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Abstract 
Liquid crystal elastomers (LCEs) are made of liquid crystal molecules linked into rubber-like polymer 
networks. An LCE exhibits both the thermotropic property of liquid crystals and large deformation of 
elastomers. It can be monodomain or polydomain in the nematic phase and transforms to an isotropic phase 
at elevated temperature. These features have enabled various new applications of LCEs in robotics and 
other fields. However, despite substantial research and development in recent years, thermomechanical 
coupling in polydomain LCEs remains poorly studied, such as their temperature-dependent mechanical 
response and stretch-influenced isotropic-nematic phase transition. This knowledge gap severely limits the 
fundamental understanding of the structure-property relationship, as well as future developments of LCEs 
with precisely controlled material behaviors. Here we construct a theoretical model to investigate 
thermomechanical coupling in polydomain LCEs. The model includes a quasi-convex elastic energy of the 
polymer network and a free energy of mesogens. We study working conditions where a polydomain LCE 
is subjected to various prescribed planar stretches and temperatures. The quasi-convex elastic energy 
enables a “mechanical phase diagram” that describes the macroscopic effective mechanical response of the 
material, and the free energy of mesogens governs their first-order nematic-isotropic phase transition. 
Evolution of the mechanical phase diagram and the order parameter with temperature is predicted and 
discussed. Unique temperature-dependent mechanical behaviors of the polydomain LCE that have never 
been reported before are shown in their stress-stretch curves. These results are hoped to motivate future 
fundamental studies and new applications of thermomechanical LCEs. 
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1. Introduction 

 Liquid crystal elastomers (LCEs) are soft active materials that combine the orientational order of 

liquid crystal molecules (mesogens) and the entropic elasticity of rubber-like polymer networks. This 

inherent coupling at the molecular level provides LCEs with intriguing mechanical responses such as soft 

elasticity [1], high energy dissipation [2], and programmable anisotropy [3], as well as stimuli-responsive 

large deformation induced by thermal [3, 4], photothermal [5, 6], and photochemical [7-9] processes. As a 

result, LCEs have enabled exciting new applications in mechanics, materials, and robotics. Examples 

include thermomechanical actuators [10, 11], light motors [12], shape morphing structures [13, 14], energy 

dissipaters [2, 15], and biomedical devices [16]. Accompanying these new applications are the rapid 

development of theories for various mechanical responses of LCEs under different loading conditions 

and/or stimuli, including monotonic load [1], biaxial load [17, 18], bending [19, 20], heating [21], and light 

illumination [7, 8]. 

 In a typical thermotropic main-chain LCE, LC mesogens are linked in the linear polymer chains of 

a stretchable amorphous polymer network. The rod-like mesogens form a nematic phase with a long-range 

orientational order at low temperature (e.g., room temperature) and transform to an isotropic phase with no 

orientational order at temperature above a nematic-isotropic transition temperature (e.g., around 60 ℃ [22]). 

The low-temperature nematic phase can be either monodomain with a uniform mesogen orientation or 

polydomain with many coexisting domains of different mesogen orientations. These different phases and 

domain formations significantly affect the mechanical (stress-stretch) responses of their corresponding 

LCEs [23]. In brief, an isotropic LCE at high temperature has isotropic, common rubber-like mechanical 

responses, a nematic monodomain LCE has anisotropic mechanical responses due to the uniform mesogen 

order, and a nematic polydomain LCE has macroscopically isotropic mechanical responses due to the co-

existing domains at the microscale. 

 This paper focuses on elastic responses of nematic polydomain LCEs. Understanding the 

fundamental mechanics of polydomain LCEs is of great importance to their future research and 

development for two reasons. First, fundamentally, the mechanical behavior of polydomain LCEs can be 
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considered as a more general case that involves the mesogen director rotation [1, 24-26] during deformation, 

compared to behaviors of monodomain LCEs without involving such mesogen rotation. Second, in practice, 

a polydomain LCE is the immediate product of the first-step synthesis during the widely used 2-step 

fabrication of LCEs in experiment [27], where the synthesized polydomain sample is subsequently stretched 

and crosslinked in the second step to form the final monodomain sample.  

 In studying the important physical parameters and processes in an LCE, temperature is the only 

parameter that critically affects both the nematic-isotropic phase transition of mesogens and the entropic 

elasticity of the polymer network. However, despite recent progresses in the theoretical modeling [1, 24, 

25, 28], numerical simulation [18], and experimentation [18, 29] of polydomain LCEs, thermomechanical 

coupling in polydomain LCEs, such as the temperature-dependent mechanical response and the stretch-

dependent isotropic-nematic phase transition, is not well studied. This knowledge gap severely limits the 

future development of LCEs with an aim of precisely controlling their behaviors under various temperatures 

and mechanical loads. This lack of knowledge further hinders the goal of establishing a quantitative 

relationship between material parameters and the final material property, to replace the current empirical 

approach in the fabrication of LCEs that involves temperature change and stretching of polydomain samples.  

 Here we develop a theoretical model to study the thermomechanical coupling in polydomain LCEs. 

The continuum model includes a quasi-convex elastic energy of the polymer network and a free energy of 

mesogens (Section 2). Building on this model, we investigate working conditions where a polydomain LCE 

is subjected to various prescribed planar stretches and temperatures. The quasi-convex elastic energy 

enables a “mechanical phase diagram” that describes the macroscopic effective mechanical response of the 

material, and the free energy of mesogens governs the first-order nematic-isotropic phase transition (Section 

3). Evolution of the mechanical phase diagram and the order parameter with temperature is predicted and 

discussed (Section 4). Unique temperature-dependent mechanical behaviors of the polydomain LCE that 

have never been reported before are shown in their stress-stretch curves (Section 5). 

2. Theoretical model 
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Fig. 1. Theoretical framework of a polydomain LCE subjected to various prescribed planar stretches and 
temperatures. Tni is the nematic-isotropic phase transition temperature of mesogens without any additional 
coupling from mechanical stretch. (a) The high-temperature isotropic phase at T > Tni is chosen as the 
reference state. (b) The microstructure of a polydomain LCE at a temperature T < Tni. (c) In the current 
state, the LCE is subjected to planar tensile stretches λ2 and λ3, with the corresponding true stresses σ2 and 
σ3. The principal stretches satisfy λ3 ≥ λ2 ≥ λ1. We will investigate various temperatures both below and 
above Tni in the current state. 
 
 The general theoretical framework is illustrated in Fig. 1. Throughout this paper, we use Tni to 

represent the nematic-isotropic phase transition temperature of mesogens without any additional coupling 

from mechanical stretch. The high-temperature isotropic phase at T > Tni is chosen as the reference state 

(Fig. 1a). At a temperature T < Tni without any mechanical stretch, the LCE stays in the nematic phase with 

polydomain, where different domains have different mesogen orientations (Fig. 1b). In the current state, 

the LCE is subjected to planar tensile stretches λ2 and λ3, with the corresponding true stresses σ2 and σ3 

(Fig. 1c). For mathematical convenience, the principal stretches satisfy λ3 ≥ λ2 ≥ λ1 [25, 28]. We will 

investigate various temperatures both below and above Tni in the current state.  

 Following DeSimone et al. [25, 26, 28], we adopt a quasi-convex elastic energy for the LCE 

polymer network as 
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where Q is the nematic order parameter (Q = 0 represents the isotropic phase without directional order of 

mesogens, Q = 1 represents perfect alignment of mesogens, and 0 < Q < 1 represents the general nematic 

phase), a = (1-Q)/(1+2Q), N is the number of polymer chains per unit volume, kT is the temperature in the 

unit of energy, and NkT is the shear modulus of the elastomer. The three phases “L”, “S”, and “Sm” 

correspond to different macroscopic mechanical behaviors of the polydomain LCE, which will be discussed 

in Section 3.1. Here we further modify the form of the free energy to make it consistent with the original 

form derived by Bladon, Warner, and Terentjev for monodomain LCEs [23, 30], to ensure the accurate 

terms containing Q in the model, which will affect the thermomechanical coupling to be investigated later. 

 The continuum model also includes the Maier-Saupe free energy that describes the long-range 

dipolar interaction between mesogens in the LCE [31-33], expressed as 
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Nn is the number of mesogens per unit volume, and J is the interaction parameter between mesogens in the 

unit of energy. 

 The total free energy of the system is expressed as 

  qc lc( , ) ( , ) ( )i iW Q W Q W Qλ λ= + . (5) 

By assuming incompressibility of the elastomer, we have λ1λ2λ3 = 1. Using this to express the out-of-plane 

stretch λ1 = 1/λ2λ3, in thermodynamic equilibrium, we have 
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where σ2 and σ3 are the principal true stresses in the planar directions and σ1 = 0. Substituting Eqs. (1) and 

(5) into (7), we obtain the specific forms of σ2 and σ3 as 
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 Finally, we introduce the following dimensionless groups in Table 1. In particular, we choose the 

dimensionless interaction parameter ˆ 4.54J =  such that the nematic-isotropic transition takes place at 

ni
ˆ / 1T T T= =  when no effect of mechanical stretch is considered [8, 33] (to be discussed in Section 3.2). 

Table 1. Dimensionless groups in the model 
Dimensionless group Expression Numerical value 

Average interaction parameter between mesogens ni
ˆ /J J kT=  4.54 

Number of polymer chains per unit volume of the 
elastomer n

ˆ /N N N=  0.05 

Temperature ni
ˆ /T T T=  Varying 

True stress niˆ /i i NkTσ σ=  Varying 

Free energy n ni
ˆ /W W N kT=  Varying 

 

3. Uncoupled mechanical and thermal behaviors 

3.1 Macroscopic effective mechanical responses 

 We first construct a “mechanical phase diagram” to describe the macroscopic effective mechanical 

response of a polydomain LCE under different planar stretches, based on the area stretch ratio 1 2 31 / λ λ λ=  
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and the largest principal stretch λ3 (Fig. 2a). To do so, we fix the temperature at T̂ = 0.8 and use Eqs. (1)-

(6) to solve for Q through finding the global minimum of the total free energy ( , )iW Qλ  at different stretch 

values (the distributed values of Q in the phase diagram will be discussed in Figs. 3&4). Afterwards, we 

identify the external and internal boundaries of the phase diagram following the original work of DeSimone 

et al. [25, 26, 28]. 

 The phase diagram is bounded by two external boundaries, 1 31 / λ λ≥  and 2
1 31 / λ λ≤ , 

corresponding to the uniaxial and equal-biaxial loading paths, respectively. This is a result of 

incompressibility 1 2 3 1λ λ λ =  and λ3 ≥ λ2 ≥ λ1 in the model setup. In addition, the phase diagram consists of 

three “mechanical phases”, as discussed in the following. 

 In Phase L (liquid), the solid-state polydomain LCE behaves liquid-like—the material shows zero 

stress despite finite principal stretches. This is a direct consequence of the infinite ground states of the 

quasi-convex elastic energy, stemming from the coupling between mesogen rotation and polymer chain 

stretching during deformation. This phenomenon of zero stress with finite stretches is called soft elasticity, 

which has been widely reported in LCEs before [23, 24].  

 In Phase Sm (smectic) upon further biaxial stretches, the polydomain LCE behaves solid-like when 

being stretched out of plane (along λ1) but behaves liquid-like when being stretched in-plane. The free 

energy in Phase Sm only depends on the out-of-plane stretch λ1, such that the LCE always shows identical 

biaxial true stresses σ2 and σ3 in this mechanical phase (Eq. (8)). This phenomenon has been recently 

validated in experiment and analyzed in numerical simulation [18]. 

 Further biaxial or uniaxial stretches also lead to Phase S (solid), where the LCE behaves like a 

common rubber. In particular, under the uniaxial stretch state in Phase S, the LCE transforms to 

monodomain, with all the mesogens aligned along the uniaxial stretch direction λ3 [23]. 
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Fig. 2. (a) “Mechanical phase diagram” describes the macroscopic effective mechanical response of a 
polydomain LCE under different planar stretches. The dimensionless temperature is fixed as T̂  = 0.8. L: 
liquid. Sm: smectic. S: solid.  (b) The normalized Maier-Saupe free energy as a function of order parameter 
Q at different dimensionless temperatures T̂ = 0.6, 0.8, 0.9, 0.99. The free energy evolves from a single-
well structure at low temperature to a double-well structure at temperature close to ˆ 1T = , indicating the first-
order nematic-isotropic phase transition. A small but positive energy barrier exists between the two wells, 
which is hardly seen in the plot but is confirmed by the simulation. (c) The equilibrium order parameter Q 
at different temperatures considering only the Maier-Saupe free energy. The first-order nematic-isotropic 
phase transition is indicated by the discontinuity of the curve at ˆ 1T = . 
 
 The boundary between Phase L and Phase Sm is described by 1/6

11 / aλ −=  with 1/3 1/12
3a aλ− −≤ ≤ , 

and the boundary between Phase Sm and Phase S is described by 1/2 2
1 31 / aλ λ=  [25, 26, 28], where a = (1-

Q)/(1+2Q). As a result, the mechanical phase diagram is temperature-dependent, through the thermal-

induced change of the order parameter Q, as discussed next.  

3.2 Nematic-isotropic phase transition 

 To illustrate the dominant effect of temperature on the order parameter Q and the corresponding 

thermal-induced nematic-isotropic phase transition, we first only consider the Maier-Saupe free energy. 

This represents a system of only liquid crystal mesogens without any polymer network. The energy 

landscape as a function of Q at various temperatures shows a first-order phase transition (Fig. 2b). For 

temperatures much below the nematic-isotropic transition temperature Tni (e.g., T̂ = 0.6, 0.8, and 0.9), the 

Maier-Saupe free energy has a single-well structure where the free energy is minimized at Q between 0 and 

1, representing the nematic phase. When the temperature approaches Tni, or T̂  approaches 1, the free energy 

transforms to a double-well structure with a second minimum at Q = 0 in addition to the minimum at a 
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finite Q, together with a small but positive energy barrier between the two minima (hardly seen in the plot 

but confirmed by the simulation), indicating a weak first-order nematic-isotropic phase transition. This is 

also shown in Fig. 2c with the equilibrium order parameter Q as a function of temperature. The first-order 

nematic-isotropic phase transition is indicated by the discontinuity of the curve at ˆ 1T = . 

4. Thermomechanical coupling 

 We next consider the general case of a system including both the quasi-convex elastic energy of 

the polymer network and the Maier-Saupe free energy of the mesogen mixture. As will be shown, both 

temperature and mechanical stretch will affect the mechanical phase boundaries and the corresponding 

stress-stretch responses. 

4.1. Mechanical phase boundaries at temperatures below Tni 

 Fig. 3 illustrates the evolution of mechanical phase boundaries at temperatures below Tni, as well 

as the color map of the equilibrium Q at different stretches. As temperature increases (e.g., T̂ = 0.6, 0.8, 

and 0.99, Fig. 3a-c), the areas of Phase L and Phase Sm decrease while the area of Phase S increases, 

indicating a more pronounced common rubber-like behavior of the LCE. Furthermore, under the same 

stretch, the order parameter Q decreases with increasing temperature, consistent with the trend towards the 

nematic-isotropic transition shown in Fig. 2b&c. The near-uniform color distribution of Q at different 

temperatures indicates its weak dependence on stretch at temperatures below Tni. This confirms a long-time 

adopted assumption in the theory and simulation of LCEs, where the order parameter Q or the parameter a 

= (1-Q)/(1+2Q) is almost always considered as a constant independent of deformation at a fixed temperature 

below Tni [18, 24, 25, 28]. 

 To further show the effect of mechanical stretch on Q and phase boundaries, we also plot phase 

boundaries using the uncoupled equilibrium Q when considering only the Maier-Saupe free energy (Fig. 

2c). The phase boundaries calculated using both free energies and using only the Maier-Saupe free energy 

are compared in Fig. 3a-c right (solid and dashed lines, respectively). Indeed, a negligible difference is 

found, and the difference becomes larger with increasing temperature. By considering thermomechanical 
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coupling (i.e., including both free energies), the phase boundary between Phases Sm and S shifts towards a 

higher λ3. Overall, at temperatures below Tni, the thermal effect dominates the equilibrium order parameter 

Q. 
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Fig. 3. Mechanical phase diagrams at temperatures below Tni with color maps of the equilibrium order 
parameter Q. (a) T̂ = 0.6, (b) T̂ = 0.8, and (c) T̂ = 0.99. The right column shows the phase boundaries only. 
Solid lines are calculated using both free energies, and dashed lines are calculated using only the Maier-
Saupe free energy. 
 
4.2. Mechanical phase boundaries at temperatures above Tni 

  The effect of mechanical stretch on Q is much more pronounced at temperatures above Tni. Without 

considering thermomechanical coupling by calculating Q using only the Maier-Saupe free energy, we have 

Q = 0 and a = 1. In this case, all the phase boundaries degenerate to a single point of λ1 = λ2 = λ3 = 1, 

leaving only Phase S in the phase diagram. This represents a common rubber-like mechanical behavior. By 

contrast, with thermomechanical coupling by calculating Q using both free energies, an additional finite 

area of Phase Sm emerges even at temperatures above Tni (Fig. 4). The area of Phase Sm decreases with 

increasing temperature. No Phase L is found at any temperature above Tni. 

 This emergence of Phase Sm at temperature above Tni is essentially due to the stretch effect on the 

equilibrium order parameter Q and the nematic-isotropic transition. As shown in Fig. 4, increasing the 

uniaxial stretch λ3 and area stretch 1/λ1 significantly increases the equilibrium Q from nearly 0 to about 

0.55. This large stretch-dependence of Q at ˆ 1T > , which dramatically contrasts with the cases at ˆ 1T < , 

indicates a possible stretch-induced transition of mesogens from the isotropic phase back to the nematic 

phase. Effectively, the non-zero uniaxial stretch λ3 or area stretch 1/λ1 increase the nematic-isotropic 

transition temperature. This behavior is consistent with the previously reported stretch effect on the 

nematic-isotropic phase transition under the uniaxial mechanical load [7-9, 34]. Finally, when the 

temperature is only slightly higher than Tni (e.g., ˆ 1.02T = , Fig. 4a), the large stretch-dependence of Q leads 

to a “nose”-shaped phase boundary between Phases Sm and S. 
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Fig. 4. Mechanical phase diagrams at temperatures above Tni with color maps of the equilibrium order 
parameter Q. (a) T̂ = 1.02, (b) T̂ = 1.05, and (c) T̂ = 1.1. 
 
 To examine the evolution of phase boundaries more carefully at temperatures slightly higher than 

Tni, we plot phase boundaries at T̂  = 1.01, 1.02, 1.03, and 1.04 in Fig. 5. As the temperature increases, the 

phase boundary between Phases Sm and S transforms from a deep “nose” shape to a smooth line, with the 

area of Phase Sm decreasing. We conclude that the emergence of this “nose”-shaped phase boundary results 

from the three-way coupling between the temperature dependence of Q, the stretch dependence of Q, and 

the phase boundary governed by Q. To the best of our knowledge, this phenomenon has never been reported 

before. Our preliminary experiment of biaxial test at a fixed temperature seems to have qualitatively 

validated this theoretical prediction, and we are currently conducting a systematic experimental study on 

this unusual phenomenon. 
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Fig. 5. Mechanical phase diagrams at temperatures slightly higher than Tni. (a) T̂  = 1.01, (b) T̂  = 1.02, (c) 
T̂  = 1.03, and (d) T̂  = 1.04. 
 
5. Stresses-stretch responses 

 The evolution of mechanical phase boundaries due to thermomechanical coupling has a profound 

effect on the stress-stretch behavior of the polydomain LCE. To show this, we investigate a specific loading 

path defined by the biaxial stretches λ2 and λ3, as illustrated by the solid black line in Fig. 6a. At a fixed 

temperature, a sheet of LCE is initially under equal-biaxial stretch up to λ2 = λ3 = 1.05. Afterwards, we fix 

λ2 = 1.05 and only increase λ3. We study three distinct scenarios with temperatures of T̂ = 0.9, 1.02, and 

1.05. The phase boundaries between Phases Sm and S are plotted as the dashed lines in Fig. 6a. We calculate 

the planar true stresses 2σ̂  and 3σ̂  using Eq. (8) and plot them as functions of λ3 in Fig. 6b. 
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Fig. 6. (a) A specific loading path is indicated by the solid black line. A sheet of LCE is initially under 
equal-biaxial stretch up to λ2 = λ3 = 1.05. Afterwards, we fix λ2 = 1.05 and only increase λ3. The phase 
boundaries between Phases Sm and S at different temperatures are plotted as colored dashed lines, together 
with the two external boundaries defined by the uniaxial and equal-biaxial stretch states (black dashed lines, 
bottom and top). (b) The true stresses 2σ̂  and 3σ̂  as functions of λ3, under the specific loading path in (a) 
at different temperatures. 
 

 In the first scenario at T̂  = 0.9, the loading path crosses all the three phases one by one through L, 

Sm, and S. Phase L exists in this case since the LCE is in the nematic phase ( T̂  < 1). Both 2σ̂  and 3σ̂  are 

zero in Phase L, showing the soft elastic behavior [23]. Entering Phase Sm, 2σ̂  and 3σ̂  increase with λ3 

while being always identical to each other, as illustrated by Eq. (8) and discussed in Section 3.1. Note that 

this is a non-equal-biaxial stretch state with λ2 = 1.05 fixed and only λ3 increased. In other words, in Phase 

Sm, the polydomain LCE can have nonzero planar shear strain (since λ2 ≠ λ3) but can never have any planar 

shear stress (since 2σ̂  = 3σ̂  always holds). Finally, in Phase S, 2σ̂  and 3σ̂  deviate from each other and 

3σ̂  becomes larger, since the LCE sheet is stretched in the λ3 direction with λ2 fixed. 

 In the second scenario at T̂  = 1.02, there is no Phase L. The loading path starts with Phase S, 

transverses through Phase Sm, and re-enters Phase S again. Recall that in general, 2σ̂  = 3σ̂  always holds 

in Phase Sm, and 3σ̂  > 2σ̂  holds in Phase S due to the specific loading path prescribed here. As a result, 

after the initial equal-biaxial stretch, 3σ̂  first increases to be larger than 2σ̂  in Phase S, drops back to be 
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identical to 2σ̂  in Phase Sm, and increases to be larger than 2σ̂  again due to the reentrant transformation 

from Phase Sm to Phase S in the material.  

 In the third scenario at T̂  = 1.05, the loading path is almost entirely in Phase S, and the material 

behaves like a common rubber with 3σ̂  > 2σ̂ . 

 We further note that while the stress-stretch responses of polydomain LCEs in the first and third 

scenarios have been well-understood based on previous studies, the second scenario that involves the 

reentrant transformation due to the “nose”-shaped phase boundary has never been reported before. This 

again shows the pronounced effect of mechanical stretch on the equilibrium Q in thermomechanical 

coupling at temperatures slightly above Tni. Further experimental investigation of this phenomenon is 

currently under study. 

6. Conclusion 

 In this paper, we have constructed a theoretical model to investigate thermomechanical coupling in 

polydomain LCEs subjected to various planar stretches and temperatures. The thermal-induced change of 

order parameter and the corresponding nematic-isotropic transition in the LCE greatly affect the mechanical 

phase boundaries as well as the macroscopic stress-stretch behaviors. On the other hand, mechanical stretch 

has a negligible effect on the equilibrium order parameter and mechanical phase boundaries at temperatures 

below the nematic-isotropic transition temperature Tni, but has a significant effect at temperatures above Tni. 

When the temperature is slightly higher than Tni, thermomechanical coupling leads to the existence of Phase 

Sm as well as a unique “nose”-shaped phase boundary between Phases Sm and S. The corresponding stress-

stretch response shows a non-monotonic behavior at certain loading paths of biaxial stretches. The planar 

true stresses are always zero in Phase L regardless of the stretch, and are always identical in Phase Sm, only 

depending on the out-of-plane stretch. The material behaves like a common elastic rubber in Phase S. We 

hope these theoretical findings can motivate further experiment and model developments on 

thermomechanical coupling in LCEs, as well as provide guidelines for future designs of complex actuation 

in LCE-based robots and structures. Effects of non-ideal polymer chains (additional coupling between 
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polymer chains and mesogen directions at the state when the LCE is fabricated) and viscoelasticity on the 

behaviors reported in this paper deserve further systematic investigation. 
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