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Abstract

Liquid crystal elastomers (LCEs) are made of liquid crystal molecules linked into rubber-like polymer
networks. An LCE exhibits both the thermotropic property of liquid crystals and large deformation of
elastomers. It can be monodomain or polydomain in the nematic phase and transforms to an isotropic phase
at elevated temperature. These features have enabled various new applications of LCEs in robotics and
other fields. However, despite substantial research and development in recent years, thermomechanical
coupling in polydomain LCEs remains poorly studied, such as their temperature-dependent mechanical
response and stretch-influenced isotropic-nematic phase transition. This knowledge gap severely limits the
fundamental understanding of the structure-property relationship, as well as future developments of LCEs
with precisely controlled material behaviors. Here we construct a theoretical model to investigate
thermomechanical coupling in polydomain LCEs. The model includes a quasi-convex elastic energy of the
polymer network and a free energy of mesogens. We study working conditions where a polydomain LCE
is subjected to various prescribed planar stretches and temperatures. The quasi-convex elastic energy
enables a “mechanical phase diagram” that describes the macroscopic effective mechanical response of the
material, and the free energy of mesogens governs their first-order nematic-isotropic phase transition.
Evolution of the mechanical phase diagram and the order parameter with temperature is predicted and
discussed. Unique temperature-dependent mechanical behaviors of the polydomain LCE that have never
been reported before are shown in their stress-stretch curves. These results are hoped to motivate future
fundamental studies and new applications of thermomechanical LCEs.
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1. Introduction

Liquid crystal elastomers (LCEs) are soft active materials that combine the orientational order of
liquid crystal molecules (mesogens) and the entropic elasticity of rubber-like polymer networks. This
inherent coupling at the molecular level provides LCEs with intriguing mechanical responses such as soft
elasticity [1], high energy dissipation [2], and programmable anisotropy [3], as well as stimuli-responsive
large deformation induced by thermal [3, 4], photothermal [5, 6], and photochemical [7-9] processes. As a
result, LCEs have enabled exciting new applications in mechanics, materials, and robotics. Examples
include thermomechanical actuators [10, 11], light motors [12], shape morphing structures [13, 14], energy
dissipaters [2, 15], and biomedical devices [16]. Accompanying these new applications are the rapid
development of theories for various mechanical responses of LCEs under different loading conditions
and/or stimuli, including monotonic load [1], biaxial load [17, 18], bending [19, 20], heating [21], and light
illumination [7, 8].

In a typical thermotropic main-chain LCE, LC mesogens are linked in the linear polymer chains of
a stretchable amorphous polymer network. The rod-like mesogens form a nematic phase with a long-range
orientational order at low temperature (e.g., room temperature) and transform to an isotropic phase with no
orientational order at temperature above a nematic-isotropic transition temperature (e.g., around 60 °C [22]).
The low-temperature nematic phase can be either monodomain with a uniform mesogen orientation or
polydomain with many coexisting domains of different mesogen orientations. These different phases and
domain formations significantly affect the mechanical (stress-stretch) responses of their corresponding
LCEs [23]. In brief, an isotropic LCE at high temperature has isotropic, common rubber-like mechanical
responses, a nematic monodomain LCE has anisotropic mechanical responses due to the uniform mesogen
order, and a nematic polydomain LCE has macroscopically isotropic mechanical responses due to the co-
existing domains at the microscale.

This paper focuses on elastic responses of nematic polydomain LCEs. Understanding the
fundamental mechanics of polydomain LCEs is of great importance to their future research and

development for two reasons. First, fundamentally, the mechanical behavior of polydomain LCEs can be
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considered as a more general case that involves the mesogen director rotation [ 1, 24-26] during deformation,
compared to behaviors of monodomain LCEs without involving such mesogen rotation. Second, in practice,
a polydomain LCE is the immediate product of the first-step synthesis during the widely used 2-step
fabrication of LCEs in experiment [27], where the synthesized polydomain sample is subsequently stretched
and crosslinked in the second step to form the final monodomain sample.

In studying the important physical parameters and processes in an LCE, temperature is the only
parameter that critically affects both the nematic-isotropic phase transition of mesogens and the entropic
elasticity of the polymer network. However, despite recent progresses in the theoretical modeling [1, 24,
25, 28], numerical simulation [18], and experimentation [18, 29] of polydomain LCEs, thermomechanical
coupling in polydomain LCEs, such as the temperature-dependent mechanical response and the stretch-
dependent isotropic-nematic phase transition, is not well studied. This knowledge gap severely limits the
future development of LCEs with an aim of precisely controlling their behaviors under various temperatures
and mechanical loads. This lack of knowledge further hinders the goal of establishing a quantitative
relationship between material parameters and the final material property, to replace the current empirical
approach in the fabrication of LCEs that involves temperature change and stretching of polydomain samples.

Here we develop a theoretical model to study the thermomechanical coupling in polydomain LCEs.
The continuum model includes a quasi-convex elastic energy of the polymer network and a free energy of
mesogens (Section 2). Building on this model, we investigate working conditions where a polydomain LCE
is subjected to various prescribed planar stretches and temperatures. The quasi-convex elastic energy
enables a “mechanical phase diagram” that describes the macroscopic effective mechanical response of the
material, and the free energy of mesogens governs the first-order nematic-isotropic phase transition (Section
3). Evolution of the mechanical phase diagram and the order parameter with temperature is predicted and
discussed (Section 4). Unique temperature-dependent mechanical behaviors of the polydomain LCE that
have never been reported before are shown in their stress-stretch curves (Section 5).

2. Theoretical model
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Fig. 1. Theoretical framework of a polydomain LCE subjected to various prescribed planar stretches and
temperatures. Ty is the nematic-isotropic phase transition temperature of mesogens without any additional
coupling from mechanical stretch. (a) The high-temperature isotropic phase at 7> Ty; is chosen as the
reference state. (b) The microstructure of a polydomain LCE at a temperature T’ < Ty. (¢) In the current
state, the LCE is subjected to planar tensile stretches A, and A3, with the corresponding true stresses oz and
os. The principal stretches satisfy A3 > 4, > 4;. We will investigate various temperatures both below and
above Ty in the current state.

The general theoretical framework is illustrated in Fig. 1. Throughout this paper, we use Ty to
represent the nematic-isotropic phase transition temperature of mesogens without any additional coupling
from mechanical stretch. The high-temperature isotropic phase at 7> T; is chosen as the reference state
(Fig. 1a). At a temperature T < Ty, without any mechanical stretch, the LCE stays in the nematic phase with
polydomain, where different domains have different mesogen orientations (Fig. 1b). In the current state,
the LCE is subjected to planar tensile stretches 4> and A3, with the corresponding true stresses o» and o3
(Fig. 1¢). For mathematical convenience, the principal stretches satisfy A3 > A, > A1 [25, 28]. We will
investigate various temperatures both below and above Tj; in the current state.

Following DeSimone et al. [25, 26, 28], we adopt a quasi-convex elastic energy for the LCE

polymer network as

NTkT[ 3fm +[log(1+20)(1- Q) ]] Phase L, 4, > d"*
W, (4,0)= NT"Tj(Af + 25 +a; +[log(1+20)(1-0)’]) Phase S, a'? A2, >1, (1)
gj(xf +2a" 27" +[log(1+20)(1- 0)’]) Phase Sm, else
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where Q is the nematic order parameter (Q = 0 represents the isotropic phase without directional order of
mesogens, O = 1 represents perfect alignment of mesogens, and 0 < O < 1 represents the general nematic
phase), a = (1-Q)/(1+2Q), N is the number of polymer chains per unit volume, 7 is the temperature in the
unit of energy, and NkT is the shear modulus of the elastomer. The three phases “L”, “S”, and “Sm”
correspond to different macroscopic mechanical behaviors of the polydomain LCE, which will be discussed
in Section 3.1. Here we further modify the form of the free energy to make it consistent with the original
form derived by Bladon, Warner, and Terentjev for monodomain LCEs [23, 30], to ensure the accurate
terms containing Q in the model, which will affect the thermomechanical coupling to be investigated later.

The continuum model also includes the Maier-Saupe free energy that describes the long-range

dipolar interaction between mesogens in the LCE [31-33], expressed as

W.(0) = NnkT[gl (Q)Q—logZ(Q) _ZkLTQZ} , (2)
where
_ 1 1T 1 [3x exp(3x/2)
gx)= 2 2x+2x 2 jjmexp(yz)dy’ )
-1
2(0) = explg (Q)] @)

l+g(Q)1+20)°

N is the number of mesogens per unit volume, and J is the interaction parameter between mesogens in the
unit of energy.

The total free energy of the system is expressed as
W4, Q) =W, (4, Q)+ W (Q). ®)
By assuming incompressibility of the elastomer, we have 414,43 = 1. Using this to express the out-of-plane

stretch A1 = 1/4243, in thermodynamic equilibrium, we have

W (%:45.0)

20 =0, (6)
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where o» and o3 are the principal true stresses in the planar directions and o = 0. Substituting Egs. (1) and

(5) into (7), we obtain the specific forms of o» and o3 as

o,=0,=0 Phase L, 4, > a'"°
NkT
=T otk Phase S, a'*A7 4, >1
[/12 a ﬁ}) a Ak N
= NkT Phase S, a"* 4] 4, > 1 .
(/Vg)
o, =0, =ﬂ[ 2,0, — ! =1 Phase Sm, else
1-0 (LA)

Finally, we introduce the following dimensionless groups in Table 1. In particular, we choose the

dimensionless interaction parameter J =4.54 such that the nematic-isotropic transition takes place at

T=T/ T, =1 when no effect of mechanical stretch is considered [8, 33] (to be discussed in Section 3.2).

Table 1. Dimensionless groups in the model

Dimensionless group Expression Numerical value
Average interaction parameter between mesogens J=J/ kT, 4.54
Number of polymer chains per unit volume of the VNN 0.05
elastomer n
Temperature T=T/T " Varying
True stress 6, =0,/ NKT, Varying
Free energy W=w/ N kT, Varying

3. Uncoupled mechanical and thermal behaviors

3.1 Macroscopic effective mechanical responses

We first construct a “mechanical phase diagram” to describe the macroscopic effective mechanical

response of a polydomain LCE under different planar stretches, based on the area stretch ratio 1/ 4, = 2,4,
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and the largest principal stretch A; (Fig. 2a). To do so, we fix the temperature at 7= 0.8 and use Egs. (1)-
(6) to solve for O through finding the global minimum of the total free energy W (4,,Q) at different stretch
values (the distributed values of Q in the phase diagram will be discussed in Figs. 3&4). Afterwards, we
identify the external and internal boundaries of the phase diagram following the original work of DeSimone
et al. [25, 26, 28].

The phase diagram is bounded by two external boundaries, 1/4, 2\/2 and 1/4, <A},

corresponding to the uniaxial and equal-biaxial loading paths, respectively. This is a result of

incompressibility 4, 1,4, =1 and A3 > 4> > A, in the model setup. In addition, the phase diagram consists of

three “mechanical phases”, as discussed in the following.

In Phase L (liquid), the solid-state polydomain LCE behaves liquid-like—the material shows zero
stress despite finite principal stretches. This is a direct consequence of the infinite ground states of the
quasi-convex elastic energy, stemming from the coupling between mesogen rotation and polymer chain
stretching during deformation. This phenomenon of zero stress with finite stretches is called soft elasticity,
which has been widely reported in LCEs before [23, 24].

In Phase Sm (smectic) upon further biaxial stretches, the polydomain LCE behaves solid-like when
being stretched out of plane (along A;) but behaves liquid-like when being stretched in-plane. The free
energy in Phase Sm only depends on the out-of-plane stretch A, such that the LCE always shows identical
biaxial true stresses o» and o3 in this mechanical phase (Eq. (8)). This phenomenon has been recently
validated in experiment and analyzed in numerical simulation [18].

Further biaxial or uniaxial stretches also lead to Phase S (solid), where the LCE behaves like a
common rubber. In particular, under the uniaxial stretch state in Phase S, the LCE transforms to

monodomain, with all the mesogens aligned along the uniaxial stretch direction Az [23].
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Fig. 2. (a) “Mechanical phase diagram” describes the macroscopic effective mechanical response of a
polydomain LCE under different planar stretches. The dimensionless temperature is fixed as 7 = 0.8. L:
liquid. Sm: smectic. S: solid. (b) The normalized Maier-Saupe free energy as a function of order parameter

O at different dimensionless temperatures 7 = 0.6, 0.8, 0.9, 0.99. The free energy evolves from a single-
well structure at low temperature to a double-well structure at temperature close to 7 =1, indicating the first-
order nematic-isotropic phase transition. A small but positive energy barrier exists between the two wells,
which is hardly seen in the plot but is confirmed by the simulation. (c) The equilibrium order parameter Q
at different temperatures considering only the Maier-Saupe free energy. The first-order nematic-isotropic

phase transition is indicated by the discontinuity of the curve at 7 =1.

The boundary between Phase L and Phase Sm is described by 1/ 4, = a™¢ with a7 <2, <a™2,

and the boundary between Phase Sm and Phase S is described by 1/ 4, = amﬂ; [25, 26, 28], where a = (1-

0)/(1+20Q). As a result, the mechanical phase diagram is temperature-dependent, through the thermal-
induced change of the order parameter Q, as discussed next.
3.2 Nematic-isotropic phase transition

To illustrate the dominant effect of temperature on the order parameter Q and the corresponding
thermal-induced nematic-isotropic phase transition, we first only consider the Maier-Saupe free energy.
This represents a system of only liquid crystal mesogens without any polymer network. The energy
landscape as a function of Q at various temperatures shows a first-order phase transition (Fig. 2b). For
temperatures much below the nematic-isotropic transition temperature Ty (e.g., T = 0.6, 0.8, and 0.9), the

Maier-Saupe free energy has a single-well structure where the free energy is minimized at O between 0 and

1, representing the nematic phase. When the temperature approaches T, or T approaches 1, the free energy

transforms to a double-well structure with a second minimum at O = 0 in addition to the minimum at a
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finite O, together with a small but positive energy barrier between the two minima (hardly seen in the plot
but confirmed by the simulation), indicating a weak first-order nematic-isotropic phase transition. This is

also shown in Fig. 2¢ with the equilibrium order parameter Q as a function of temperature. The first-order

nematic-isotropic phase transition is indicated by the discontinuity of the curve at 7'=1.
4. Thermomechanical coupling

We next consider the general case of a system including both the quasi-convex elastic energy of
the polymer network and the Maier-Saupe free energy of the mesogen mixture. As will be shown, both
temperature and mechanical stretch will affect the mechanical phase boundaries and the corresponding
stress-stretch responses.
4.1. Mechanical phase boundaries at temperatures below 7y;

Fig. 3 illustrates the evolution of mechanical phase boundaries at temperatures below Ty, as well

as the color map of the equilibrium Q at different stretches. As temperature increases (e.g., 7 = 0.6, 0.8,
and 0.99, Fig. 3a-c), the areas of Phase L and Phase Sm decrease while the area of Phase S increases,
indicating a more pronounced common rubber-like behavior of the LCE. Furthermore, under the same
stretch, the order parameter Q decreases with increasing temperature, consistent with the trend towards the
nematic-isotropic transition shown in Fig. 2b&c. The near-uniform color distribution of Q at different
temperatures indicates its weak dependence on stretch at temperatures below 7y;. This confirms a long-time
adopted assumption in the theory and simulation of LCEs, where the order parameter Q or the parameter a
=(1-Q)/(1+2Q) is almost always considered as a constant independent of deformation at a fixed temperature
below Ty [18, 24, 25, 28].

To further show the effect of mechanical stretch on Q and phase boundaries, we also plot phase
boundaries using the uncoupled equilibrium Q when considering only the Maier-Saupe free energy (Fig.
2¢). The phase boundaries calculated using both free energies and using only the Maier-Saupe free energy
are compared in Fig. 3a-c right (solid and dashed lines, respectively). Indeed, a negligible difference is

found, and the difference becomes larger with increasing temperature. By considering thermomechanical
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coupling (i.e., including both free energies), the phase boundary between Phases Sm and S shifts towards a

higher A;. Overall, at temperatures below Ty;, the thermal effect dominates the equilibrium order parameter
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Fig. 3. Mechanical phase diagrams at temperatures below 7 with color maps of the equilibrium order
parameter Q. (a) T =0.6, (b) T=0.8, and (¢) T = 0.99. The right column shows the phase boundaries only.

Solid lines are calculated using both free energies, and dashed lines are calculated using only the Maier-
Saupe free energy.
4.2. Mechanical phase boundaries at temperatures above Ty;

The effect of mechanical stretch on Q is much more pronounced at temperatures above T, Without
considering thermomechanical coupling by calculating O using only the Maier-Saupe free energy, we have
QO =0 and a = 1. In this case, all the phase boundaries degenerate to a single point of 1 = L, = A3 =1,
leaving only Phase S in the phase diagram. This represents a common rubber-like mechanical behavior. By
contrast, with thermomechanical coupling by calculating Q using both free energies, an additional finite
area of Phase Sm emerges even at temperatures above Ty; (Fig. 4). The area of Phase Sm decreases with
increasing temperature. No Phase L is found at any temperature above 7.

This emergence of Phase Sm at temperature above T is essentially due to the stretch effect on the

equilibrium order parameter O and the nematic-isotropic transition. As shown in Fig. 4, increasing the
uniaxial stretch A3 and area stretch 1/4; significantly increases the equilibrium Q from nearly 0 to about
0.55. This large stretch-dependence of Q at 7 >1, which dramatically contrasts with the cases at 7' <1,
indicates a possible stretch-induced transition of mesogens from the isotropic phase back to the nematic
phase. Effectively, the non-zero uniaxial stretch A; or area stretch 1/4; increase the nematic-isotropic
transition temperature. This behavior is consistent with the previously reported stretch effect on the
nematic-isotropic phase transition under the uniaxial mechanical load [7-9, 34]. Finally, when the
temperature is only slightly higher than Ty (e.g., 7 =1.02 , Fig. 4a), the large stretch-dependence of O leads

to a “nose”-shaped phase boundary between Phases Sm and S.
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Fig. 4. Mechanical phase diagrams at temperatures above 7 with color maps of the equilibrium order
parameter Q. (a) T =1.02, (b) T=1.05, and (c) 7= 1.1.

To examine the evolution of phase boundaries more carefully at temperatures slightly higher than
T, we plot phase boundaries at 7 =1.01,1.02, 1.03, and 1.04 in Fig. 5. As the temperature increases, the
phase boundary between Phases Sm and S transforms from a deep “nose” shape to a smooth line, with the
area of Phase Sm decreasing. We conclude that the emergence of this “nose”-shaped phase boundary results
from the three-way coupling between the temperature dependence of O, the stretch dependence of O, and
the phase boundary governed by Q. To the best of our knowledge, this phenomenon has never been reported
before. Our preliminary experiment of biaxial test at a fixed temperature seems to have qualitatively
validated this theoretical prediction, and we are currently conducting a systematic experimental study on

this unusual phenomenon.
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Fig. 5. Mechanical phase diagrams at temperatures slightly higher than Ty (a) T = 1.01, (b) T = 1.02, (c)
T =1.03,and (d) T = 1.04.

5. Stresses-stretch responses

The evolution of mechanical phase boundaries due to thermomechanical coupling has a profound
effect on the stress-stretch behavior of the polydomain LCE. To show this, we investigate a specific loading
path defined by the biaxial stretches A, and A3, as illustrated by the solid black line in Fig. 6a. At a fixed

temperature, a sheet of LCE is initially under equal-biaxial stretch up to A, = A3 = 1.05. Afterwards, we fix

J2 = 1.05 and only increase A3. We study three distinct scenarios with temperatures of 7 = 0.9, 1.02, and
1.05. The phase boundaries between Phases Sm and S are plotted as the dashed lines in Fig. 6a. We calculate

the planar true stresses &, and &, using Eq. (8) and plot them as functions of 4; in Fig. 6b.
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Fig. 6. (a) A specific loading path is indicated by the solid black line. A sheet of LCE is initially under
equal-biaxial stretch up to A, = A3 = 1.05. Afterwards, we fix 4> = 1.05 and only increase As3. The phase
boundaries between Phases Sm and S at different temperatures are plotted as colored dashed lines, together
with the two external boundaries defined by the uniaxial and equal-biaxial stretch states (black dashed lines,
bottom and top). (b) The true stresses &, and &, as functions of A, under the specific loading path in (a)

at different temperatures.

In the first scenario at 7 = 0.9, the loading path crosses all the three phases one by one through L,
Sm, and S. Phase L exists in this case since the LCE is in the nematic phase (7' < 1). Both 6, and &, are
zero in Phase L, showing the soft elastic behavior [23]. Entering Phase Sm, &, and &, increase with A;
while being always identical to each other, as illustrated by Eq. (8) and discussed in Section 3.1. Note that
this is a non-equal-biaxial stretch state with A, = 1.05 fixed and only A3 increased. In other words, in Phase

Sm, the polydomain LCE can have nonzero planar shear strain (since A # A3) but can never have any planar

A

shear stress (since 6, = &, always holds). Finally, in Phase S, 6, and &, deviate from each other and
6, becomes larger, since the LCE sheet is stretched in the A3 direction with A, fixed.

In the second scenario at T = 1.02, there is no Phase L. The loading path starts with Phase S,

transverses through Phase Sm, and re-enters Phase S again. Recall that in general, 6, = &,

always holds
in Phase Sm, and &, > &, holds in Phase S due to the specific loading path prescribed here. As a result,

after the initial equal-biaxial stretch, &, first increases to be larger than &, in Phase S, drops back to be
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identical to &, in Phase Sm, and increases to be larger than &, again due to the reentrant transformation
from Phase Sm to Phase S in the material.

In the third scenario at T = 1.05, the loading path is almost entirely in Phase S, and the material

behaves like a common rubber with &, > &,.

We further note that while the stress-stretch responses of polydomain LCEs in the first and third
scenarios have been well-understood based on previous studies, the second scenario that involves the
reentrant transformation due to the “nose”-shaped phase boundary has never been reported before. This
again shows the pronounced effect of mechanical stretch on the equilibrium @ in thermomechanical
coupling at temperatures slightly above T,. Further experimental investigation of this phenomenon is
currently under study.

6. Conclusion

In this paper, we have constructed a theoretical model to investigate thermomechanical coupling in
polydomain LCEs subjected to various planar stretches and temperatures. The thermal-induced change of
order parameter and the corresponding nematic-isotropic transition in the LCE greatly affect the mechanical
phase boundaries as well as the macroscopic stress-stretch behaviors. On the other hand, mechanical stretch
has a negligible effect on the equilibrium order parameter and mechanical phase boundaries at temperatures
below the nematic-isotropic transition temperature 7y, but has a significant effect at temperatures above Th;.
When the temperature is slightly higher than 7}, thermomechanical coupling leads to the existence of Phase
Sm as well as a unique “nose”-shaped phase boundary between Phases Sm and S. The corresponding stress-
stretch response shows a non-monotonic behavior at certain loading paths of biaxial stretches. The planar
true stresses are always zero in Phase L regardless of the stretch, and are always identical in Phase Sm, only
depending on the out-of-plane stretch. The material behaves like a common elastic rubber in Phase S. We
hope these theoretical findings can motivate further experiment and model developments on
thermomechanical coupling in LCEs, as well as provide guidelines for future designs of complex actuation

in LCE-based robots and structures. Effects of non-ideal polymer chains (additional coupling between
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polymer chains and mesogen directions at the state when the LCE is fabricated) and viscoelasticity on the

behaviors reported in this paper deserve further systematic investigation.
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