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ARTICLE INFO ABSTRACT
Keywords: Persistent organic pollutants (POPs) are lipophilic compounds that bioaccumulate in animals and biomagnify
Arctic within food webs. Many POPs are endocrine disrupting compounds that impact vertebrate development. POPs
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Military contamination

RNA sequencing

accumulate in the Arctic via global distillation and thereby impact high trophic level vertebrates as well as
people who live a subsistence lifestyle. The Arctic also contains thousands of point sources of pollution, such as
formerly used defense (FUD) sites. Sivuqaq (St. Lawrence Island), Alaska was used by the U.S. military during the
Cold War and FUD sites on the island remain point sources of POP contamination. We examined the effects of
POP exposure on ninespine stickleback (Pungitius pungitius) collected from Troutman Lake in the village of
Gambell as a model for human exposure and disease. During the Cold War, Troutman Lake was used as a dump
site by the U.S. military. We found that PCB concentrations in stickleback exceeded the U.S. Environmental
Protection Agency’s guideline for unlimited consumption despite these fish being low trophic level organisms.
We examined effects at three levels of biological organization: gene expression, endocrinology, and histo-
morphology. We found that ninespine stickleback from Troutman Lake exhibited suppressed gonadal develop-
ment compared to threespine stickleback (Gasterosteus aculeatus) studied elsewhere. Troutman Lake stickleback
also displayed two distinct hepatic phenotypes, one with lipid accumulation and one with glycogen-type vacu-
olation. We compared the transcriptomic profiles of these liver phenotypes using RNA sequencing and found
significant upregulation of genes involved in ribosomal and metabolic pathways in the lipid accumulation group.
Additionally, stickleback displaying liver lipid accumulation had significantly fewer thyroid follicles than the
vacuolated phenotype. Our study and previous work highlight health concerns for people and wildlife due to
pollution hotspots in the Arctic, and the need for health-protective remediation.
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1. Introduction

Persistent organic pollutants (POPs) are highly stable synthetic
compounds that persist in the environment (Kelly et al., 2007). POPs are
a grave concern for arctic Indigenous communities (Hoover et al., 2012)
because the Arctic acts as a hemispheric sink of globally distilled pol-
lutants transported from lower latitudes (Mackay and Wania, 1995;
Rigét et al., 2010; Wania, 2003). Once POPs enter the Arctic, low tem-
peratures and low intensity sunlight further slow their degradation
(Scheringer et al., 2004), which makes them available for long-term
incorporation into biological systems (Pacyna et al., 2015). POPs bio-
accumulate and biomagnify in lipid-rich arctic food webs, which pose
health risks to arctic communities that depend on subsistence foods
(Gobas et al., 1993; Kelly et al., 2007; Suk et al., 2004). The Arctic is
home to many Indigenous peoples who rely on traditional subsistence
diets that include lipid-rich foods such as fish and marine mammals
(Welfinger-Smith et al., 2011). As a result, these communities are often
chronically exposed to POPs through their diet (Van Oostdam et al.,
2005). Additionally, the Arctic contains thousands of formerly used
defense (FUD) sites dating from World War II and the Cold War, many of
which are located near villages (USDOI, 2016; von Hippel et al., 2016).
FUD sites can be significant sources of POPs and contribute to dispro-
portionately high levels of exposure in people and wildlife in certain
areas (Byrne et al., 2018b; Hoover et al., 2012). The combination of
global distillation and local hotspots of pollution explains why the Arctic
contains some of the most highly POP-contaminated animals and people
in the world (AMAP, 1998, 2015; von Hippel et al., 2016).

Both legacy and emerging POPs contribute to arctic contamination.
Legacy POPs include banned or restricted chemicals such as poly-
chlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs),
and organochlorine (OC) pesticides. Emerging POPs include chemicals
that are still increasing in levels of environmental contamination, such
as organophosphate esters (OPEs) and per- and polyfluorinated alkyl
substances (PFAS). The widespread use of these compounds has
contributed to pervasive contamination of the global environment and
concerns for adverse health effects associated with high or chronic ex-
posures (Dewailly et al., 1989; Hoover et al., 2012; Lohmann et al.,
2007; Wania and MacKay, 1996). Because many POPs are endocrine
disruptors and neurotoxicants, chronic exposures present an important
public health concern for people of the Arctic (Faass et al., 2013; Linares
et al., 2015; Sonne et al., 2017).

Sivuqaq (St. Lawrence Island), Alaska is the largest island in the
Bering Sea and is located approximately 200 km off the west coast of
mainland Alaska (Fig. 1). The United States military installed two radar
surveillance stations on the island during the Cold War, including one in
the Yupik village of Gambell (FUD site property #F10AK0696; USACE,

Environmental Pollution 340 (2024) 122765

2008). The main base camp for the Gambell defense site was built on the
northern coast of Troutman Lake directly adjacent to Gambell
(USATSDR, 2020). Military use of Gambell occurred within and around
the village, extending from the Bering Sea on the west to the top of
Sevuokuk Mountain on the east (USATSDR, 2020). The Gambell FUD
site covers approximately 7 km? and includes areas around Troutman
Lake that were used as disposal sites during military operations from
1948 to 1965 (USACE, 2008; USATSDR, 2020). Cleanup activities at the
FUD site included the removal of over 29 tons of hazardous and
non-hazardous wastes, such as transformer debris containing PCBs
(USATSDR, 2020). Although subsequent PCB sampling and analysis
showed that concentrations were below the EPA cleanup criteria
(USACE, 2008), stickleback contaminant profiles suggest a remaining
point source of pollution and indicate that military contamination
continues to impact local food webs (Zheng et al., 2020). Troutman Lake
is used for recreating and as a source of drinking water by Gambell
residents (USATSDR, 2020).

The people of Sivugaq have expressed concern about health risks
posed by exposure to POPs (Miller et al., 2013; USATSDR, 2020). These
concerns led to multiple studies that found that PBDEs are ubiquitous in
dust collected from Sivuqaq households and that Sivugaq residents have
elevated concentrations of certain PCBs (Carpenter et al., 2005), OC
pesticides (Byrne et al., 2015), PBDEs (Byrne et al., 2017), and PFAS
(Byrne et al., 2018b) in their blood sera. Additionally, blood sera levels
of PBDEs and PFAS in Sivuqaq residents were significantly associated
with thyroid hormone concentrations (Byrne et al., 2018a; Byrne et al.,
2018b). These studies confirmed that exposure to POPs, whether they
originated at hotspots of pollution such as FUD sites or via atmospheric
deposition, could lead to the adverse health outcomes.

Teleost fishes are useful models for studies of contaminant exposures
and effects on human health because they can elucidate mechanisms of
toxicity and provide relevant biomarkers (Tierney et al., 2014). This
study utilized the ninespine stickleback (Pungitius pungitius), a useful
model organism in arctic ecotoxicology due to its ubiquity in the Arctic,
including in contaminated sites; hardiness; and availability of bio-
markers (von Hippel et al., 2016). The ninespine stickleback is an
excellent proxy for human exposure to contaminants on Sivuqaq
because contaminant profiles in these fish closely mirror those found in
blood sera of Sivuqaq residents (Byrne et al., 2015; Byrne et al., 2017).
Furthermore, von Hippel et al. (2018), Zheng et al. (2020), and Jor-
dan-Ward et al. (2022) found that contaminants that accumulate in fish
living downstream of Sivuqaq FUD sites originated primarily at those
sites, indicating that these FUD sites remain point sources of POP
pollution. Because ninespine stickleback are exposed to many of the
same contaminants as Sivuqaq residents, organ-specific analyses in
stickleback may elucidate human health effects of local contaminant
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Fig. 1. Location of A) the Alaska Native Village of Gambell on Sivuqaq, Alaska and B) sampling location in Troutman Lake.
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exposure and tissue-specific mechanisms of toxicity and pathologies.

At the request of the Sivugaq community, we examined ninespine
stickleback collected from Troutman Lake as a model for human expo-
sure and disease. We examined effects at three levels of biological or-
ganization: gene expression, endocrinology, and histomorphology. We
focused on histomorphologies of gonad, liver, and thyroid because these
organs are targets of disruption by many POPs (Gore et al., 2015). We
analyzed thyroid hormone levels because the POPs that are elevated in
Troutman Lake stickleback disrupt thyroid function. We hypothesized
that thyroid hormone levels and thyroid morphologies would be
consistent with hypothyroidism in many fish, but that variation would
occur and be associated with individual vulnerability or susceptibility to
POP exposure. During histological analysis of liver tissue, we noticed
that ninespine stickleback displayed two distinct phenotypes. Liver
serves important metabolic functions (Mitra and Metcalf, 2012) and is
often the primary organ involved in the biotransformation of contami-
nants in fishes (Brusle and Anadon, 1996). Therefore, we hypothesized
that fish with lipid accumulation in the liver may be more sensitive to
obesogenic contaminants. We sequenced mRNA of liver tissue to
examine transcriptomic differences between the two phenotypes.

The present study is limited by a lack of a nearby reference popu-
lation. Troutman Lake and Nayvaghaq Lake are the only lakes close to
Gambell, and both were used as disposal sites by the military during
operation of the Gambell defense site (USACE, 2008; USATSDR, 2020).
Therefore, our study focuses on variability of biological endpoints
within the Troutman Lake stickleback population. To our knowledge,
this is the first study to examine histology of wild ninespine stickleback.
Therefore, we rely on comparisons to histomorphologies of the threes-
pine stickleback (Gasterosteus aculeatus) and other fishes. Together, our
results describe the transcriptomic, endocrinological, and histo-
morphological characteristics of Troutman Lake ninespine stickleback
exposed to FUD site pollution to address concerns regarding human
health and the environment.

2. Materials & methods
2.1. Fish collection

We collected adult ninespine stickleback from a single location in
Troutman Lake during their breeding season in late June of 2015 and
early July of 2018 (Fig. 1). We trapped stickleback using unbaited 0.32
cm and 0.64 cm wire-mesh minnow traps and euthanized fish with an
overdose of pH-neutral MS-222 fish anesthetic. We dissected fish in the
field for both genetic and histological studies. For histology, we
dissected half of the liver, the thyroid region, and one gonad from each
fish and fixed these tissues in either Dietrich’s solution (2015 samples)
or 10% buffered formalin (2018 samples). For gene expression analysis,
we used fish collected in 2018 and we placed half of the liver in PTFE
vials containing RNAlater (the other half was used for histology). For
endocrine analyses, whole fish samples were frozen at —20 °C at the field
site and then transferred to —80 °C in the lab. We stored samples at
—80 °C for genetic analyses and at room temperature for histological
analyses. Sex of each fish was noted in the field and confirmed with
histological analysis of the gonads. All research protocols were approved
by the University of Alaska Anchorage Institutional Animal Care and Use
Committee (IACUC; #439949-1), the University of Oregon IACUC
(#13-12R4), and the Northern Arizona University IACUC (# 17-003).

2.2. PCB analysis

Total PCB concentrations were analyzed in three composite nine-
spine stickleback samples, representing a total of 30 adult fish (10 fish
per composite, ~0.5-2.5 g/fish). Samples were prepared and analyzed
alongside samples published in von Hippel et al. (2018). PCB quantifi-
cation was run by Axys Analytical Services Ltd. (Sidney, British
Columbia, Canada) using EPA Method 1668 A/C (Axys Method
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MLA-010 Rev 11). Composite samples were required to obtain sufficient
mass for congener-specific analysis. Therefore, we were not able to
compare PCB concentration to histological endpoints or transcriptomic
data within an individual.

2.3. Histology

Tissue samples from stickleback collected in 2015 were processed at
the University of Oregon histology core facility and tissue samples
collected in 2018 were processed at the Northern Arizona University
histology core facility. In both cases, tissue samples were dehydrated
and embedded in paraffin blocks. These were sectioned horizontally into
5 pm sections using a microtome. Each section was then stained with
hematoxylin and eosin (H&E). While each fish was sectioned for liver,
thyroid, and gonadal histology, laboratory errors during sectioning
limited comparisons of individual histomorphologies among the three
organs. For example, only ten fish were analyzed for all three organs in
2015.

2.3.1. Liver histomorphology

We analyzed histomorphologies of liver tissue from stickleback
collected in 2015 (n = 16; 4 males and 12 females) and 2018 (n =17; 14
males and 3 females). Photomicrographs of liver sections were captured
using a Leica DM6 B microscope (Leica Microsystems, Wetzlar, Ger-
many) and Leica Application Suite (LASX) software at both 100x and
400x. We selected areas for analysis that appeared homogenous; we did
not analyze sections that appeared torn or distorted because of the
sectioning process, or if the areas contained lots of vasculature. As
described by Minicozzi et al. (2019), we analyzed liver tissue for pres-
ence or absence of morphological characteristics associated with pa-
thology. This included the spectrum of phenotypes associated with
non-alcoholic fatty liver disease, such as nuclear displacement and
deformation, cellular deformation, disorganized hepatic cordons, and
hepatocyte vacuolation (Minicozzi et al., 2019; Wolf and Wheeler,
2018). Teleost liver morphology differs from that in mammals (Akiyoshi
and Inoue, 2004). In stickleback, hepatocytes are organized into tubular
cordons separated by sinusoids. We considered deviation from this
pattern as disorganized. Although H&E staining does not confirm the
composition of vacuoles or cellular inclusions, morphology can be used
to infer composition (Wolf and Wheeler, 2018).

2.3.2. Thyroid histomorphology

We analyzed histomorphologies of thyroid tissue from stickleback
collected in 2015 (n = 29; 7 males and 22 females) and 2018 (n = 28; 8
males and 20 females) with the same equipment and software as
described above for liver. In stickleback, the brachial arteries and skel-
etal muscles in the thoracic region create a diamond shape, which served
as reference points for consistent sectioning, imaging, and analysis of
thyroid follicles. We did not find these reference points in 2018 samples
due to the location of sectioning. Teleosts do not have thyroid follicles
contained in a thyroid gland, but rather the follicles are dispersed within
the thoracic region, with most located in the mid-thoracic area (Chanet
and Meunier, 2014; Geven et al., 2007). Therefore, sections taken closer
to the gill region (as with the 2018 samples) result in fewer thyroid
follicles than sections taken in the mid-thoracic region (as with the 2015
samples). Because of these discrepancies, we restricted our analysis to
within-year variation for thyroid histomorphologies and present 2018
data in Supplemental Table 1 only.

We selected two thyroid sections for each fish based on the presence
and quality of thyroid follicles, with preference given to those with more
colloid per follicle. We used histopictographs captured at 100x to count
the total number of thyroid follicles. At 400x, we numbered and
randomly selected five follicles using a random number generator (www
.random.org). For each of the five selected follicles, we measured follicle
area, colloid area, and thyrocyte height at the four cardinal points of the
follicle image, as described by Petersen et al. (2015) and Gardell et al.
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(2017). We quantified all measurements using an Intuos touch pad
(Wacom, Vancouver, WA) and Image J (NIH) software. Reported values
represent the mean of each endpoint for an individual fish. We also
examined sections for the presence of lipids around thyroid follicles.
Lipids were identified as white, unstained, and circular structures as
described by Gardell et al. (2017).

2.3.3. Gonad histomorphology

We analyzed histomorphologies of gonads from stickleback collected
in 2015 (n = 22; 6 males and 16 females) and 2018 (n = 61; 24 males
and 37 females). Gonads were imaged using a Leica Aperio CS2 slide
scanner and Leica ImageScope software. Only sections containing
complete and full gonads were imaged. Two sections of each gonad were
imaged and analyzed per individual fish to reduce the potential of ar-
tifacts introduced during the sectioning process. After imaging, we im-
ported histopictographs into ImageJ (Schneider et al., 2012) and
identified oocyte and testis stages using biomarkers detailed in Soko-
towska and Kulczykowska (2006) and Furin et al. (2015). For female
stickleback, we used ovary sections that contained the most oocytes.
Because ninespine stickleback have asynchronous oocyte maturation
(Tyler and Sumpter, 1996), the ovaries contain oocytes at multiple
stages. We staged each oocyte visible in the ovary histopictographs as
either early (stage 1), intermediate (stage 2), late (stage 3), mature
(stage 4), or regressed (Furin et al., 2015; Sokotowska and Kulczy-
kowska, 2006). The stages of male testicular lobules were largely ho-
mogeneous and therefore we staged each testis as either early (stage 1),
intermediate (stage 2), or late (stage 3) as described in Furin et al.
(2015).

2.4. RNA sequencing

Troutman Lake stickleback displayed two distinct liver phenotypes
(Fig. 2). We employed RNA-seq analysis to examine gene expression
differences associated with these liver phenotypes in ten male fish
collected in 2018. We compared five males that exhibited liver lipid
droplet accumulation (Fig. 2A) with five males that exhibited glycogen-
type vacuolation of hepatocytes (Fig. 2B). We extracted total RNA from
liver using the RiboPure RNA Purification kit (Invitrogen) and enriched
for mRNA using the Dynabeads mRNA Purification Kit (Ambion). We
prepared RNA-seq libraries using the NEXTflex Rapid Directional qRNA-
Seq kit (BIOO) and sequenced libraries on an Illumina HiSeq 4000 to
generate paired-end 150 nucleotide reads.

We employed the Dupliganger (Sydes, 2019) pipeline to process
nucleotide reads and remove unique molecular identifiers (UMI). We
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then removed adapters using Cutadapt (Martin, 2011) and quality
trimmed reads with Trimmomatic (Bolger et al., 2014), requiring an
average Phred score of 20 across a sliding window of 5 nucleotides and a
minimum read length of 50 nucleotides. Reads were then aligned to the
ninespine stickleback genome version NSP_V7 with NCBI RefSeq anno-
tation GCF_902500615.1 (Varadharajan et al., 2019) using STAR (Dobin
etal., 2013). We used SAMtools (Li et al., 2009) to filter and sort unique
alignments, and Dupliganger to remove PCR duplicates. Feature counts
were identified with HTSeq (Anders et al., 2015) in strict mode and
differential expression analysis was performed with DESeq2 (Love et al.,
2014). One sample was excluded from the analysis because it was
identified as a clear outlier in PCA plots and heatmaps (Fig. S1). Genes
were considered differentially expressed (DE) with an adjusted p-value
(padj) of <0.1.

Zebrafish (Danio rerio) orthologs of ninespine stickleback transcripts
were assigned with CRB-BLAST (Aubry et al., 2014). Human orthologs
of zebrafish genes were exported from Ensembl version 102 (Yates et al.,
2019). Functional enrichment was performed on the human orthologs of
differentially expressed genes using the PANTHER Classification System
(Mi et al., 2013). A more stringent adjusted p-value of <0.01 was used
for PANTHER analyses to provide gene ontology (GO) enrichment scores
and to identify significantly upregulated or downregulated biological
process pathways for the most enriched genes.

2.5. Thyroid hormone quantification

We used different hormone extraction protocols for fish collected in
2015 (n = 39) and 2018 (n = 40). In 2015, we homogenized whole-body
stickleback and extracted thyroxine (T4) and triiodothyronine (T3) using
barbital as described by Gardell et al. (2015), Petersen et al. (2015), and
von Hippel et al. (2018). We diluted barbital extracts 1:4 with assay
buffer prior to analysis of T4 and Ts.

In 2018, we freeze-dried and powdered whole stickleback prior to
analysis and extracted hormones using methanol. We added 4 mL 100%
HPLC methanol to each homogenate sample in a 12 x 75 mm borosili-
cate glass tube. Tubes were shaken overnight on a multi-tube vortexer
(Glas-Col Large Capacity Mixer, speed set on 65; Glas-Col, Terre Haute,
IN, USA), centrifuged for 15 min at 1056 g, and the supernatant was
collected into a new 12 x 75 mm borosilicate glass tube. After drying in
a ThermoSavant SpeedVac Concentrator (model SDP121P; Thermo
Fisher Scientific, Waltham, MA, USA) at 35 °C, tubes were stored at
—80 °C. The day before samples were assayed, they were resuspended
with 0.5 mL of assay buffer (X065, Arbor Assays), shaken for 1 h, and
then stored at 4 °C overnight. Methanol extracts were diluted 1:4 for
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Fig. 2. Histological images of liver tissue from two male ninespine stickleback (Pungitius pungitius) collected from Troutman Lake in Gambell, Alaska. We found large
variation in lipid accumulation and hepatocyte size across samples. Troutman Lake stickleback displayed two distinct liver phenotypes: (A) lipid droplet accumu-
lation, and (B) increased glycogen-type hepatocyte vacuolation. Single arrows denote hypertrophied nuclei. Double arrows denote displaced nuclei. Blue circles
denote lipid droplets. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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cortisol assays and run undiluted for Ts.

We quantified hormones for both 2015 and 2018 samples using
commercially available ELISA kits (thyroxine EIA, KO50-H1; triiodo-
thyronine EIA, K056-H1; cortisol EIA, KO03-H1; Arbor Assays, Ann
Arbor, MI). We validated all kits for use with barbital extracts (2015
samples) and methanol extracts (2018 samples) using tests of paral-
lelism and accuracy. We followed the manufacturer’s assay protocols
with no modifications for all kits. All samples and standards were run in
duplicate with an internal control reference standard. All samples fell
below the upper limit of the standard curve and the coefficient of vari-
ation between duplicates was <10%, and therefore we did not re-run
any samples. All internal controls deviated less than 10% from the ex-
pected value. The manufacturer’s reported limit of detection for cortisol,
T4 and Ts are 45.4 pg/mL, 1.04 ng/mL, and 46.6 pg/mL, respectively.

2.6. Statistical analyses

Because all stickleback in this study were collected from the same
area in Troutman Lake, the bulk of our results are descriptive statistics to
provide means and variation observed in the population. Additionally,
stickleback are small fish and endocrine analyses required the entire fish
sample, which prevented us from comparing hormone concentrations to
histological and transcriptomic data within individuals.

For comparisons among sex and sampling years, we employed non-
parametric statistical methods (Kruskal-Wallis and Mann-Whitney U
tests) due to non-normal data distributions and heteroskedasticity.
Statistical analyses were restricted to within-year differences for thyroid
measurements due to disparities in methodology between sampling
years. For females, we report statistics on data pooled for both years
because the number of oocytes did not differ between years (Mann-
Whitney U test, p = 0.44). All statistical analyses were conducted using
R statistical computing software, R version 4.1.0 (2009-2021 RStudio,
Inc.).

3. Results
3.1. Contaminant concentrations

We measured PCB concentrations in three stickleback composite
samples representing a total of 30 fish and compared them to
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Fig. 3. Contaminant chemistry profiles in ninespine stickleback (Pungitius
pungitius) collected from Troutman Lake on Sivugaq, Alaska across four studies.
Contaminant classes are arranged from highest to lowest concentration based
on the mean value.
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contaminant profiles in stickleback collected from Troutman Lake in
previous studies (Fig. 3; Byrne et al., 2015; Byrne et al., 2018b; Zheng
et al., 2020). Total PCB concentrations measured in this study were 6.18,
5.61, and 5.25 ng/g ww. These concentrations are within the range
reported by Zheng et al. (2020) in stickleback collected from Troutman
Lake in 2018 (Fig. 3). PCB congener profiles revealed that hexa--
chlorinated and hepta-chlorinated congeners contributed 55% to the
mean total PCB concentration in Troutman Lake stickleback, while
tri-chlorinated congeners contributed 3% (Supplemental Table 2).

3.2. Liver histology

We analyzed the livers of 33 stickleback (18 males and 15 females)
for histological abnormalities. We observed large variation in lipid
accumulation and hepatocyte size across livers, but generally found that
fish displayed one of two hepatic phenotypes: those with increased lipid
droplets and those with glycogen-type vacuolation of hepatocytes
(Fig. 2). Of the 33 stickleback analyzed, we found that 70% displayed
nuclear displacement, 48% displayed cellular deformation, 82% dis-
played nuclear hypertrophy, and 48% displayed disorganized cordons
(Table 1). The 2018 samples had fewer fish exhibiting deformed cellular
shapes and disorganized cordons than the 2015 samples, but more fish
with lipid droplet accumulation (53% in 2018 vs 19% in 2015). Of the
fish with lipid droplet accumulation, 67% were males.

3.3. Thyroid histology

In 2015, male and female stickleback did not differ in follicle area
(mean =+ SE: 3492 + 47 pmz) or colloid area (1013 + 25 pmz). Follicle
and colloid areas were highly correlated (Pearson’s product-moment, r
= 0.85, n = 29, p < 0.0001). Male stickleback had significantly fewer
thyroid follicles per section (mean + SE; 12 + 1) than did female
stickleback (20 + 1; Mann-Whitney U test, p = 0.01; Fig. 4A). Addi-
tionally, male stickleback had significantly shorter thyrocytes than did
female stickleback (Mann-Whitney U test, p = 0.004; Fig. 4B). We
observed lipid accumulation in tissue surrounding thyroid follicles in
both male and female stickleback (Fig. 5).

The mean number of thyroid follicles (+SE) significantly differed by
liver phenotype. Individual stickleback displaying hepatic lipid accu-
mulation had almost half as many thyroid follicles (9 + 3) than did
stickleback with the vacuolated phenotype (19 + 2; Mann-Whitney U
test, p = 0.030). No other thyroid histomorphology differed between
liver phenotypes.

3.4. Gonad histology

Female stickleback had significantly more early-stage oocytes than
they did either mid, late, mature, or regressed stages (Dunn’s test, n =
53, p < 0.0001 for all comparisons; Fig. 6). Late-stage oocytes (vacuoles
occupied all areas of cytoplasm) were present at significantly greater
numbers than were mature oocytes (egg yolk filled most of oocyte as a
homogenous mass; Dunn’s test p = 0.005). We found that mature oo-
cytes comprised only 9% of the total number of oocytes. Similarly, the
majority of male stickleback in this study exhibited early-stage testicular
lobules (57%), while only 6% exhibited mature testicular lobules. Of the
gonad and matching liver data, neither female nor male gonad end-
points significantly differed between liver phenotypes, but sample sizes
were small (females: n = 6 vacuolated phenotype and n = 2 lipid droplet
phenotype; males: n = 5 vacuolated phenotype, n = 6 lipid droplet
phenotype).

3.5. Transcriptional profiling
We used RNA-seq to compare gene expression profiles between male

stickleback exhibiting liver lipid droplet accumulation and those
exhibiting increased hepatocyte vacuolation (Fig. 2). Principal
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Table 1
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Number (and percent) of ninespine stickleback exhibiting histological abnormalities associated with liver pathology.

Year Sex Number of fish exhibiting each histological abnormality
Displaced nuclei Deformed cellular shape Hypertrophied nuclei Disorganized cordons Lipid phenotype

2015 Males (4 total) 3 (75%) 3 (75%) 3 (75%) 3 (75%) 1 (25%)
2015 Females (12 total) 9 (75%) 7 (58%) 10 (83%) 7 (58%) 2 (17%)
2018 Males (14 total) 10 (71%) 5 (36%) 12 (86%) 6 (43%) 7 (50%)
2018 Females (3 total) 1 (33%) 1 (33%) 2 (67%) 0 (0%) 2 (67%)
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Fig. 4. Number of thyroid follicles (A) and mean thyrocyte height (B) by sex in ninespine stickleback (Pungitius pungitius) collected from Troutman Lake on Sivuqaq,
Alaska in 2015. Female stickleback (n = 22) had significantly more thyroid follicles and longer thyrocytes than did male stickleback (n = 7; Mann-Whitney U tests: p

= 0.01 and p = 0.004, respectively).

Fig. 5. Thyroid morphologies in a female (A) and a male (B) ninespine stickleback (Pungitius pungitius) collected from Troutman Lake on Sivuqaq, Alaska in 2015.
These images show the disbursement of thyroid follicles at 10x magnification. Arrows indicate thyrocytes. CA = cartilage, CO = colloid, L = lipid, SM = skeletal

muscle, TF = thyroid follicle.

component analysis of RNA-seq reads showed that these phenotypes
were transcriptionally distinct (Fig. S1). The principal component
analysis identified one individual from the hepatocytic vacuolation
group as an extreme outlier (Fig. SIA). We investigated the transcrip-
tional profile in this fish and found that the sample was contaminated
with intestinal tissue (Fig. S2); it was therefore removed from further
analyses.

Analysis of the RNA-seq reads identified 4818 differentially
expressed genes (padj<0.1) between the two hepatic phenotypes. We
used a more stringent adjusted p-value of 0.01 (2329 genes) for gene
input into the PANTHER Classification System to gain a better under-
standing of pathways associated with the most differentially expressed
genes. We found that genes involved in metabolic and biosynthetic

processes, including cellular metabolic processes (G0:0044,237, fold-
enrichment = 3.11, FDR<0.0001) and cellular response to stress (R-
HSA-2262752, fold-enrichment = 1.75, FDR<0.0001), were the most
enriched biological pathways in fish displaying the liver lipid droplets.
We found that the most enriched cellular pathways in these fish were the
endoplasmic reticulum chaperone complex pathway (GO:0034,663,
fold-enrichment score = 5.48, FDR = 0.035) and the oligosaccharyl-
transferase complex pathway (GO:0008250, fold-enrichment score =
5.22, FDR = 0.009). Genes involved in structural constituents of the
ribosome (G0:0003735) and ribosome biogenesis (GO:0042,254) were
also enriched in fish with liver lipid accumulation (fold-enrichment =
3.19, FDR<0.001 and fold-enrichment = 1.89, FDR<0.005,
respectively).
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Fig. 6. Oocytes staged in 53 ninespine stickleback (Pungitius pungitius) collected
from Troutman Lake on Sivuqaq, Alaska. Female stickleback had significantly
more early-stage oocytes than mid-stage, late-stage, or mature oocytes (p <
0.0001 for all comparisons). Females also had significantly more late-stage
oocytes than mature oocytes (p = 0.005).

We examined the expression of several genes involved in enriched
pathways and pathways of interest to better understand the transcrip-
tional differences between stickleback in the two liver groups. We found
that expression of the thyroid hormone receptor isoform 3 (THRB) gene
was downregulated 2.3-fold in stickleback displaying hepatic lipid
accumulation compared to fish with the vacuolated phenotype
(padj<0.001). Similarly, the type II iodothyronine deiodinase (dio2)
gene, which catalyzes the conversion of T4 to T3, was 4-fold down-
regulated in stickleback displaying the liver lipid phenotype (padj =
0.003). We found that expression of peroxisome proliferator-activated
receptor o (ppara) was significantly higher in stickleback displaying
the lipid accumulation phenotype (fold-change = 2.68, p = 0.001). The
fish gene abcb4, a paralog of the mammalian P-glycoprotein gene
ABCBI, encodes for a protein that helps transport phospholipids across
hepatocyte membranes and was significantly upregulated in stickleback
displaying the vacuolated phenotype (2.3-fold upregulated,
padj<0.001) (Jackson and Kennedy, 2017). We also found that the fish
gene cyp3a65, an ortholog of the human Phase I metabolic enzyme P450
3 A (CYP3A) gene (Saad et al., 2016) that helps metabolize xenobiotic
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compounds (Jackson and Kennedy, 2017), was upregulated 2.9-fold in
fish with vacuolated livers (padj = 0.002). We did not find significant
differences in expression of vitellogenin genes between stickleback
displaying different liver phenotypes.

3.6. Endocrinology

Ninespine stickleback exhibited high variability in thyroid hormone
concentration (Fig. 7). T4, T3, and cortisol concentrations did not differ
significantly by sex (Mann-Whitney U test, p > 0.1 for all tests) and
subsequent statistics were analyzed on pooled data (n = 39 for 2015 and
n = 40 for 2018). T3 concentrations were significantly higher than T4
concentrations in 2015 (Mann-Whitney U test, p < 0.001; note that we
did not measure T4 in 2018). Three male stickleback in 2018 had
abnormally high cortisol levels compared to the other samples. We did
not compare T3 concentrations between years because different
analytical methods were used. Despite finding sex differences in thyroid
morphology, we did not find significant sex differences in the concen-
trations of T4, T3, or cortisol.

4. Discussion
4.1. Contaminant concentrations

Ninespine stickleback from Troutman Lake were analyzed for several
classes of contaminants: PCBs (this study; Zheng et al., 2020), PBDEs
(Byrne et al., 2017; Zheng et al., 2020), PFAS (Byrne et al., 2017; Zheng
et al., 2020), OC pesticides (Byrne et al., 2015), and OPEs and their
metabolites (Zheng et al., 2020), all of which negatively impact human
health and the environment (Faass et al., 2013; Linares et al., 2015;
Sonne et al., 2017). Of these contaminants, total PBDEs were detected at
the highest concentrations, followed by PCBs and PFAS (Fig. 3; Byrne
et al., 2015; Byrne et al., 2017; Zheng et al., 2020). Total PBDE con-
centrations were comparable to the range observed in pilot whales from
the Faroe Islands (Byrne et al., 2017; Rotander et al., 2012). Although
stickleback are not a subsistence food source for Sivuqaq residents, they
serve as an important prey species for piscivorous birds (Cairns et al.,
1991). Gambell hosts a variety of seabirds, including a large rookery on
Sevuokuk Mountain to the east of the village. These birds and their eggs
are important subsistence food sources for Gambell residents (Welfin-
ger-Smith et al., 2011).

PCB concentrations in Troutman Lake stickleback exceeded (by 3.8-
fold) the EPA’s guideline for unlimited fish consumption (cancer risk for
human consumption; 1.5 ng/g ww) (USEPA, 2000). Stickleback are
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Fig. 7. Thyroid hormone concentrations in ninespine stickleback (Pungitius pungitius) collected from Troutman Lake on Sivuqaq, Alaska. T3 concentrations were
significantly higher than T4 concentrations in 2015 (left graph; Mann-Whitney U test, n = 39, p < 0.0001). Three male stickleback had abnormally high concen-

trations of cortisol in 2018 (n = 40).
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low-trophic level fish that feed on invertebrates and are not expected to
have elevated concentrations of highly chlorinated PCB congeners in
remote parts of Alaska that lack point sources of pollution. However, we
found that concentrations of hexa-chlorinated and hepta-chlorinated
congeners contributed the most to the total PCB concentration in
Troutman Lake stickleback. Atmospheric transport and deposition of
PCBs results in surface concentrations predominant in tri-chlorinated
congeners (44-96% of total PCBs) in the Bering Sea, which surrounds
Sivuqaq (Hong et al., 2012). Conversely, heavier PCB congeners are less
volatile and do not readily undergo long-range atmospheric transport.
Thus, our data and those from previous studies suggest that PCB
contamination of Troutman Lake is due primarily to a local point source
of pollution.

4.2. Liver histology

The molecular basis of the two liver phenotypes that we observed
and the differences between sampling years warrants additional inves-
tigation, along with analysis of whether one of the phenotypes is asso-
ciated with vulnerability to POP exposure while the other is associated
with resilience. Both liver phenotypes observed in this study appeared
abnormal compared to threespine stickleback from a laboratory control
group (Minicozzi et al., 2019) and other wild fishes (Feist et al., 2015).
Because the liver is the primary site of xenobiotic metabolism, it is often
a target of POP toxicity (Deierlein et al., 2017; La Merrill et al., 2019;
Safe, 1994). Many xenobiotic contaminants are known to increase he-
patic lipid accumulation in fishes (Li et al., 2019; Maradonna et al.,
2015). For example, Li et al. (2019) found that PCB exposure caused
lipid accumulation in zebrafish by disrupting genes related to lipogen-
esis and lipid catabolism. In addition to lipid accumulation, metabolic
responses to environmental pollution can increase energy demands and
lead to depleted glycogen stores in the liver (Anderson et al., 2003;
Hugla and Thomeé, 1999). Indeed, fish exposed to PCBs (Anderson et al.,
2003) and toxic metals (Javed and Usmani, 2013) exhibited depleted
liver glycogen levels. Carbohydrates are stored as glycogen in the liver
and provide a rapid source of glucose under low blood glucose condi-
tions. Exposure to environmental pollution is often associated with he-
patic glycogen depletion, possibly through perturbations of biochemical
activities, such as disruptions to glycogenolysis and/or increased energy
demands for contaminant detoxification (De Coen and Janssen, 2003;
Hugla and Thomé, 1999; Peplow and Edmonds, 2005; Rochman et al.,
2013). These studies suggest that Troutman Lake stickleback with lipid
droplet accumulation are more sensitive to contaminants because they
exhibited more lipid droplets and less glycogen than did stickleback with
vacuolated livers.

Nevertheless, increased hepatocyte vacuolation in response to
contaminant exposure also occurs, especially for contaminants that act
as xenoestrogens (Madureira et al., 2015; Miranda et al., 2008; Tarn
et al., 1983; Xu et al., 2017). Troutman Lake stickleback have elevated
concentrations of PFAS, including PFOA and PFOS (Byrne et al., 2017;
Zheng et al., 2020), which are positively correlated with hepatocyte
vacuolation (Giari et al., 2015; Wolf et al., 2008; Xu et al., 2017). Certain
PCBs are also associated with glycogen accumulation in fish. For
example, Miranda et al. (2008) found that increased liver glycogen
content served as a biomarker of elevated exposure to OC pesticides and
PCBs in trahira (Hoplias malabaricus). In the present study, vacuolated
livers in stickleback appeared similar in morphology to livers in dourado
(Salminus franciscanus) exposed to toxic metal contamination in the
Paraopeba River of Brazil (Savassi et al., 2020) and to barfin plaice
(Liopsetta pinnifasciata) exposed to pollution in Amursky Bay, Japan
(Shved et al., 2011). Although previous studies found that vacuolation
differed by sex (Shved et al., 2011; Wolf and Wheeler, 2018), both male
and female stickleback in the present study displayed this phenotype.
Because the present study lacks a suitable reference group and ninespine
stickleback histology has not been well characterized, additional field
and laboratory studies are needed to elucidate the effects of FUD site
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pollution on the liver. Teleosts differ widely in the amount of neutral
lipids stored in hepatocytes (Akiyoshi and Inoue, 2004), and the utility
of histological studies of ninespine stickleback in contaminated sites will
be enhanced when their development in clean water has been well
characterized.

4.3. Thyroid histology

We compared thyroid follicle count and liver phenotype within in-
dividual stickleback and found that stickleback with liver lipid accu-
mulation had fewer thyroid follicles than did stickleback with
vacuolated livers. Similarly, male stickleback had fewer thyroid follicles
than did female stickleback across all samples. However, because
normal thyroid histomorphology is not well characterized in the nine-
spine stickleback, we cannot determine the direction of change in the
number of thyroid follicles for Troutman Lake stickleback. Laboratory
studies in threespine stickleback used as untreated control fish revealed
a mean of ~20 thyroid follicles per section (Furin et al., 2015), which is
similar to the means of female ninespine stickleback and fish with
vacuolated livers in the present study. If these fish represent typical
thyroid follicle counts in ninespine stickleback, then male ninespine
stickleback and those with lipid accumulation in the current study
exhibited thyroid follicle hypoplasia, which is associated with hyper-
thyroid conditions (Deal and Volkoff, 2020; Raine et al., 2001; Sharma
et al., 2016). Conversely, female ninespine stickleback and those with
vacuolated livers could be hypothyroid. Indeed, increased thyrocyte
height observed in female ninespine stickleback may result from
elevated thyroid stimulating hormone (TSH), indicating hypothyroid
conditions in fish (Deal and Volkoff, 2020). Although the present study
cannot determine thyroid condition in Troutman Lake stickleback, our
results suggest that POP exposure may affect male and female stickle-
back differently, and that liver phenotype is associated with changes in
thyroid condition. Additionally, both male and female stickleback dis-
played lipid accumulation phenotypes around thyroid follicles (Fig. 5)
similar to those observed in threespine stickleback exposed to perchlo-
rate (Gardell et al., 2017).

4.4. Gonad histology

Both male and female stickleback from Troutman Lake exhibited
suppressed gonadal maturation compared to patterns in wild female
ninespine stickleback (Sokolowska and Krzysztof, 2002) and both sexes
of threespine stickleback (Sokotowska and Kulczykowska, 2006) at peak
breading season. Sokotowska and Kulczykowska (2006) detailed the
annual reproductive cycle of two wild threespine stickleback pop-
ulations and found that over 80% of oocytes were mature in females and
about 60-100% of testes were mature in males during the spawning
period. Because threespine and ninespine stickleback share similar
reproductive life history traits (Baker et al., 1998; Heins et al., 2003;
Heins et al., 1999), we expected to find similar maturity levels at peak
breeding season but found that Troutman Lake ninespine stickleback
had far fewer mature oocytes and testes than expected.

Suppressed ovarian and testicular maturation in Troutman Lake
stickleback could be caused by chronic exposure to endocrine disrupting
compounds. Because both female and male fish depend on steroid hor-
mones for proper gonadal development (Delbes et al., 2022), exposure
to xenobiotic estrogens may disrupt normal hormonal signaling and
delay gonadal maturation (Berg et al., 2016; Meier et al., 2011). For
example, exposure to alkylphenols, which elicit estrogenic effects,
delayed oocyte development and maturation in Atlantic cod (Gadus
morhua) (Meier et al., 2007; Meier et al., 2011). Similarly, exposure to
wastewater effluent containing endocrine disrupting compounds sup-
presses follicular development in various fish species (Douxfils et al.,
2007; Jobling et al., 2002). The contaminants present in Troutman Lake
stickleback are endocrine disruptors that modulate activity of the
hypothalamic-pituitary-gonadal and the hypothalamic-pituitary-thyroid
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axes. PCBs and PBDEs can elicit both estrogenic and anti-estrogenic ef-
fects and disrupt normal reproductive systems in many animals,
including humans (Allen et al., 2016; Jansen et al., 1993; Li et al., 2013;
Petro et al., 2012). For example, Kraugerud et al. (2012) found that
female burbot (Lota lota) exposed to POPs, including PCBs, PBDEs, and
DDT, had significantly lower counts of late-stage ovarian follicles.
Although the lack of a suitable reference population limits our ability to
ascertain the cause of gonadal immaturity in Troutman Lake stickleback,
our findings are consistent with previous contaminant exposure studies
in fishes that resulted in suppressed maturation of gonads (Horri et al.,
2018; Vasseur and Cossu-Leguille, 2006). As a result, chronic exposure
to pollutants may impair reproductive processes in Troutman Lake
stickleback.

4.5. Transcriptional profiling

Omics techniques provide insights into perturbed genetic pathways
in wild fishes exposed to environmental pollution. Our results
comparing transcriptional profiles of two liver phenotypes in stickleback
collected from Troutman Lake demonstrate significant differences in
expression of genes involved in ribosomal and metabolic pathways.
Overexpression of ribosomal genes often occurs under conditions of
cellular stress and may indicate modification of key metabolic pathways,
including protein biosynthesis (Spriggs et al., 2010; Zheng et al., 2018).
Indeed, we found that genes associated with ribosome biogenesis were
enriched in Troutman Lake stickleback with lipid accumulation in their
livers. Ribosomal biogenesis requires significant cellular energy (Pelava
etal., 2016; Zhou et al., 2015) and could contribute to depleted glycogen
levels in stickleback with the lipid phenotype, supporting the hypothesis
that these individuals are more sensitive to environmental pollution.
Similarly, we found enrichment of genes associated with endoplasmic
reticulum complexes and pathways in the lipid accumulation group.
Exposure to PCBs induces metabolic disorders by altering lipid and
carbohydrate metabolism (Aluru et al., 2019; Mesnier et al., 2015) and
causes ultrastructural changes to both the smooth and rough endo-
plasmic reticulum (Gallant et al., 2000; Hugla et al., 1996; Klaunig et al.,
1979). For example, Hinton et al. (1978) found that PCB-induced fatty
liver in rats was likely facilitated by disturbed transport of lipoproteins
from the endoplasmic reticulum. Lipid droplets observed in Troutman
Lake stickleback could accumulate through similar mechanisms.

Many POPs act as obesogenic compounds by influencing metabolic
processes, including lipid metabolism (Grun and Blumberg, 2006;
Heindel et al., 2017; Magbool et al., 2016; Yang et al., 2017). Obeso-
genic compounds disrupt endocrine function of oxidative stress and
nuclear receptor pathways (Grun and Blumberg, 2006; Heindel et al.,
2017; Hong et al., 2015; Lee et al., 2016; Magbool et al., 2016; Mazeaud
et al., 1977). Results from our functional annotation of RNA-seq reads
indicate that gene sets involved in these pathways are upregulated in
stickleback with hepatic lipid accumulation relative to those with
vacuolation, including cellular metabolic processes and cellular
response to stress. Cellular metabolic processes include genes involved
in lipid metabolic and catabolic processes, such as genes that encode for
PPAR proteins. PPARs increase uptake of fatty acids in cells and regulate
transcription of genes involved in lipoprotein metabolism (Montaigne
et al.,, 2021). Over-expression of PPARa may initiate liver lipid accu-
mulation in response to contaminant exposure (Huff et al., 2018; Li
et al., 2019). PFOA and PFOS act as agonists for PPARa and modulate
expression in multiple organisms (Krgvel et al., 2008; Takacs and
Abbott, 2006). We found that expression of ppara was significantly
higher in stickleback displaying the lipid accumulation phenotype,
which suggests that these fish may be more sensitive to obesogenic
contaminants. However, we did not find significant differences in other
PPAR isoforms, particularly PPARy, as found in other studies (Dépatie
et al., 2020; Li et al., 2019; Reinling et al., 2017). Additionally,
morphological characteristics associated with non-alcoholic fatty liver
disease and liver steatosis (e.g., nuclear displacement) were less
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frequent in stickleback displaying lipid droplet accumulation, indicating
that lipid accumulation or transcriptional changes may protect against
hepatotoxicity by sequestering POPs and preventing POP effects in some
Troutman Lake stickleback (Lee et al., 2017).

ATP-binding cassette (ABC) transporters confer multixenobiotic
resistance (MXR) to toxic contaminants in several species (Jackson and
Kennedy, 2017; Kurelec, 1992; Smital et al., 2000). Upregulation of
P-glycoprotein family genes, specifically ABCBI in mammals and abcb4
in zebrafish, facilitate MXR in wild populations exposed to pollutants by
increasing transport of exogenous compounds and reducing xenobiotic
uptake (Fischer et al., 2013; Jackson and Kennedy, 2017; Smital et al.,
2000). For example, Fischer et al. (2013) found that elevated expression
of abcb4 was negatively associated with uptake of toxic compounds in
zebrafish embryos and provided protection against contaminant
toxicity. Transcriptional regulation of abcb4 often works in concert with
CYP3A genes to increase excretion of xenobiotic contaminants (Jackson
and Kennedy, 2017; Perloff et al., 2001). Several CYP3A genes,
including cyp3a65 in zebrafish, metabolize xenobiotic contaminants and
are upregulated in response to exposure to xenobiotic substances (Chang
et al., 2013; Kubota et al., 2014). For example, Jackson and Kennedy
(2017) found that transcriptional regulation of both abcb4 and cyp3a65
mediated MXR in zebrafish. Both abcb4 and cyp3a65 were significantly
upregulated in Troutman Lake stickleback displaying the vacuolated
phenotype. These transcriptional differences support the hypothesis that
stickleback with vacuolated livers are more resistant to environmental
pollution than stickleback displaying the lipid droplet phenotype.

Many POPs that are elevated in Troutman Lake stickleback,
including PCBs and PFAS, induce estrogenic effects and increase
expression of vitellogenin genes in male fish (Gao et al., 2013;
Nomiyama et al., 2010; Sumpter and Jobling, 1995; von Hippel et al.,
2018). Because males do not secrete vitellogenin under normal condi-
tions, vitellogenin serves as a biomarker of xenobiotic estrogens (Hansen
et al., 1998), including in ninespine stickleback (von Hippel et al.,
2016). We examined transcriptional differences in genes involved in the
production of vitellogenin to test the hypothesis that Troutman Lake
stickleback exhibiting hepatic lipid accumulation are more sensitive to
estrogenic contaminants and to examine upstream mechanisms of
observed suppression of gonadal maturity. However, we did not find
significant differences in expression of vitellogenin genes between
stickleback displaying different liver phenotypes. Several possibilities
warrant further investigation. Stickleback collected from Troutman Lake
may experience similar transcriptional effects of estrogen pathways and
are thus not transcriptionally different in these pathways. Additionally,
fish in both liver groups may experience estrogenic effects, but differ in
their sensitivity and response to contaminant mixtures. Overall, we do
not have enough data to disentangle the role of endocrine-disrupting
POPs on liver histomorphology within Troutman Lake stickleback.

4.6. Endocrinology

Thyroid hormones play an important role in lipid metabolism and
energy homeostasis (Liu and Brent, 2010; Sinha et al., 2014), and per-
turbations in circulating T4 and T3 may contribute to the observed liver
phenotypes in Troutman Lake stickleback. Specifically, hypothyroidism
is associated with increased fat accumulation and non-alcoholic fatty
liver disease (Ludwig et al., 2015; Sinha et al., 2018). While the present
study lacks a reference population to determine if Troutman Lake
stickleback exhibit biomarkers for hypothyroidism, we found that
expression of THRB was downregulated in stickleback displaying he-
patic lipid accumulation compared to fish with the vacuolated pheno-
type (padj<0.001). THRB helps regulate cholesterol metabolism
(Gullberg et al., 2002), and mutant mice with THRB knockdown
exhibited excessive lipid accumulation in the liver (Araki et al., 2009).
Additionally, we found that the dio2 gene was downregulated in stick-
leback displaying the liver lipid phenotype (padj = 0.003). Some PCB
congeners suppress dio2 expression (Liu et al., 2014), while several
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PBDE congeners (e.g., BDE-71, BDE-153, and BDE-209) increase dio2
expression (Noyes et al., 2011; Yu et al., 2010). As such, exposure to
local sources of POPs may affect thyroid hormone homeostasis and
contribute to metabolic disruption in Troutman Lake stickleback (Liu
and Brent, 2010; Warner and Mittag, 2012).

Similarly, suppressed gonadal maturation observed in Troutman
Lake stickleback could also result from perturbations to the
hypothalamic-pituitary-thyroid axis. POP toxicity may elicit indirect
effects through crosstalk mechanisms between thyroid and reproductive
systems (Kuiper et al., 2008; Li et al., 2014; Yu et al., 2015). Thyroid
hormone activation by dio2 is necessary for normal embryonic devel-
opment (Walpita et al., 2009) and successful reproduction in zebrafish
(Houbrechts et al., 2019). Therefore, downregulation of dio2 in Trout-
man Lake stickleback displaying the liver lipid phenotype may
contribute to developmental delays.

PCBs and PBDEs are structurally similar to thyroid hormones and
elicit a decrease in circulating T4 levels (Fisher et al., 2005; Lema et al.,
2008; Tomy et al., 2004; Turyk et al., 2007). In humans, different PBDE
congeners can elicit different effects on circulating thyroid hormones
(Byrne et al., 2018a; Turyk et al., 2008). On Sivuqaq, BDE-153 con-
centrations in blood sera of Gambell residents were negatively associ-
ated with circulating T3 concentrations while penta-BDE congeners were
positively associated with T3 concentrations (Byrne et al., 2018b).
Oulhote et al. (2016) found that elevated plasma levels of total PBDEs in
Canadian women were associated with a higher prevalence of hypo-
thyroidism. Most animal studies report that estrogenic PBDEs and PCBs
induce hypothyroid conditions (Brown et al., 2004; Hallgren et al.,
2001; Miller et al., 2010). Proper thyroid function is critical for the
health of the developing brain (Porterfield, 1994; Zoeller et al., 2002),
and POP-mediated fluctuations in thyroid hormone levels at critical
windows of susceptibility may have lasting health consequences, espe-
cially for cognitive development in children (Gilbert and Lasley, 2013;
Henrichs et al., 2013).

4.7. Limitations

The life history of Troutman Lake stickleback has not been investi-
gated; however, Troutman Lake does not have an outlet to the Bering
Sea, except for periodic storm surges that break over the storm berm
(USATSDR, 2020). Therefore, stickleback live year-round in Troutman
Lake and are exposed to environmental contaminants throughout their
lifetime. We collected stickleback from a single location (Fig. 1), and it is
unlikely that differences observed in this study are explained by life
history differences. Therefore, we hypothesized that transcriptomic and
phenotypic differences in Troutman Lake stickleback result from dif-
ferences in sensitivity to contaminant exposure. Because many POPs are
obesogenic and increase liver lipid droplets in fish (Li et al., 2019; Pfohl
et al., 2021), we hypothesized that stickleback displaying liver lipid
accumulation were more sensitive to obesogenic effects. Although this
study alone cannot attribute the observed variation in transcriptional
profiles or the presence of histopathologies to contaminant exposure,
our results are consistent with the findings in other fish species exposed
to the same contaminants that are elevated in Troutman Lake (Brown
et al., 2004; Grun and Blumberg, 2006; Yu et al., 2015). Furthermore,
our transcriptomic results indicate that ninespine stickleback displaying
liver lipid accumulation are transcriptionally distinct and suggest that
these fish are more sensitive to endocrine-disrupting compounds. Future
research on ninespine stickleback histomorphology is required to better
elucidate directional changes in tissue-specific responses to environ-
mental contamination.

Most research on histomorphologies in the Gasterosteidae family,
which includes the ninespine stickleback, has been conducted on
threespine stickleback. To our knowledge, this is the first study to
examine histomorphologies in ninespine stickleback. Therefore, we
inferred normal phenotypes from research in threespine stickleback.
These two species share many life history and associated morphological
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traits (Copp et al., 1998; Herczeg et al., 2010), and thus we hypothesize
that ninespine stickleback also share many of the same histological
characteristics. However, future research should characterize normal
histomorphology and seasonal variation in reproductive traits in nine-
spine stickleback, especially given the increasing utility of these fish in
arctic ecotoxicology (von Hippel et al., 2016).

Understanding the impact of contaminant exposure in wild fish
populations is challenging amid the complexities of contaminant mix-
tures and the potential for non-additive effects. Ninespine stickleback in
Troutman Lake are exposed to a diverse mixture of contaminants (Fig. 3)
that interfere with endocrine function in many ways, which restricts our
ability to ascertain the underlying mechanisms driving transcriptome
differences and histopathology.

5. Conclusions

The contaminant profiles of ninespine stickleback on Sivuqaq closely
mirror those of residents’ blood sera (Byrne et al., 2015; Byrne et al.,
2017), making them a suitable model organism for human health effects
of contaminant exposure on the island. The current study and previous
work (von Hippel et al., 2018) also show that ninespine stickleback on
Sivuqaq display health outcomes that are relevant for the health con-
cerns of island residents, including differential expression of genes
associated with cancer, cellular metabolism, and developmental effects.
Future work should further develop the ninespine stickleback as a One
Health model for people throughout the Arctic, given that local hotspots
of pollution occur in all arctic countries and are often located in or
adjacent to Indigenous communities (von Hippel et al., 2016). The
widespread distribution of the ninespine stickleback in the Arctic,
including in freshwater, brackish water, and marine habitats, along with
its ability to survive in contaminated sites and the availability of bio-
markers of contaminant exposure, provide an opportunity to expand its
utility to study diverse problems in pollution science (von Hippel et al.,
2016). Furthermore, the current study exemplifies individual variation
in responses to contaminants and highlights the need for precision
medicine approaches.

The harvest and consumption of traditional foods is central to the
nutritional, cultural, and economic health of arctic Indigenous peoples.
However, subsistence diets may contribute to elevated exposure to POPs
(Welfinger-Smith et al., 2011). For example, concentrations of PBDEs
found in the blood of Yupik people of the Yukon-Kuskokwim Delta re-
gion of Alaska are the highest known human PBDE concentrations in the
circumpolar Arctic (Wilson et al., 2014). Health disparities due to
disproportionate exposure to pollutants are exacerbated by the rapid
pace and magnitude of climate change in the Arctic, which is warming at
nearly four times the global average (Rantanen et al., 2022). The com-
bination of a warming climate and increased mobilization of POPs
previously sequestered in ice and permafrost are expected to increase
contamination of the Arctic and result in large-scale ecological and
human health consequences (Mckinney et al., 2015; Serreze and Barry,
2011).
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