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ABSTRACT There are many instances of collective behaviors in the natural
world. For example, eukaryotic cells coordinate their motion to heal wounds;
bacteria swarm during colony expansion; defects in alignment in growing bacterial
populations lead to biofilm growth; and birds move within dynamic flocks. Although
the details of how these groups behave vary across animals and species, they share
the same qualitative feature: they exhibit collective behaviors that are not simple
extensions of details associated with the motion of an individual. To learn more
about these biological systems, we propose studying these systems through the
lens of the foundational Vicsek model. Here, we present the process of building this
computational model from scratch in a tutorial format that focuses on building the
appropriate skills of an undergraduate student. In doing so, an undergraduate
student should be able to work alongside this article, the corresponding tutorial,
and the original manuscript of the Vicsek model to build their own model. We
conclude by summarizing some of the current work involving computational
modeling of flocking with Vicsek-type models.

KEY WORDS collective behavior; flocking; Vicsek model; computational
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I. INTRODUCTION
The biological world is full of fascinating collective behaviors across

an enormous range of length scales. At the nanometer-micrometer
length scale, cytoskeletal proteins organize and exhibit long-range
order while coordinating motion leading to cell division (1). In vitro
mixtures of cytoskeletal proteins also develop fascinating long-range
patterns (2–4).

Ordering and collective motion also occur within expanding
bacterial colonies on agar plates (5, 6). Group motion of bacteria
within bacterial suspensions is capable of affecting mechanical
properties, such as the viscosity of a fluid (7). Furthermore, bacterial
motility is coupled to biofilm growth (8, 9).

Eukaryotic cells coordinate with their neighbors in both their
motion and the forces they generate when closing wounds (10–12).
Within epithelial sheets, cells exhibit interesting and complex patterns
of motion while maintaining a mechanically robust cell layer (13–15).
Although those coordinate behaviors contribute positively to human
health, coordinated behavior in the form of cancer metastasis does
not (16, 17).

Collective behaviors reach significantly larger length scales as well.
Most notably, collective behaviors are observed in the flocking of birds
and the schooling of fish. Order and complex dynamics of humans
within dense crowds (18) and animals within migrating mammal herds
(19) are also observed.
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The emergence of group motion from indi-
vidual motion, which is present from micrometer
length scales to hundreds of meters, is common
to the biological world. Although the specific
details associated with collective motion likely
differ at different length scales, a comprehensive
understanding of these behaviors would be
helpful in defining the effective interactions
between individuals that lead to these interest-
ing behaviors.

The Vicsek model (20), proposed in 1995, is a
simplified computational model that captures
the emergence of collective behavior. In this
model, objects move through space and tend
to orient themselves with their neighbors. Thus,
the details of the interaction between individ-
uals change as an object accumulates more
neighbors—a hallmark of an emergent system.
The Vicsek model is a valuable tool to study
collective behaviors at any length scale because
it makes no assumptions about the origin of
the interaction between individuals.

The utility of this model is also to help identify
new characteristics of collective behavior. For
example, short-range interactions between indi-
viduals that lead to network-level coordination
must transfer information. As such, the Vicsek
model is a tangible method to study information
flow (21, 22). Additionally, comparisons between
group-level properties in the model and exper-
imental systems can elucidate the true interac-
tions that likely deviate from the simplified
Vicsek interaction (23, 24).

The Vicsek model also predicts a phase
transition from a disordered state (individuals
acting independently) to an ordered state (collec-
tive behavior). Most phase transitions that students
learn about in a typical undergraduate curriculum
are thermodynamic in origin, such as crossing of
solid/liquid or liquid/gas phase boundaries by
changing the temperature or pressure of water.
However, this example is a different type of
transition—a kinetic phase transition.

In this manuscript, we present a worked-
through tutorial for building the Vicsek model
from scratch. This example is the product of a
research project in the lab of A. Pasha Tabatabai
(APT), where APT led undergraduate physics
majors, coauthors MacQuarrie Thomson (MT)

and Reece Keller (RK), to build their own active
particle simulations, which included the Vicsek
model. A unique feature of this tutorial is that MT
and RK played an integral role in identifying
particular skills that they needed to learn to build
their models independently (i.e., skills that may
not be reinforced in a standard undergraduate
curriculum). In response, we highlight and provide
support in these areas by generating specific
problems within the tutorial that address these
skills. It is our hope that the discrete nature of the
questions within this tutorial with clear actionable
items makes it accessible to all students regardless
of their background in computational physics or
collective motion. Additionally, we provide de-
tailed discussion in other sections for the topics of
periodic boundary conditions (IV.B.3), trouble-
shooting as a skill (IV.B.4), and defining steady
state (IV.B.5). A conservative estimate is that this
tutorial can be completed within an academic
quarter or semester.
We conclude the manuscript with a discus-

sion of some current work with flocking models
and how an undergraduate reader would
implement these alterations to perform novel
research in emergent behaviors.

II. PEDAGOGICAL BACKGROUND
The Vicsek model is a valuable pedagogical

tool for many reasons.

(a) An interdisciplinary approach to science
encourages students to build a well-rounded
skill set making them better prepared for
scientific careers. Although the basic Vicsek
model obscures biologically relevant details
in the interactions between objects, it is
possible to adapt this model to better reflect
true biological systems.

(b) This model provides an approachable strat-
egy to connect an extremely complicated
observation in the real world (i.e., flocking)
with basic mathematical and physical rules.
This model is computationally simpler and
easier to integrate than other active simula-
tions where a true equation-of-motion with
interparticle interactions is required (25, 26).

(c) This model provides an example of a phase
transition. It would be beneficial for students
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to see this model after taking a chemistry or
thermodynamics course. In this way, com-
parisons can be made to a thermodynamic
phase diagram. Within a physics course, this
could be compared with the phase transition
in the ferromagnetic two-dimensional (2D)
Ising model. Introducing the Vicsek model (a
non-thermodynamic phase transition) pro-
vides an opportunity to explore the transition
through simulation. Implementing this within
a noncomputational course could be accom-
plished by providing code to students and
encouraging them to change variables.

(d) Computational skills are increasingly impor-
tant for students interested in a career in
science. Little computational background is
needed to build this model, particularly with
the assistance of the tutorial. As such,
exploring the Vicsek model can be imple-
mented as part of a thermodynamics course,
statistical physics course, or a biological
physics course to learn new physics. Alter-
natively, this example could be implemented
as a module within a computational physics
course to emphasize computational skills in
the context of a physics problem. Depending
on the course goal, students can be
provided with sections of prebuilt code.

(e) The ability to troubleshoot issues in re-
search is a skill that translates across all
disciplines and careers. In this manuscript
and associated tutorial, we discuss trouble-
shooting strategies and break down the
problem into small components that build
on each other. Providing pre-built code to
students, as mentioned above, may limit
the troubleshooting growth of students.

Often times students learning challenges are
defined by the instructor, which may or may
not be aligned with actual student challenges.
As such, MT and RK identified skills that they
needed to learn to implement a computational
model. We hope that this style of tutorial is
helpful for future undergraduate students to
work independently through the manuscript.

Other pedagogical tools based on the Vicsek
model exist. For example, the authors are aware
of a video describing the original paper (20) in
detail (27), as well as fully worked example

code accompanied by blog-style commentary
(28). Although resources like these are helpful,
we believe that students will more deeply
understand the Vicsek model by building their
own code from scratch as opposed to refer-
encing the prebuilt code of others.

III. MATERIALS
Although it is possible to write these

simulations in any computer language, we
chose to write in Python 3 because it is free,
open source, and taught in the introductory
computer science course at our institution. We
downloaded the Anaconda distribution and
worked within a Jupyter notebook.

We provide a tutorial in the Supplemental
Material that describes building the Vicsek model
from scratch by using questions that develop and
test the model step-by-step. We provide solutions
to each question so that students can be sure
that they are moving in the right direction at
each step.

IV. RESULTS
A. The Vicsek model

In the canonical Vicsek model, the time-
varying position of each individual

!
riðtÞ evolves

discretely as

!
riðt þ DtÞ ¼ !

riðtÞ þ
!
viðtÞDt ð1Þ

where Dt is the time step between measure-
ments. The convention is to set Dt ¼ 1. The
velocity of each individual

!
viðtÞ is assumed to be

of constant magnitude v and pointed in the
direction hi(t) (Fig 1). This orientation also evolves

hiðt þ DtÞ ¼ hðtÞh i
r
þ Dh ð2Þ

Fig 1. Schematic of a single object’s position at time t and t + Dt.
The object travels a distance vDt before the orientation is
reevaluated. The difference between the orientation at t + Dt
and the dashed line is the Dh.
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where hðtÞh i
r
is the average position of all

orientations within some radius r0 of an individual
at time t (Fig 2). This average is calculated as

arctan sin h tð Þð Þh i
r
= cos h tð Þð Þh i

r

� �

ð3Þ

and includes the orientation of the individual itself.
The average in Eq. 3 may seem unnecessarily
complex. As an example, consider two objects each
with angle h1 ¼ p/4 and h2 ¼ 7p/4. If h ¼ 0 is
considered to be pointed to the right, the average
orientation of these two objects should be to the
right. However, calculating the geometric mean of
these angles gives (h1 + h2)/2 ¼ p. By taking the
average from Eq. 3, we correctly calculate the
circular average h ¼ 0.

The angular noise Dh varies for each object at
each time step and is chosen from a uniformly
distributed random angle within the interval
[–g/2, g/2]. Therefore, g sets the possible values
of the random noise Dh. The effect of this
angular noise is to add some uncertainty in the
trajectory of a given particle, and its effects can
be seen by looking at an isolated particle where
hðtÞh i

r
becomes hi(t) (Fig 3).

In a system with many objects, the term hðtÞh i
r

in Equation 2 acts to align neighboring objects,
whereas Dh acts to randomize orientations. When
g is small, the ordering effect dominates, and
long-range order is present (Fig 4).

The overall extent of collective behavior is
calculated by measuring the order parameter

va ¼
1

Nv

X

N

i

~vi

�

�

�

�

�

�

�

�

�

�

: ð4Þ

This order parameter measures the extent to

which all objects have velocities in the same

directions. For example, if all objects are

moving in the same direction, va ! 1, whereas

Fig 2. Schematic of interaction range between objects. The object
within the center of the left (red) circle has an interaction radius r0
which includes the leftmost object. The orientation of this object
will be affected by the orientation of the other object within the
interaction range. The object within the rightmost (blue) circle does

not have any neighbors within its interaction radius. As a
consequence, the object in this snapshot has an orientation that is
unaffected by the other objects.

Fig 3. The position of a single particle moving with constant speed
v ¼ 1 in a box of length L ¼ 10 superimposed over four instances
in time each separated by Dt ¼ 1. Lighter shades represent object
position further in the past. g ¼ 3.

Fig 4. Snapshot of N ¼ 200 objects in a box of length L ¼ 10
interacting with radius r0 ¼ 1 after t ¼ 250. Noise is set to g ¼ 0.1
and Dt ¼ 1. Color coding of arrows represents object orientation.
Objects were initialized with random positions and orientations.
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many noninteracting, randomly oriented ob-

jects lead to va ! 0. The order parameter va can

be calculated at every instance in time and

therefore evolves until the system reaches

“steady state” (section IV.B.5); the steady state

values of va are quoted in Figure 5.

Thus we see that by incorporating these rules,

we capture an essential result of the Vicsek model:

that the noise g controls a dynamic first-order

phase transition from ordered flocking (high va) to

disorder (va ! 0), even when the number of

objects per unit area (i.e., the density) is kept

constant (Fig 5).

When fully describing a phase transition, it is

common to determine exactly how an order

parameter changes at this transition point. In the

case of the Vicsek model, a noise level gc
separates the regime of collective motion from

the disordered regime. In fact, this noise value is

also a function of system size gc(L), as seen in

Figure 5. In the original publication, Vicsek et al.

(20) treated this transition as continuous (i.e., a

second-order phase transition like the 2D Ising

model). However, later works with larger systems

argue that the canonical Vicsek model is a

discontinuous (i.e., a first-order) phase transition

(29) and the transition occurs at a noise level that
is also a function of system density gc(ρ) (30).

One reason that the Vicsek model is interesting
to study is that the long-range order associated
with large values of the order parameter va are
not possible in 2D for equilibrium systems. The
Mermin–Wagner theorem states that a system
with short-range interactions at thermal equilib-
rium cannot lead to a long-range order (31, 32). In
the Vicsek model, the interactions are short range
(r0 ,, L), yet the steady state is capable of
achieving long-range order (va ~ 1) because self
propulsion (v 6¼ 0) is a nonequilibrium feature. An
exercise in the tutorial demonstrates that mea-
surements of va for systems with and without
swimming are very different despite all other
parameters being the same.

B. Skills and concepts
1. Python familiarity

Computational abilities vary widely across an
undergraduate cohort partially because compu-
tational courses are introduced at different points
in the undergraduate curriculum, and different
departments have different major requirements
for computational courses. As such, many of the
challenges in developing this model are rooted in
the learning curve associated with Python.

The tutorial assumes students know the
following Python skills before starting the tutorial:

(a) How to download and install the Anaconda
distribution (www.anaconda.com) of Python
3 and work within a Python environment. We
recommend Spyder or Jupyter notebooks.

(b) How to import libraries such as matplotlib
and NumPy.

(c) How to use PyPlot from matplotlib to
display and save plots.

(d) How to write a function.

Students who are unfamiliar with these items
can find myriad online resources to help them
prepare for this tutorial.

2. Python usage
The tutorial is designed to approach partic-

ular computational problems step-by-step. The
tutorial covers the following computational
topics in the context of problem solving:

Fig 5. Steady state order parameter va as a function of g for L ¼ 5

(black), L ¼ 15 (red), and L ¼ 25 (blue) at a density of ρ ¼ 8
with r0 ¼ 1 and Dt ¼ 1.
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(a) Importing and using built-in Python functions.
(b) Random number generators.
(c) Using loops and if statements.
(d) Generating and displaying images and plots.
(e) Calling multiple functions and using return

statements within functions.

3. Periodic boundary conditions
The use of periodic boundary conditions in

computational simulations is common. When
simulating something, you want to avoid the
effects of a boundary. If a boundary exists, you
have to consider new rules for interaction with
that boundary. In fact, what you really want is
an infinitely large simulation so that the effects
of these boundaries are minimal, but that
would require infinite computing resources
(and take infinitely long to run).

We use periodic boundary conditions such that
objects leaving the bounding area reappear on
the opposite side of the simulation area. As such,
objects simply pass through the boundary and
do not interact. Implementing periodic boundary
conditions is an explicit step in the tutorial.

4. Troubleshooting
A primary challenge in building these mod-

els, and research in general, is finding trouble-
shooting methods for suspected errors. Within
the typical structure of an undergraduate physics
course, students tend to determine whether their
solutions to problems are correct on the basis of
a comparison with a known solution (either given
or from a peer). However, in research scenarios, a
known solution may not exist. As such, students
must find ways to convince themselves and their
advisor that their results are correct, determine
how to correct their results, or both.

This process deviates significantly from the
learning process within a traditional physics
course. In these courses, students tend to
submit assignments and receive a grade—end
of transaction. However research is iterative,
and progress relies on reflecting on the work
done and implementing improvements.

As a consequence of this difference between
research and coursework, troubleshooting is not
an explicit skill learned in courses. Undergraduate
research is important for this reason. We empha-
size here that troubleshooting is an active part of

the research process. Typical methods used to
confirm that the model is implemented correctly
(e.g., visual checks, building toy models, and taking
limits of results) are demonstrated in the tutorial.

5. Steady state
In a typical simulation, particles are distributed

in a region of space with random positions and
orientations. The system is allowed to evolve,
and in this evolution process the positions and
orientations may become more correlated across
objects depending on the experimental condi-
tions. The goal is to determine the effect of
parameters on the ultimate behavior of the
system that is independent of the initial condi-
tions and configuration.
As such, we separate the behavior of our

system into two regimes: the “transient” and
the “steady state.” In the steady state behavior,
fluctuations in a measured quantity such as the
order parameter occur, but the mean value is
constant. In the preceding transient regime, a
measured order parameter fluctuations and the
mean are changing in a way that depended on
the initial configuration. Here, we only make
measurements in steady state. A strategy to
determine whether the simulation has reached
the steady state regime is to compare averages
of the order parameter over different time
windows. If the average is unchanged, then
each time window is in steady state. Note that
reaching steady state is not necessarily the
same as reaching thermodynamic equilibrium.

V. A PERSPECTIVE ON CURRENT
VICSEK MODEL USE
Although the simplicity of the Vicsek model is

sufficient to capture this order–disorder transi-
tion, the model is still being adapted in current
research. We highlight a few recent works.
The primary assumption in the standard

Vicsek model is that objects interact with all
other objects within a given radius. However,
the visual information collected by a bird, for
example, is not isotropic (i.e., the bird cannot
see behind itself). To this end, nonisotropic
interactions with limited fields of view, as
shown in Figure 6, have recently been inte-
grated into the Vicsek model (33–35).
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It is important to consider that true interac-
tions between animals may not be governed by
metric interactions (i.e., how far the animals are
apart). For example, starlings in a flock have
been shown to interact topologically (individ-
uals interact with some number of nearest
neighbors, regardless of distance) (23), and fish
in a school use line-of-sight interactions (24).

Another principle assumption of the standard
Vicsek model is that objects move with a
constant speed at all times. This model has been
adapted to better mimic the variability of fish
speed, which has been determined to depend on
the local alignment of neighbors (36).

Additionally, most real systems exist in three
dimensions, whereas this manuscript and the
tutorial are explicitly done for the 2D Vicsek
model. This can be extended to three dimensions.

Furthermore, self-propelled particle models
such as the Vicsek model are used as a reference
to other active models like the vertex model when
investigating the order–disorder transition (37).

VI. DISCUSSION AND
CONCLUSION

We have motivated the reasons to study the
Vicsek model in the undergraduate curriculum
both from the perspective of a student
researcher and as an educator. We have defined
the details of the Vicsek model and implemented
this model to show a canonical result—a kinetic
phase transition between order and disorder that

stems from local interactions between active
objects. We provide discussion about concepts
that are necessary to build this model that may
be new intellectual territory for undergraduate
students, and we accompany a tutorial to help
students build the model step-by-step. Finally,
we have discussed a few ways in which current
researchers are adapting the Vicsek model for
their own research.

It is our hope that undergraduate students
feel comfortable approaching this model and
that our provided resources, in addition to the
original manuscript (20), are sufficient to assist in
an undergraduate student building their own
model from scratch.

SUPPLEMENTAL MATERIAL

A supplemental tutorial that builds the Vicsek model is
available at https://doi.org/10.35459/tbp.2022.000227.s1.
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