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Abstract. Motivated by the anisotropic interactions between fish, we imple-
ment spatially anisotropic and therefore non-reciprocal interactions in the 2D
Ising model. First, we show that the model with non-reciprocal interactions alters
the system critical temperature away from that of the traditional 2D Ising model.
Further, local perturbations to the magnetization in this out-of-equilibrium sys-
tem manifest themselves as traveling waves of spin states along the lattice, also
seen in a mean-field model of our system. The speed and directionality of these
traveling waves are controllable by the orientation and magnitude of the non-
reciprocal interaction kernel as well as the proximity of the system to the critical
temperature.
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1. Introduction

When two objects come into contact with each other, the macroscopic forces that each
generate on the other are described by Newton’s third law and are equal in magnitude.
While the reciprocity of this type of interaction is common, there are many instances
where interactions between objects are non-reciprocal and lead to interesting behavi-
ors. For example, metamaterials that exhibit broken symmetries in the bonds between
constituents yield asymmetric responses to mechanical [1-3] and optical waves [4, 5] as
well as fluid/solid behavior [6, 7]. Non-reciprocal interactions are also used as design
principles for sensor optimization [8].

Hallmark examples of non-reciprocal interactions occur within the collective beha-
vior of animal groups such as locusts, birds, and fish. In these systems, visual information
differences between animals lead to this non-reciprocal interaction. While incorporating
non-reciprocal interactions are not required to capture flocking behavior [9], there is a
recent push towards understanding the effects of non-reciprocal interactions on phase
behavior [10-12] and the non-trivial motion of flocking objects [13].

In particular, we are interested in how fluctuations in the local polarization within a
flock are propagated through space as a consequence of these non-reciprocal interactions.
To this end, we simplify the problem and study non-reciprocal interactions within a
2D Ising model that are motivated by the anisotropic field of view within animals
such as fish, consistent with recent efforts to understand the effects of non-reciprocal
interactions within the continuum Vicsek model [10, 12]. This model is not equivalent to
the active Ising model [14, 15] since objects are not free to move on the lattice and lack
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self-propulsion. As a consequence, our model decouples the non-equilibrium effects of
introducing a non-reciprocal interaction and active energy consumption. We note that
most non-reciprocal interactions within studies of flocking focus on so-called ‘vision-
cones’ where object orientation influences interactions. Our interaction is a simplified
version of a vision-cone which does not change orientation.

Our results are presented in three parts. First, the model is introduced and the influ-
ence of the non-reciprocal interaction on the phase behavior of the system is described
in detail. Comparisons are made to the equilibrium 2D Ising model. Then, we char-
acterize the spatial propagation of fluctuations that originate from the presence of
this non-reciprocal interaction. We introduce a mean-field model which predicts the
propagation of spin fluctuations under these parity-breaking interactions. We show that
this propagation is robust to changes in the algorithm used to generate the system
dynamics. Finally, we find that the propagation velocity is maximized near the critical
temperature.

2. Methods

We consider a 2D Ising model on a square lattice of dimension L x L with N = L? spins
where the system at a time ¢ is in a configuration denoted by the vector s(¢) with
elements s; = &1, where i € Z* indexes the lattice site [16]. In order to generate spin
dynamics on the lattice, we use the energy of an individual spin s;, calculated as [17-19]

El(S) = —S5; ZJiij (1)

where J;; is an element of an interaction matrix which couples spins ¢ and j. Note that
this is related, but distinct, from the traditional Ising model Hamiltonian, given by
E = (>, E;)/2 [20]. Importantly, while E;(s) is not an energy functional, we neverthe-
less have AE = AE; when J;; = Jj; (see appendix A for details). When this symmetry
condition on the interaction matrix is satisfied, we call the system reciprocal. Otherwise,
if Ji; # Jji, we call the system non-reciprocal [21].

To begin, we study an equilibrium reciprocal Ising model where spins ¢ and j interact
with strength J;; = J if they are nearest neighbors, otherwise J;; = 0 (figure 1(a), inset).
We can write the interaction matrix as

Jij = J((Si,ézd -+ (51.;.@1,,]' + 5i,éy,j + 6i+éy7j). (2)

In the above, é, denotes the unit vector in the « direction, with « € {z,y}. Unless
otherwise stated, we set J =1.

Lattices are placed in contact with a heat bath at a temperature 7, with units
of the Boltzmann constant kg (supplemental movie 1). Assuming periodic boundary
conditions, the lattices are evolved towards their thermodynamic equilibrium configur-
ations using a Metropolis Monte Carlo method (appendix A). Briefly, individual spins
in the lattice are chosen at random and the energy cost/gain of flipping the spin as
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Figure 1. Size and offset effects on system magnetization. (a) Magnetization per
spin M /N as a function of temperature T for lattices with L=8 (red), L=16
(black), L =32 (blue), and L =64 (magenta). (a-inset) Representation of a standard
Ising model interaction kernel. Neighbors of the blue cell are defined as the four
red lattice sites. (b) Magnetization per spin as a function of temperature for offset
A =2 with symbol colors equivalent to (a). (b-inset) Representation of a non-
reciprocal interaction kernel with an offset A = 2 lattice sites. Arrows point in the
direction of increasing system size. (¢) Magnetization per spin M /N as a function
of temperature T for lattices of size L =64 at different values of offset A =0 (red),
A =2 (black), A =4 (blue), A =8 (magenta), and A =10 (cyan). (d) Magnetic
susceptibility per spin x/N for data in (c).

given by the variation of equation (1) determines the probability of flipping the spin as
shown by

P(s— F;s) =min [1,e 2] (3)

where F'; is an operator that takes s; — —s; and AFE; is given by equation (A.3) in
appendix A [22].

We define a ‘sweep’ as a proxy for time; in a single sweep of a lattice with N lattice
sites, N sites are randomly selected sequentially and have the possibility of flipping their
spin. Systems are brought to a steady-state configuration and ensemble measurements
of the system magnetization are made of independent configurations (appendix B).

For a given lattice, we calculate the system magnetization from the sum of all spins
si, M =Y. s;, which exhibits the expected temperature and system-size dependence

https://doi.org/10.1088/1742-5468 /accce? 4



Non-reciprocal interactions spatially propagate fluctuations in a 2D Ising model

previously described (figure 1(a)) [22]. Since the s — —s symmetry is not broken by the
existence of an external field, we quote the absolute value of the magnetization.

Next, we amend the traditional Ising model interaction matrix and introduce a
non-reciprocal interaction (J;; # Jj;) in equation (1). Inspired by the non-local inform-
ation processing of active systems, such as fish within a school or starlings within a
flock [10, 23-25], we define an offset vector A € Z? that represents a spatial translation
of the interaction kernel (figure 1(b), inset),

A=A+ A8, (4)
where A, € Z are integers. The interaction matrix’s elements are now given by
Jij=J(0iva—e,j+0ivare,j+0ivai,j+0irare, ) (5)

We choose to keep A constant and uniform throughout space, specifically A = Aé,, and
A is not dependent on the sign of the lattice spin. These unidirectional interactions lead
to qualitatively similar temperature and size-dependence of the system magnetization
(figure 1(b)). Note that the traditional Ising model is represented by A =0, and we
keep a constant number of interactions between spins (4) to keep the connectivity of
the lattice constant for all values of A.

We continue to use the changes in F; in equation (1) when calculating the trans-
ition probabilities in the Monte Carlo simulations to generate the system dynamics,
although we again note that now AFE # AF;. The incorporation of asymmetrical inter-
actions in equation (1) to generate lattice dynamics has been used in previous studies
of Ising models on directed graphs [17-19]. Further, directed Ising models with asym-
metric interactions have been described analytically in 1D and in 2D within the zero
temperature and paramagnetic limits [26-28].

The qualitative temperature dependence of the system magnetization is similar
for all values of A, however subtle differences are observed for different values of A
(figure 1(c)). To explore these subtle differences, we calculate the variance of the mag-
netization AM over time, where (AM)? = (M?) — (M)?, to calculate the magnetic sus-
ceptibility x = (AM)?/T [22].* The change in location of the peak of y suggests that
A may influence the critical temperature of the system away from the expected crit-
ical temperature for the 2D Ising model on a square lattice, T, = 2/In(1 4 /2) ~ 2.27
(figure 1(d)).

3. Results

We use two methods to determine the infinite system size critical temperature T, to
determine if non-reciprocal interactions affect 7. First, we use the temperature which
gives a maximum in y to define the finite-size critical temperature 7 for a lattice of

4 We note that this susceptibility is no longer guaranteed to be derivable from the individual energy used to generate the system

dynamics, i.e. x # lim,_yq (?;Tb;) ‘T [20].
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Figure 2. Critical Temperature Depends on A. (a) Susceptibility x as a function of
temperature T for A =0 on lattices of length L = 40,50,60,70,100 shown in blue,
green, orange, red, and purple, respectively. Dashed black lines are quadratic fits
near the maxima. (b) Finite size critical temperature T as a function of inverse
lattice size 1/L for A =0 (black) corresponding to data in (a) and A =4 (red).
Dashed lines are linear fits. (c) Binder cumulant U, as a function of temperature
T for A =2 and system size L =16,32,64 in cyan, red, and blue respectively.
Dashed lines are second-order polynomial fits, and the green vertical line indicates
the intersection of the fitted lines. (d) Infinite system size critical temperature 7,
as a function of offset A calculated by extrapolation of susceptibility peak (red)
and Binder cumulant intersection (black). Red data error bars representing the
standard error are plotted but are smaller than the symbols. Dashed line at the
equilibrium 7, = 2.7 for reference.

length L (figure 2(a), supplemental figure 1) [29]. We determine the maximum of x(7')
by fitting x(7T") to a second-order polynomial. We then use T for lattices of different
sizes to determine the infinite system size critical temperature 7. which is found from
the y-intercept in figure 2(b). We find that 7. changes over the range of A studied
despite a constant connectivity of each lattice. Interestingly, the slopes of T.(1/L) for
A # 0 are negative, whereas the slope T/(1/L) for A =0 is positive.

As an orthogonal approach to confirm these values of T, we calculate the Binder
cumulant Uy =1 — (M*)/3(M?)? for systems of size L using higher order moments of
the system magnetization M [30]. The averages (...) are taken over an ensemble of
independent measurements for a given system size and temperature. Finite-sized scaling
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yields an intersection of the Binder cumulant U (T) for systems of different sizes at the
infinite system size critical temperature T, (figure 2(c), appendix C, supplemental figure
2). We find T from this intersection by fitting U7 (T") to a second-order polynomial and
minimizing the difference between Up(T') for three different lattice sizes (figure 2(c)).
Again, we observe that A affects 7. (figure 2(d)). We note here that measurements of
T from the extrapolation of finite-size T via the susceptibility measurements as well
as the Binder cumulant crossing methods are done for unique sets of simulated data,
strengthening our conclusion that the quantitative trends of T.(A) in figure 2(d) are
robust.

Using both methods of calculating 7., we observe that this non-reciprocal interac-
tion alters the system critical temperature. Importantly, the measured A = 0 values of
T. =2.269+0.002 and T, = 2.261 using the susceptibility peaks and Binder cumulant
intersection methods, respectively, are consistent with the standard 2D Ising model [31,
32]. Next, we investigate the dynamical consequences of this new model.

Strikingly, we observe that systems with interactions A > 0 exhibit spin domains that
appear to translate (supplemental movie 2). Since individual spins are constrained to
their lattice site, this translation of spin domains is the propagation of local fluctuations
within the magnetization which we treat as an apparent flow. These waves are non-
periodic in space.

We display the dynamics of this flow in a system with an offset of A = 2 lattice sites
(figures 3(a) and 1(b)-inset). We render lattices as binary images where spins +1/—1
correspond to white/black pixels respectively (appendix D). Reversing this color associ-
ation does not qualitatively affect our results (supplemental figure 3). After evolving the
system to steady state, we observe domains that translate across the lattice. Therefore,
these apparently mobile domains are reminiscent of a traveling wave.

To demonstrate the persistence of these traveling spin waves, we build a kymograph
by taking a linescan across the lattice in subsequent images (figure 3(b), appendix D);
the diagonal ‘stripes’ in figure 3(b) are reminiscent of an object moving with a constant
speed in a space-time diagram. To quantify the speeds of these traveling waves, we use
particle image velocimetry (PIV) on time-series images (appendix D). Consistent with
the kymographs, PIV reveals a non-zero wave speed v, in the direction anti-parallel
to A. Velocity distributions perpendicular to the offset v, are centered around zero
(figures 3(c) and (d)).

We further demonstrate that the orientation of the interaction kernel dictates the
orientation of the traveling wave. We set A = —2 and confirm that the traveling wave
reverses direction (figure 3(e), supplemental movie 3).

In order to better understand the origin of these waves, we explicitly calculate mean-
field dynamics for our modified Ising model, whose form can be understood on phe-
nomenological grounds. The equilibrium Ising model follows a pitchfork bifurcation in
addition to diffusion [33-37]:

om(x,t) = am — bm® + DV*m. (6)
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Figure 3. Offsets generate flow. (a) Temporal evolution of L=100 lattice at
T =2.25 and A =2. Images in (a) are 10 sweeps apart. The red circles highlight
domain motion. Red rectangle represents region of linescan used in kymograph.
(b) Kymograph of lattice in (a). Probability densities of the (c) x-components of
the velocity vectors v,, where & is defined to the left, and (d) y-components of the
velocity v, calculated from PIV on the series represented in (a). (e) Kymograph
of images created with A = —2 (e-inset). Scale bars in (b) and (e) are equal to
100 sweeps. Widths of (b) and (e) are L=100. (f) Snapshots of local magnetiza-
tion m from mean-field theory simulations using equation (7) at different times.
(g) Kymograph of the system taken at the white dashed line in (f). Time is increas-
ing downwards and the black bar indicates ¢ =50 in simulation units. The white
line shows the predicted wave velocity, equation (8). Simulations in (f)—(g) share
the colorbar shown in (g) and are run with J=1, T=2, A= —1, and L=100.

where m(x,t) is a scalar field in x € R?, D is a diffusion constant, V is the gradient
operator, V2 =V -V, and @ and b are phenomenological constants. In order to maintain
stability of the homogeneous solutions, we require b >0. When a <0, the system has
a disordered, homogeneous solution m =0. When a > 0, the system becomes ordered,
with m = +mg, where my = +/a/b.
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Any modification to these dynamics should reflect the explicitly broken parity sym-
metry introduced by the spatially uniform offset interaction kernel. To lowest order in
gradients, this is accomplished by

om(x,t) + (v-V)m = am — bm® + DV*m. (7)

The new term introduced on the left-hand side, (v -V)m, quantifies advection of m in
a velocity field v(x,t), and is precisely what is calculated in the mean-field dynamics of
our modified Ising model in the A — 0 limit. As the interaction kernel is uniform across
time and space, v(x,t) =vpéa, where €, is a unit vector pointing in the direction of
the offset vector A and v is the advection speed. From the microscopic derivation, we
find

vo=—4JA/T. (8)

The relation vy x —A is in agreement with Monte Carlo simulations (figures 3(b) and
(e)). For comparison, snapshots of simulations of equation (7) in figures 3(f)—(g) are
qualitatively similar to the Monte Carlo simulations (appendix E). Derivations and all
parameters are detailed in supplemental note A2-3 (supplemental movie 4).

Our mean-field theory, equation (7), predicts that the system becomes uniformly
magnetized when a <0, coarsening to a uniform state with a time-scale L(t) ~t'/2,
as expected for non-conserved order parameters [38]. In the uniform steady state, a
traveling state is not defined. Nevertheless, we observe steady-state traveling waves due
to the presence of domain-wall solutions to equation (7), which propagate with velocity
vg. These soliton-like solutions have the form

m(x,t) = motanh(y(x-éa — vot)) 9)

where mg = \/a/b gives the amplitude of the wave and v=+/a/2D gives its width.
Equation (9) defines a 1-dimensional domain wall moving in the direction éa with
velocity vg. This steady-state solution is also the lowest energy deformation for the
equilibrium mean-field Ising model [20], and therefore arises frequently from random
initial conditions (supplemental movie 5).

To determine the extent to which this apparent flow can be controlled, we meas-
ure the average flow speed v, within Monte Carlo simulations as a function of both A
and T (figure 4(a)). We observe non-trivial behaviors of the wave speed; wave speed is
maximized for T'~ T, and small non-zero values of A. From this maximum, wave speed
decreases with increases in A or increases in T (figures 4(b) and (c)). This is in contrast
with the monotonic advection speed found in the mean field model (equation (8)) sug-
gesting the importance of fluctuations in wave propagation. When T > T¢, in the regime
where our mean-field theory is most accurate, we indeed find that simulations obey the
T—! scaling behavior predicted by equation (8) (supplemental figure 4). Consistent with
the 2D Ising model, Monte Carlo simulations with A = 0 have no measurable wave speed
at any temperature; waves only exist for A 2 0.

https://doi.org/10.1088/1742-5468 /accceT 9
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Figure 4. Temperature and offset control flow. (a) Phase diagram of flow speed
v, for changes in offset A and temperature T for lattices of size L =100. (b) Flow
speed v, as a function of temperature for L=100 with A =2. (c¢) Flow speed v,
as a function of A for L =100 with T =2.25. All error bars represent one standard

deviation.

4. Discussion

A simple alteration of the Ising model, the incorporation of these non-reciprocal inter-
actions which break parity symmetry, leads to traveling spin waves. The directionality
of these waves is controlled by the spin-spin interaction, and the speed is a consequence
of both the geometry of the interaction and the proximity of the system to its critical
temperature. From Monte Carlo simulations, the peak in wave speed near the 2D critical
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temperature and the lack of wave formation in an equivalent 1D Ising model reinforce
that this behavior is intimately linked to the existence of a phase transition (supple-
mental figure 5). This specific form of non-reciprocity leads to parity-breaking advection
in the mean-field equations in all spatial dimensions, as argued on phenomenological
grounds and computed from microscopics.

There is ongoing debate about the appropriate usage of Monte Carlo methods for
non-equilibrium systems [39-41]. To explore this further, we repeated our simulations
using Glauber dynamics [33] which have been used previously to align spins within
the active Ising model [42]. We notice that the measurable quantities in figure 1 and
the subsequent phase transition temperatures are sensitive to whether we utilize the
Metropolis or Glauber algorithms for A # 0 (supplemental figure 6). This is expected
as the individual energy, F;, is not a true energy functional when A # 0, meaning that
the steady-state distribution is not simply a function of E;, but also depends on the
specific dynamics used. However, we continue to observe a non-monotonic flow speed
for non-zero offsets that is qualitatively similar for the two algorithms, suggesting that
this apparent flow and propagation of spin fluctuations is a robust feature of the model
(figure 4(b), supplemental figure 6).

We confirm that the existence of these traveling waves is neither a consequence
of finite system size nor periodic boundary effects (supplemental movies 6, 7, and 8).
Further, these waves are not a product of intrinsic geometric frustration, as is seen in
the triangular Ising model [43], or proximity to a boundary (supplemental movie 8).

Ultimately, this simple lattice-based model serves as a simplification of the 2D Vicsek
model where swimmers are (1) confined onto a grid (i.e. the swimming speed is zero
and local density fluctuations are not allowed) and (2) constrained to orient up or
down. These simplifications allow us to clearly observe how a type of non-reciprocal
interaction propagates fluctuations in the polarization within a system. Importantly,
these spin waves are a non-equilibrium effect that is isolated from the non-equilibrium
effects of the propulsive energy input ubiquitous to active matter [9, 44].

Our use of an offset A and a constant interaction kernel is inspired by so-called
‘vision-cones’ [10, 12, 45] which restrict the geometry of active particle interactions;
particles can only see a fraction of the entire space, governed by the vision cone angle.
Unlike our model, a vision-cone model would have heterogeneous, spin-dependent offset
kernels. At the mean-field level, we can capture this spin-dependence by considering
a variation on our dynamics where the offset is defined locally as A; = s; Agé,, where
Ag is constant for all spins. The mean-field dynamics derived from these microscopic
interactions still contain an advection term, as in equation (7), but the speed is now vy o<
—mAg. This gives a non-linear advection term of the form found in Burger’s equation,
mVm (supplemental note A4). Perturbations around the disordered state are purely
diffusive (supplemental figure 7), while perturbations around an ordered state 4+my
decay while propagating in a direction set by the sign of the ordered state. (supplemental
figure 8). This is consistent with a previous study of an XY-model with vision-cone
interactions, which found no time-dependent phase but did find transient translations
of defects (see figure 4 in [46]).

https://doi.org/10.1088/1742-5468 /accce? 11
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In order to capture the non-monotonic relationship between the wave speed and
temperature, we should not use the mean-field dynamics with temperature dependent
coefficients, but rather use noisy Model A dynamics with a ¢* free energy [47] sup-
plemented with advection. While appearing superficially similar, the two models have
a fundamental difference. The mean-field dynamics equation (7) contain all the tem-
perature dependence in their coefficients, while Model A has constant coefficients and
the temperature dependence is in the strength of the noise. The mean-field dynamics
only correctly capture the onset of magnetization, namely m ~ |T' — T.|'/2. On the other
hand, Model A possesses all the same critical phenomena as the Ising model [47], at
the cost of losing connection between the microscopic parameters and the phenomen-
ological coefficients. However, including this noise would allow for the wave speed to
interact with fluctuations with specified correlation lengths, which we hypothesize to
be the origin of the non-monotonic relationship of v(7T) observed in figure 4.

Finally, we note that this work is consistent with previous works that show a motil-
ity change upon the introduction of non-reciprocal interactions [48-51]. We hope that
our model will help towards decoupling the thermodynamic effects of anisotropic inter-
actions and propulsive energy usage in collective dynamics.
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Appendix A. Monte Carlo algorithms

The system starts in a configuration given by the vector s and is contact with a heat
bath at temperature 7. In a single sweep, N lattice sites are randomly selected to be
flipped, going to a state F;s, where F'; is an operator that takes s; — —s;

(F’Z‘S)jZSj(l—Q(Sij). (Al)

For each site j, the difference AE; = E;(Fjs) — E;(s) is calculated, where E;(F}s) is the
individual energy of spin j after the flipping spin j and Ej(s) is the individual energy
of spin j prior to the spin-flip (equation (1)). We stress that, generically, the change
in the individual energy is not the change in the system energy, E(s) =>_, E;(s)/2.
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To illustrate the difference between the two, one can explicitly calculate the change in
system energy AFE from flipping spin i,

AFE = E(F;s) — E(s)

= % (— %{; Jmn(E S)m(E S)n + Z Jmnsmsn)

mn

=si ) (Jij+ Jji) (1= 8ij)s;. (A.2)

J
By contrast, we can calculate AF; due to flipping spin ¢ using equation (1),
= —(Fi8)i ) _Jij(Fis)j+s: ) Jijs;
J J

= 282' ij(l — 51’]‘)5]'- (A3)
J

We therefore see that AE = AE; when J;; = Jj;, i.e. when the dynamics are reciprocal.
Using the Metropolis—Hastings algorithm, a proposed spin flip is accepted with
probability

Pyn(s — F;s) = min [1,6_5AEi} ) (A4)
Using Glauber dynamics, a proposed spin flip is accepted with probability

1

Fols = Fis) = 1 ommmn

(A.5)

where AE); is given by equation (A.3) and Jj; is given by equation (5).

Appendix B. Monte Carlo measurements

All Monte Carlo simulations are done on a 2D lattice with periodic boundary conditions.
Each spin is initialized to +1 and evolved in the presence of a heat bath at a temperature
T using the Metropolis Monte Carlo method outlined in Giordano and Nakanishi [22]
for 10000 sweeps to reach steady-state. When making measurements in figures 1 and 2,
we build an ensemble of measurements using the following scheme. Near T, (i.e. 2.1 <
T < 2.5), we take measurements of the system evolving in time. At steady-state, 5000
additional sweeps are used to calculate the correlation function c¢(t) of the system
magnetization m which evolves in time ¢ [52]
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1 tmax—t tmax_t 1 tmax_t
m(t")m(t' +t) — m(t") x

m(t' +1t).

t—t
max ;7

t—t
max ;7

(B.1)

We find that the decay of ¢(t) can be described by a correlation time 7, which in
general depends on lattice size and temperature. We take this steady-state configuration
generated after 15000 sweeps, and we continue to evolve it for additional sweeps only
taking measurements of the magnetization every 37 sweeps until we have accumulated
1000 independent measurements. This method is also done far from 7T, (i.e. T'< 2.1 and
T >2.5) in figure 2(a). Far from T in figure 1 and the remainder of figure 2, we build an
ensemble of 100 independent measurements instead by taking 100 independent lattices
and evolving them for 10 000 sweeps in the presence of a heat bath at temperature T.

Appendix C. Cumulant intersection method

The Binder cumulant Uy (T') is calculated for three lattice sizes L and is fit to a second-
order polynomial. The intersection point is determined by the temperature that minim-
izes the total distance between these three lattice sizes. Lattice sizes are chosen such that
a unique cumulant crossing point is observed. For offsets A = 0,2,4, 8,10, we use lattices
with L = [16,32,64],[16,32,64],[32,50,64],[50,64,100], and [64,80,100], respectively.

Appendix D. Image analysis

For image analysis techniques, each lattice is rendered as an image where an up/down
spin corresponds to a white/black region of pixels, respectively. Each 100 x 100 lattice
is converted to a 380 x 380 pixel image. Kymographs (spatio-temporal plots) of these
images are created using FIJI [53]. Each line of the kymograph comes from an aver-
age pixel projection of a 17 pixel tall region spanning the width of the image. These
lines are stacked atop corresponding frames in the image sequence to generate the full
kymograph.

Rendered images are processed with a Gaussian filter with a radius of 4 pixels,
and 500 frames are analyzed using particle image velocimetry (PIV). PIV segments
two consecutive frames of the rendered video into grids. A velocity vector is drawn to
quantify the center of mass displacement within each grid, and we quote all velocity
vectors for all grids in all frames. PIV is performed with the OpenPIV Python library
using a window size of 64 pixels and an overlap area of 32 pixels [54].

Appendix E. Mean-field dynamics

The Python package Dedalus [55] was used to simulate the mean-field dynamics,
equation (7) using pseudo-spectral methods. We assume periodic boundary conditions
on a flat geometry and solve the PDE using 256 Fourier modes over a domain of size
L=100.
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