θ)2x

exp((r±)
2) − 1

(r±)
2x+1

r+ − r−
. (13)

In the limit of κ → 0, the residues vanish if n ≠ 0. For n = 0, the resi-
dues remain finite:

Res (f (r±,0)) = ± 2κ2−2x sin (θ)2x

exp(κ2 exp(±2iθ))−1
(κ exp(±iθ))2x+1

2iκ sin(θ)

≈ − ± i(exp(±iθ) sin(θ))2x−1.
(14)

By using the Hankel contour in the complex r plane, the  
integral I can be related to the sum of all residues in the complex  
plane by

I(1 − exp(2i𝜋𝜋x)) = 2𝜋𝜋i∑
n

∫
π

0
dθRes (f (r±,n,θ)), (15)

with the result:

I = 2𝜋𝜋i∫𝜋𝜋

0 dθ (−i(exp(iθ) sin(θ))2x−1+i(exp(−iθ) sin(θ))2x−1)
1−exp(2i𝜋𝜋x)

= 2𝜋𝜋2

4x sin(𝜋𝜋x)
.

(16)

Putting all the pre-factors in, one obtains the divergent behaviour 
of the bosonic enhancement factor as

S(κ → 0) ≈ 2𝜋𝜋3/2κ2x−2

4x sin(𝜋𝜋x)Γ (x + 1/2)ζ(x + 1) . (17)

For 0 < x < 1, the divergence in equation (17) can be understood in 
an intuitive way. In d spatial dimensions, the first-order correlation 
function of the non-interacting Bose gas approaches g(1)(r) ∝ 1/rd−2 at 
the critical point. Because the structure factor of a homogeneous 
sample Sbox(q) is related to the Fourier transform of the pair correlation 
function g(2)(r) − 1 = |g(1)(r)|2 ∝ 1/r2d−4, Sbox(q) diverges as κd−4 when κ → 0. 
For a Bose gas trapped in a power-law potential V(r) = V0(r/L)α (where 
L is the characteristic length of the system), only a fraction of the gas 
is close to local criticality at T = Tc. This fraction can be estimated from 
the characteristic length scale r0 where the trapping potential energy 
is similar to the recoil energy: V0(r0/L)

α ≈ q2/2m. Therefore, the fraction 
f ∝ (r0/L)

d ∝ κ2d/α . Qualitatively, we can treat the sample within r0 as 
homogeneous and apply the result for Sbox(q) at criticality to this small 
region. In the end, we get the structure factor for the trapped gas as 
S(q) ∝ κ2d/ακd−4 ∝ κ2x−2.

For x > 1, the bosonic enhancement mainly comes from regions 
outside the critical region which is very small, therefore the overall 
enhancement factor is finite.

Density distribution
The repulsive interaction between atoms modifies the density distribu-
tion in the trapping potential and greatly reduces the overlap between 
the thermal cloud and the condensate. The density distribution of the 
cloud was obtained using the local density approximation. Locally, the 
Bose gas is treated as a homogeneous gas with a Hartree–Fock (HF) MF 
Hamiltonian37 of

HHF − μN = −gnN − gn0N0
2 +∑

k

(ϵk − μ + 2gn)a†
k
ak. (18)
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Here n0 represents the density of the BEC while n is the total density. μ 
is the chemical potential, and g = 4πℏ2a/m represents the interaction 
strength. N and N0 are the total atom number and the atom  
number in the condensate, respectively. a†

k
 and ak are the creation  

and annihilation operators for a free particle with momentum k and 
kinetic energy ϵk = k2/2m. For a given chemical potential, the local 
density is obtained by solving the following pair of equations 
self-consistently:

⎧
⎨
⎩

n = n0 +
1
λ3t

g3/2(eβ(μ−2gn))

μ = 2gn − gn0
(19)

We used an open-source package to solve these equations numeri-
cally for a harmonic trapping potential38. Note that here all calculations 
were done by assuming an isotropic harmonic trap with mean trap 
frequency of ω = (ωxωyωz)

1/3. Unlike in our previous work with fermi-
ons22, the anharmonicity corrections for bosons here are much smaller 
and will be neglected. Extended Data Fig. 5 shows the density profiles 
of a Bose gas for an ideal gas, in the semi-ideal gas approximation and 
HF approximation. Reference 39 discusses the differences between the 
three models and compares them with experimental data. The ideal 
gas approximation assumes no interaction between atoms. The 
semi-ideal gas approximation considers the interaction within the BEC 
and between the BEC and the thermal cloud, but not the interaction 
within the thermal cloud and the back-action of the thermal cloud on 
the condensate. The MF repulsion of the thermal cloud by the conden-
sate substantially reduces their overlap, causing the reduction of Bose 
enhancement. As a comparison, the HF approximation takes all interac-
tions into account at the MF level. The calculations in Extended Data 
Fig. 5 show that the back-action from the thermal cloud compresses 
the BEC to higher densities and further reduces their overlap by around 
20%. However, the HF calculation predicts an unphysical jump in the 
BEC density (Extended Data Fig. 5). For modelling the density distribu-
tion in the presence of a condensate, we used the semi-ideal gas approx-
imation since it is numerically a much simpler approach. For a fully 
consistent calculation of the density profiles, one would have to go 
beyond the HF approximation.

To understand the importance of the different interaction terms, 
it is useful to compare the peak density of the thermal cloud at the phase 
transition (nth) with the peak density of the BEC at T = 0 (n0). By using 
nth ∝ N/(kBTc/mω2)3/2 and kBTc = ℏω(N/ζ(3))1/3, we get nth ∝ N1/2/a3

ho (where 
aho = √ℏ/mω is the oscillator length). For the condensate, we can use 
n0 = μ0/g with μ0 = ℏω(15Na/aho)

2/5/2  and g = 4πℏ2a/m to obtain 
n0 ∝ N2/5/(a3/5a12/5

ho ). Thus, the ratio of the densities of the thermal cloud 
and the BEC becomes nth/n0 ∝ N1/6a/aho. Although the conventional 
wisdom is that the density of the BEC is usually much higher than the 
thermal cloud, nth and n0 differ by only a factor of 2 in our experiment 
because of the tight confinement (Extended Data Fig. 5). Since the MF 
interaction of the thermal cloud has an extra factor of 2 due to the 
exchange term, we have a situation where the interactions in the con-
densate and the thermal cloud are equally important.

Pair correlation function
Atomic interactions will affect light scattering also through the pair 
correlation function. The exact expression for the pair correlation 
function for the non-interacting Bose gas reads25

G(1)(r) =
∞
∑
l=1

elβμ

λ3t l
3/2

e
−𝜋𝜋r2

lλ2t . (20)

At high temperatures, the l = 1 term dominates, so the correlation 
function is a Gaussian with a correlation length λt/√2𝜋𝜋. Close to the 
critical point, the correlation function decays exponentially with a 
correlation length ξ (ref. 40):

g(1)(r) ≈ λt
ζ(3/2)r e

−r/ξ, ξ = 1
√−2mμ

= λt

√−4𝜋𝜋βμ
. (21)

Here g(1)(r) = G(1)(r)/G(1)(0) is the normalized first-order correlation 
function. The correlation length ξ diverges as |T − Tc|

−1 near the  
critical point for the non-interacting Bose gas. Using the correlation 
function for the non-interacting gas, we can calculate the structure  
factor S(q) for the ideal gas and the first-order correction of the structure 
factor with interactions25, Sint(q). Near the critical point, we obtain

S(q = 0) = ∫∞
0 ||g(1)(r)||

2
4πr2dr ∝ λ2t ∫

∞
0

e−2r/ξ

r2
4πr2dr

= 2𝜋𝜋λ2t ξ,

Sint(q = 0) ≈ S(q = 0) − ∫∞
λt
||g(1)(r)||

2 4a
r
4𝜋𝜋r2dr

∝ 2πλ2t ξ − 16πλ2t aΓ (0,
2λt
ξ
) ≈ 2𝜋𝜋λ2t ξ − 16𝜋𝜋λ2t a ln ξ

2λt
.

(22)

This expression shows that the relative correction due to inter
actions Sint/S − 1 ≈ −8a ln(ξ/λt)/ξ  vanishes as we approach the critical 
point. Note that the calculations were done by assuming q = 0 because 
the correction for finite momentum is quadratic in k and can  
be neglected.

At high temperatures, g(1)(r) ∝ e−𝜋𝜋r2/λ2t and the structure factor and 
its interacting correction are given by25

S(q = 0) = ∫∞
0 ||g(1)(r)||

2
4𝜋𝜋r2dr ∝ ∫∞

0 e−2𝜋𝜋r2/λ2t 4𝜋𝜋r2dr

= λ3t

2√2
,

Sint(q = 0) = S(q = 0) − ∫∞
0 ||g(1)(r)||

2 4a
r
4𝜋𝜋r2dr

∝ λ3t

2√2
(1 − 8√2 a

λt
) .

(23)

Therefore, the correction factor for interaction effects approaches 
1 − 8√2a/λt at high temperatures. Note that the interacting pair correla-
tion function describes the true correlation in the position of the atoms, 
whereas the non-interacting second-order correlation function 
g(2)0 (r = 0), which is 1 for a pure condensate and 2 for a thermal cloud, 
appears in the interaction parameters for the condensate and the 
thermal cloud, respectively25,41.

Comparing interacting models with experimental data above 
the phase transition
The bosonic enhancement of light scattering is about 30% just  
above the phase transition temperature. The MF modification of  
the density distribution increases the light scattering by about  
10%, whereas the modification of the pair correlation function leads 
to a decrease by about 10%. This is why the predictions for the full 
theory for interactions are close to the ideal gas prediction. This is 
shown in Extended Data Fig. 6, where three different models are  
compared with the ideal gas: (1) the MF model including only the modi-
fied density distribution of the cloud but not the pair correlation  
function, (2) the MF + overall suppression model that approximates 
the effect of the modified pair correlation as an overall reduction  
factor of 1 − 8√2a/λt  and (3) the full interacting theory model that 
includes the dependence of the pair correlation function on the local 
chemical potential. So, we locally calculated the pair correlation func-
tion (without assuming a Gaussian or exponential form) and the  
structure factor Sint(q) which gives the local scattering rate. The total 
light scattering rate is obtained by integrating the local rates across 
the cloud.

We fit the data using different models by only adjusting the overall 
scaling. A comparison of the χ2 values for the fits shows that the model 
with only the MF interaction has the worst χ2 (Extended Data Table 2). 
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Therefore, if one assumes the validity of the MF term, then our observa-
tions provide some evidence for the modification of pair correlations 
by interactions. Note that some of the differences in Extended Data 
Fig. 6a disappeared because the high-temperature asymptotic value 
is a fit parameter in Extended Data Fig. 6b. Unfortunately, we could 
not measure the asymptotic value at higher temperatures because of 
the limitation of the trap depth. We suggest that future experimental 
studies use a box potential instead of a harmonic potential to avoid the 
partial cancellation of MF and pair correlation effects.

Details of the interacting model below the phase transition
The full interacting theory below the phase transition becomes very 
complex, and we did not aim for a fully quantitative description. There-
fore, we used the following approximations for the theory curves in 
Fig. 3b: (1) the density distribution was obtained using the semi-ideal 
gas approximation and (2) the effect of the pair correlation function 
was introduced by a reduction factor of 1 − 8√2a/λt (equation (23)). 
Note that the theory curves in Fig. 3b have no free parameters (the 
overall scaling being the same as in Fig. 3a).
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Extended Data Fig. 1 | Linearity check for light scattering. Scattered photons are measured for different probe beam powers. The blue (red) data points represent a 
cloud with (without) BEC. The absence of nonlinearity shows that we are working in the perturbative regime. Data points here are each averaged over 3 samples.
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Extended Data Fig. 2 | Light scattering after compressing the cloud. The photon scattering signal was measured for different final trap depths. The dashed line 
represents the signal observed for a non-degenerate cloud with no bosonic enhancement. Each data point was averaged over 6 samples.
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Extended Data Fig. 3 | Bosonic enhancement factor for an ideal gas in a 3D box potential for different recoil momenta κ. At the phase transition point, the bosonic 
enhancement factor diverges as 1/κ.
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Extended Data Fig. 4 | Bosonic enhancement factor for an ideal gas in a 3D harmonic trapping potential for different recoil momenta κ. The enhancement factor 
is bounded at and above the phase transition, but will diverge as 1/κ2 below the phase transition.
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Extended Data Fig. 5 | The density distribution of the condensate and thermal cloud for different models. In the calculations we used the following values: 
scattering length of a = 85a0 (a0 is the Bohr radius), trap frequency ω = 2π × 2.7kHz, atom number N = 4 × 105 and condensate fraction of 30%.
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Extended Data Fig. 6 | Comparison between different models above the phase
transition. (a) Predictions for the Bose enhancement factor for different models.
(b) Fitting of the models to the experimental data. The only free parameter is the

overall scaling. In the calculations we used the following parameters: scattering
lengtha = 85a0 (a0 is the Bohr radius), atom number N = 4 × 10N 5 and dimensionless
recoil momentumκ = 0.51.κ
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Extended Data Table 1 | Bosonic enhancement factor for different exponent x in the density of states. In the limit of zero recoil momentum, the enhancement 
factor is bounded for x ≤ 0 and x > 1 while diverging for 0 < x ≤ 1.
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Extended Data Table 2 | χ2 values for fits using different models. The χ2 values are normalized in such a way that it becomes dof = 13 for the full interacting model.  
As a comparison, the probability for χ2 (dof=13) to be larger than 18.5 is 10%.
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