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Facial Expression Modeling and Synthesis for Patient Simulator
Systems: Past, Present, and Future

MARYAM POUREBADI and LAUREL D. RIEK, Computer Science and Engineering, UC San Diego

Clinical educators have used robotic and virtual patient simulator systems (RPS) for dozens of years, to help clinical learners
(CL) gain key skills to help avoid future patient harm. These systems can simulate human physiological traits; however, they
have static faces and lack the realistic depiction of facial cues, which limits CL engagement and immersion. In this article,
we provide a detailed review of existing systems in use, as well as describe the possibilities for new technologies from the
human–robot interaction and intelligent virtual agents communities to push forward the state of the art. We also discuss our
own work in this area, including new approaches for facial recognition and synthesis on RPS systems, including the ability
to realistically display patient facial cues such as pain and stroke. Finally, we discuss future research directions for the !eld.

CCS Concepts: • Computer systems organization → Robotics; • Applied computing → Health informatics; Inter-
active learning environments; • Computing methodologies→ Simulation by animation; Appearance and texture
representations;

Additional Key Words and Phrases: Human robot interaction, healthcare robotics, Clinical simulators, health-care training
and education, facial expression synthesis, facial modeling, neurological impairment, social robotics

ACM Reference format:
Maryam Pourebadi and Laurel D. Riek. 2022. Facial Expression Modeling and Synthesis for Patient Simulator Systems: Past,
Present, and Future. ACM Trans. Comput. Healthcare 3, 2, Article 23 (February 2022), 32 pages.
https://doi.org/10.1145/3483598

1 INTRODUCTION
For more than !ve decades, researchers in the !eld of Human–Robot Interaction (HRI) have been building
and studying how robots can collaborate with humans, support them with their work, and assist them in their
daily lives [92, 101, 160]. For example, autonomous mobile robots work side by side with skilled human workers
in factories and retail sectors [165]. Social robots inform and guide passengers in large and busy airports [187]. In
both clinical and home settings, robots have been used to assist healthcare workers, clean rooms, ferry supplies,
and support people with disabilities and older adults in rehabilitation and task assistance [160].

There is emerging interest in using robotics technology to address key challenges in healthcare, particularly
those related to the quality, safety, and cost of care delivery. However, there are several key contextual challenges
to realizing this vision. One big concern is the rapidly increasing costs of healthcare. For example, in the United
States, healthcare is expensive across a range of services including administrative costs, pharmaceutical spend-
ing, individual services, and the use of high-income trained healthcare workers [12]. Another challenge is the
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Fig. 1. A typical patient simulation center setup. Clinical learners treat a non-expressive robotic patient simulator. Its phys-
iology is controlled by a clinical educator.

dynamic nature of clinical environments with occupational hazards that put healthcare workers at risk of injury
and disability [93, 182, 183]. Additionally, the global shortfall in professional healthcare workers with su"cient
clinical education and skills is challenging [203].

Providing healthcare systems with robots may help address these gaps. For example, robots can support the
independence of people with disabilities by enabling transitions to home-based care. Robots can also help clini-
cians and caregivers with care tasks including physical, cognitive, and manipulation tasks [20, 88, 95, 160, 198],
as well as healthcare worker education (see Figure 1).

Robots can potentially enable healthcare workers to spend more time with patients and less time engaging in
“non-value added” physical tasks, and reduce the errors caused by the overburden of these tasks [88, 182]. These
physical tasks include transportation, inventory, and spending time searching and waiting [160]. For example,
Tug robots [14] are medical transportation robots that autonomously move through hospitals, delivering supplies,
meals, and medication to patients.

Moreover, robots can assist in clinical learning. For example, humanoid patient simulators can mimic human
function (physiology) or anatomy (biology). Some of these simulators are engineered systems that model infor-
mation integration and #ow to help clinical learners study human physiology. Others present models of human
patient biology and cognition to provide clinicians with a platform to practice di$erent skills including task
execution, testing and validation, diagnosis and prognosis, training, and social and cognitive interaction.

Robotic patient simulators (RPSs), virtual patient simulators (VPSs), and augmented reality patient
simulators (APSs) are three main technologies used to represent realistic, expressive patients within the context
of clinical education. Clinical educators (CE) can use them to convey realistic scenarios, and clinical learners
(CL) can practice di$erent procedural and communication skills without harming real patients.

Although there are many bene!ts associated with using RPS, VPS, and APS systems, their designs su$er from a
lack of facial expressions (FEs), which are both a key social function and clinical cue conveyed by real patients.
While enabling RPS and VPS systems with an expressive face can address this challenge, still it creates a bigger
challenge with designing expressive systems: Facial expressions are very person-dependent and can vary from
person to person [212]. It is challenging to analyze, model, and synthesize FEs of a small subgroup of patients
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on simulators’ faces and develop generalized expressive simulator systems that are capable of representing a
diverse group of patients (including but not limited to di$erent ages, genders, and ethnicities who are a$ected
by di$erent diseases and conditions) [212].

Another challenge is that incorrectly (or not) exhibiting symptoms on a simulator’s face may reinforce incor-
rect skills in CLs and could lead to future patient harm. Furthermore, developers may face physical limitations
preventing them from advancing the state of the art. For example, VPSs are limited by #at two-dimensional
(2D) display mediums, making them unable to represent a physical 3D human-shape volume that clinicians can
palpate to perform clinical assessments. Other challenges include the simulator’s usability, controllability, high
costs, and physical limitations, as well as the need of recruiting experts with various skills.

Tackling these technical challenges to advance the state-of-the art needs work on several fronts. These include
the creation of capable and usable RPS and VPS systems, new techniques for recognizing and synthesizing facial
expressions on simulators, novel computational methods for developing humanlike face model for them, and new
means for evaluating these systems. Ultimately, addressing these gaps can provide healthcare education with
realistic, expressive simulators capable of mimicking patientlike expressions. This has the potential to positively
a$ect CLs’ retention, and eventually, revolutionize healthcare education.

In this review, we discuss research at the intersection of robotics, computer vision, and clinical education
to enable socially interactive robots and virtual agents to simulate human-patient-like expressions and interact
with real humans. In Section 2, we provide an overview of the root causes of preventable patient harm and
contextualize clinical education as a means for addressing it. We outline common learning modalities, including
VPS and RPS systems, and outline key opportunities to improve them. Sections 2.4–5 discuss the importance of
incorporating humanlike FEs in RPS and VPS systems and algorithmic approaches for doing so. In Section 6, we
discuss our recent research on creating expressive VPS and RPS systems, with diverse appearances and features,
which show promise as an important clinical education tool. Finally, Sections 7 and 9 explore open problems in
the !eld and discuss new directions for future work.

2 BACKGROUND
2.1 Patient Safety and Healthcare Education
The World Health Organization de!nes patient safety as “the absence of preventable harm to a patient during
the process of healthcare and reduction of risk of unnecessary harm associated with healthcare to an acceptable
minimum” [34]. Taking an action (errors of omission) or inaction (errors of commission) by healthcare workers,
system failures, or a combination of these two factors may cause or lead to preventable patient harm [98].

Preventable patient harm represents the root cause of many adverse events experienced in healthcare depart-
ments including intensive care units and is a leading cause of mortality and morbidity in the world. Conservative
estimates suggest preventable patient harm causes over 400,000 preventable deaths per year in the U.S. hospitals
alone [106], and 4–8 million experience serious harm and injury. It is estimated that between 27% and 33% of
patients experience an adverse event as a result of their care [9, 69, 175, 190].

While better-designed healthcare systems, services, and processes, as well as new technologies, can help re-
duce the incidence of patient harm, in the short term one of the best approaches is high-quality clinical education.
Recent work shows that healthcare education and training is the most e$ective mechanism to reduce the inci-
dence of patient harm and improve patient safety [166].

One way advance the state of the art of healthcare education is through the development intelligent learning
modalities, such as simulation systems. Simulators provide CLs the chance to safely study the causes and e$ects
of errors, while avoiding harm to real patients. Using simulators also improves CLs’ comprehension, con!dence,
e"ciency, and enthusiasm for learning [107]. When compared with non-digital learning methods, using patient
simulators can more e$ectively improve CLs’ skills and at least as e$ectively improve knowledge [112].
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Table 1. Simulators: The Structure, Functionality, and Controlability

Type Medium / Physiological Visual appearance Control Scheduling
Platform variables time

SHPs Real: 3D
real-human body

Can present some of
the variables.

Can display dynamic FEs,
gestures, and some of the
abnormal visual !ndings.

Controlled by a human. High

APSs Hybrid: Visual
appearance
projected to a 3D
physical surface.

Can easily present all
the variables.

Can be programmed to
richly display dynamic FEs,
gestures, and all abnormal
visual !ndings.

Ranges from fully
automated to teleoperated
to pre-recorded mode.

Low

VPSs Virtual: 2D
monitor or TV or
Tablet

Can only present the
visual physiological
variables due to 2D
display limitations.

Can be programmed to
richly display dynamic FEs,
gestures, and all abnormal
visual !ndings.

Ranges from fully
automated to teleoperated
to pre-recorded mode.

Low

RPSs Mchanical: 3D
humanlike
physical robot

Can exhibit 5000+
physiology changes on
it. Verbal responses
controlled using a live
operator.

Mostly have a static face.
They can be programmed
to display some of dynamic
FEs, gestures, and
abnormal visual !ndings.

Ranges from fully
automated to teleoperated
to pre-recorded mode.

Low

Clinical educators may also bene!t from using simulation systems to run a variety of desired clinical sim-
ulation scenarios on realistic patients based on a learner’s need, instead of patients’ availability. Examples of
these scenarios include nursing simulation scenarios [10], physician scenarios [32], and surgical simulation sce-
narios [33]. Studies also indicate that using simulation improves the performance of learner evaluation and
educational needs diagnosis by CEs [42]. This work, and others, are encouraging and suggest that augmenting
existing healthcare simulation systems with emerging AI-based technologies o$ers promising opportunities to
substantially reduce preventable patient harm, as well as risks to clinicians.

2.2 Patient Simulator Types, Benefits, and Challenges
There are four types of simulated patients used in simulation-based clinical learning: standardized human pa-
tients, augmented reality patient simulators, virtual patient simulators, and robotic patient simulators. Table 1
illustrates the structure, functionality, and controllability for each type of patient simulator. This is further dis-
cussed below.

Standardized human patients (SHPs) are live actors who assume the roles of patients. They convey a series
of symptoms and/or a scenario de!ned by CEs [47]. SHPs are bene!cial, as they provide CLs with a real-human
case study to practice their history-taking and clinical assessment skills. As a result, SHPs enable the learning
process to sometimes deviate from a prede!ned senario, as this type of simulator can adapt to unexpected changes
on the #y.

However, SHPs cannot accurately exhibit many symptoms of real patients, such as facial paralysis or physi-
ological changes. Furthermore, recruiting SHPs can be di"cult and expensive, especially ones at younger ages
because of child labor laws and scheduling di"culties [41, 47, 91, 188].

APSs, also known as physical-virtual simulators, use augmented reality (AR) techniques to combine physical
human-shaped surfaces with dynamic visual imagery projected on its surface [72]. APSs combine the bene!ts
of two worlds: Its physicality can convey a realistic, embodied similarity to people, while its virtual component
can display dynamic appearances and FEs without being limited by hardware infrastructure.
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Fig. 2. Le!: APSs with rendered faces based on projector placement. (a) An APS system with FPI [163], and (b) An APS
system with rear-projected imagery [71]. Right: Examples of VPSs so!ware with rendered faces. (c) Shadow Health [35],
(d) CliniSpace [8], and (e) i-Human [30].

However, it is still challenging to display an accurate representation of naturalistic symptoms even in an AR
environment. APSs also present some challenges depending on the AR modalities and techniques used. Recent
work [63] suggests to avoid the use of commercially available head-mounted displays for augmented reality
surgical interventions, because perceptual issues can a$ect user performance. In front-projected imagery (FPI)
[163], the shadow of users can hover over the projection [201] and cause the CEs fail to display desired scenarios.
Rear-projected imagery [71] can solve both multi-user and projection occlusion problems; however, it requires
a su"cient physical space behind the augmented platform to place the projectors [72] (see Figure 2, left).

VPS are interactive digital simulations of real patients in clinical settings displayed on a screen (see Figure 2,
left). For example, the Shadow Health VPS keeps CLs engaged with digital patients and lets them practice com-
munication skills, assessing virtual patients, and documenting their !ndings [35]. CliniSpace o$ers both a stand-
alone healthcare education system and a fully immersive game [8]. i-Human VPS agents are capable of presenting
human physiology and pathophysiology, as well as 3D anatomy of the human body [30]. Gabby is a VPS system
that provides support to African-American women to decrease their preconception health risks and eliminate
racial and ethnic disparities in maternal and child health [52, 193].

VPSs bene!t from virtually portraying physiological variables (e.g., heart rate) without being limited by hard-
ware infrastructure. The virtual display also provides the opportunity to richly and quickly display changes in
the appearance, symptoms, behavior, or body language. Furthermore, Kononowicz et al. [112] found that VPS
systems can help improve knowledge and skill-building (e.g., clinical reasoning, procedural, and teamwork skills)
when compared with non-digital educational methods, including didactic-learning modalities (e.g., lectures, read-
ing exercises, group discussion in the classroom), and non-digital models such as SHPs. Another advantage to
VPSs is that they make clinical education more accessible to CLs in low-resource settings, which Kononowicz
et al. [112] discuss as being e$ective in a range of countries worldwide.

Physical RPSs are lifelike physical robots that can simulate realistic patient physiologies and pathologies (see
Figure 3) [151]. The use of physical simulators originated with Resusci Anne, a static mannequin created to teach
cardiopulmonary resuscitation in 1960. It was used to train more than half a billion people in life-saving skills
[18, 143]. Later in the 1960s, in an e$ort to train anesthesiologists, researchers developed a physical RPS called Si-
mOne, able to show palpable pulses, heart sounds, and movement. Its software provided several pre-programmed
events, such as di$erent changes in heart rate or blood pressure [64]. Since then, many companies have built
more advanced RPS systems to support a range of clinical scenarios, including Gaumard Scienti!c and Laerdal.

Recent RPSs bene!t from the ability to interactively convey thousands of physiological signals. Their high-
!delity physical bodies are comparable to the bodies of real patients, a$ording CLs a practice platform for phys-
ical examinations and procedures.

2.3 Open Problems in Simulation-based Education
Despite the many bene!ts of using patient simulators, there are several challenges with existing systems
that may impede how e$ective they are at supporting CL education, particularly with regard to skill transfer
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Fig. 3. Examples of RPSs with physical faces. (a) Laerdal’s Li"le Resusci Anne [64], (b) Code Blue III by Gaumard Scien-
tific [26], (c) Laerdal’s SimNewB [36], (d) Laerdal’s Mama Natalie [31], (e) Simroid by Morita Corp [3], and (f) Gaumard’s
Pediatric HAL [1].

(how well skills map from simulated patients to real patients). Table 3 provides a summary of the existing types
of patient simulators, as well as their bene!ts and challenges.

One main challenge with existing RPS and VPS systems is low usability and controllability, which can cause
delay and distraction. These simulators are very complicated and di"cult for CEs to control, particularly when
running complex simulations in a dynamic learning environment. Running clinical scenarios on these simula-
tors has several time-consuming tasks and requires scheduling. As a result, CEs often cannot run the necessary
simulations to support e$ective learning strategies. Furthermore, clinicians tend to have fairly low technology
literacy, so a poorly designed system along with poor socio-technical integration can adversely a$ect skill learn-
ing performance [160]. Finally, using robots in healthcare settings can potentially add disruption and delay to
the simulation process, which will change the clinical work#ow in unforeseen directions [160, 181].

The other main challenge is that most current commercial VPS and RPS systems su$er from a major design
#aw: They completely lack FEs and thus the ability to convey key diagnostic features of di$erent disorders and
social cues, which can eventually cause problems with learner immersion and skill transfer. This is critical for
scenarios that require dynamic changes in appearance (e.g., abnormal visual !ndings such as drooping, which
cannot be easily portrayed on a mannequin). Therefore, this lack of expression limits the extent to which a CL
will become engaged with and immersed in a simulation, which may adversely a$ect their learning performance
[130]. Consequently, CLs may be learning to incorrectly read patient social cues and signals, and may need to
be retrained. Due to the importance of FEs as a key social function and clinical cue in patients, it is essential to
study the synthesis of expressions (both symmetric and asymmetric) in simulators.

While RPS, APS, and VPS systems with expressive faces can address the previous challenge, they introduce
several technical challenges and opportunities with designing expressive systems. First, because facial expres-
sions and their intensities are very person dependent and can vary greatly from person to person [212], it can
be challenging to develop one generalized system to recognize, model, and display facial expressions of a wide
range of di$erent individuals and cultures. Furthermore, some of the simulators, such as VPS systems, are lim-
ited by a #at 2D display medium, making them unable to convey a physical 3D human-shape that clinicians can
palpate to perform clinical assessments. Inaccurately exhibiting symptoms on a simulator’s face may reinforce
incorrect skills in CLs and eventually lead to incorrect diagnoses in their future career [65].

Other challenges with creating expressive simulators include the need to recruit experts with various skills
for development, high development costs, and systematic physical limitations.

Therefore, to design robots and avatars with humanlike expressive faces capable of accurately exhibiting
patientlike symptoms, it is bene!cial to examine the e$ect of expressive mechanical or rendered faces. To do
this, roboticists and engineers need to closely co-design systems with developers and designers with a range of
expertise and also include a diverse set of stakeholders, including CLs, CEs, and patients [151, 160, 161].

Adopting an interface to a robotic or avatar face similar to a human-patient’s face to mimic real FEs and
symptoms requires knowledge on building and controlling physically embodied robots and/or animating virtual
systems. It also requires having knowledge of the nature of human facial expressions and the existing methods
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of analyzing (recognizing, detecting, and tracking) human facial features. Moreover, it requires knowledge of
the existing methods on developing models of humanlike facial expressions and techniques to incorporate and
synthesize patientlike FEs onto the simulator’s face.

2.4 The Face as a Communication Modality for Robots and Virtual Systems
The human face is a key expressive modality for communicating with others and understanding their intentions
and expressions. Facial expressions are a form of visual communication that help to enhance other modalities
of communication, such as spoken or gestural language, and enable people to spontaneously communicate im-
portant information [60, 133]. In clinical settings, healthcare workers use other non-verbal cues to infer patient
physiological states, such as pallor, blinking, eye gaze, blushing, and sweating.

RPS and VPSs with expressive faces also can bene!t from this humanlike ability to create better connections
and interactions with users and be more favorably perceived [67]. This is why many roboticists develop physi-
cal or virtual embodiments capable of displaying facial expressions. Sometimes these expressions are conveyed
physically (e.g., with mechanically moving parts), and sometimes they are conveyed virtually (e.g., using 2D
displays) (see Figure 4).

While building accurate physical and virtual platforms for robots can enhance interaction, poorly designed
faces can adversely a$ect the interaction and create distractions [67]. In the 1970s, Mori introduced the un-
canny valley concept that explains people’s negative reaction to certain lifelike robots [135]. The idea is that
as robots become more humanlike, they become more attractive until they reach a certain point, after which,
people perceive the robots as being creepy and/or immoral. This e$ect has since been validated across multiple
experimental studies [108, 191].

It is important to consider the variability of facial expressions while designing robotic platforms capable of
generating humanlike expressions. For many years, facial expressions were considered a universal language
to express internal emotional states across all cultures [104]. However, recent cross-cultural studies suggest
that culture is a well-documented source of variance in facial expressions. Studies by Jack et al. [104, 105] and
Elfenbein et al. [81] suggest that humans across di$erent cultures communicate emotions using di$erent sets
of facial expressions, and therefore, the notion of “universal” facial expressions proposed by Ekman [78] is now
refuted in the light of demonstrated cultural nuances.

Another important consideration is the source videos / models used to create expressions on VPS or RPS
systems. Many of these systems are trained on datasets of actors, presenting exaggerated facial expressions with
little variance or cultural nuances, and tend to propagate the now unfavored Ekman “universal” framing of facial
expressions with action units–(AU) based models. This can lead to bias and errors in both facial expression
analysis and synthesis systems (see Section 3.6).

These studies raise an awareness that the impact of including di$erent facial expressions, features, and func-
tionalities in designing virtual and physical faces requires meticulous attention while designing realistic appear-
ance and performance for human faces. Furthermore, the results suggest to carefully study the e$ects of using
di$erent facial analysis methods before, during, and after the realistic face design process.

3 AUTOMATIC FACIAL EXPRESSION ANALYSIS
To build robots and virtual avatars that can replicate realistic, understandable, humanlike expressions, it is nec-
essary to be able to recognize how people express FEs. This section discusses common methods for manually
and automatically detecting, locating, and analysing humanlike expressions in the presence of noise and clutter.
First, we list a few key concepts.

Facial Landmarks (FL), also known as facial feature points or facial !ducial points, are visually highlighted
points in the facial area, mainly located around facial components and contours, such as the eyes, mouth, nose,
and chin.
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Fig. 4. Top: Physical robots with mechanical faces: (a) Kismet [4], (b) Simon [11], (c) Diego-San [7], (d) Charles [2],
(e) Geminoid HI-5 [6], (f) Sophia [38]. Bo"om: Virtual and hybrid robots with rendered faces: (g) Kuri [21], (h) BUDDY
[19], (i) FURo-D [17], (j) Mask-Bot 2i [147], (k) Furhat [67], and (l) Socibot [37].

Facial AUs are individual components representing the movements of one or several speci!c facial muscles in
each facial component surrounded with speci!c FLs [16]. Researchers introduced 46 main facial AUs [185], and
others have added 8 head movement AUs and 4 eye movement AUs [16]. Examples include AU6-Cheek Riser,
AU12-Lip Corner Puller, 5-Upper Lid Raiser, or AU-26 Jaw Drop. To express each speci!c facial expression, peo-
ple need to move a speci!c subset of AUs in di$erent facial components of their face. For example, researchers
have identi!ed AU6 and AU10 are associated with the expression of pain, and AU 10 with the expression of
disgust [131].

Facial Action Coding System (FACS) is a system for manually describing facial actions according to their
appearance, !rst published in 1978 and later updated in 2002 [78]. The main focus of FACS systems is to recognize
facial expression con!guration, which refers to the combination of AUs. This means that the system associates
facial expression changes into a set of facial AUs (of 46 uniquely de!ned AUs) that produce them. This system
also characterizes the variation of AU intensity, which represents the degree of di$erence between the current
state of facial expression and neutral face [144]. FACS provides a 5-point intensity scale (A–E) for representing
the AU intensity (A is weakest intensity and E is strongest intensity).

Manual FACS are based on annotations done by trained FACS coders who manually recognize both con!gura-
tion and intensity of AUs in video recordings of an individual according to AUs described by FACS [78]. However,
manual FACS rating requires extensive training and is subjective and time consuming. Thus, it is impractical for
real-time applications [96].

Nowadays, many researchers work on automating FACS systems to analyze AUs [90]. Using automatic FACS
instead of a manual approach can be bene!cial, because training experts and manually scoring videos is time
consuming. Furthermore, studies suggest using automatic FACS can enhance reliability, accuracy, and temporal
resolution of facial measurements [125]. In developing these systems, in addition to con!guration and inten-
sity variation, researchers also analyze facial expression dynamics (i.e., the timing and the duration of di$erent
AUs). Dynamics can be important for human facial movement interpretation [90]. For example, facial expression
dynamics can be bene!cial for learning complex physiological behavioral states such as di$erent types of pain
[200].

The rest of this section brie#y describes the main stages involved in automatic facial expression analysis
(FEA), as suggested in a recent survey by Martinez et al. [125], which include face detection and tracking, facial
point detection and tracking, facial feature selection and extraction, AU classi!cation based on extracted features,
and new approaches on jointly estimating landmark detection and AU Intensity. Finally, we include a list of facial
expression analysis software used by the community.
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3.1 Face Detection and Tracking
To engage in facial expression analysis, systems need to be able to engage in “face localization,” which Deng et al.
de!ne as including face detection, alignment, parsing, and dense face localization [75]. Deng et al. introduced
RetinaFace [74, 75], “a robust, single-stage, multi-level face detector.” It performs face localization on di$erent
scales of the image plane using joint extra-supervised and self-supervised multi-task learning. Many acknowl-
edge that RetinaFace provides one of the most robust and strongest approaches to face detection. Others have
made strides on related problems, for example, Hu et al. [100] explored a new approach of training separate
detectors for face images with di$erent scales. Their result reduced error by a factor of two compared to prior
state-of-the-art methods.

In general, most current methods for face detection employ deep learning techniques, including Cascade-
Convolutional Neural Network– (CNN) based models, region-based Convolutional Neural Network (R-
CNN) and Faster Regions with Convolutional Neural Network Features– (Faster-R-CNN) based mod-
els, Single Shot Detector models, and Feature Pyramid Network-based models; see Reference [129] for a recent
survey.

3.2 Facial Feature Point Detection and Face Alignment
Facial feature point detection (FFPD) (also known as landmark localization) generally refers to a supervised
or semi-supervised process of detecting the locations of FLs. FFPD algorithms are sensitive to facial deformations
that can be due to either rigid deformations (e.g., scale, rotation, and translation) or non-rigid deformations (e.g.,
facial expression variation, head poses, illuminations, noise, clutter, or occlusion) [194]. Enabling FFPD methods
to align faces in an input image can lower the e$ect of changes in face scale as well as in-plane rotation.

Cascaded regression-based methods are one type of FFPD method that recognize either local patches or global
facial appearance variations and directly learn a regression function to map facial appearance to the FL loca-
tions of the target image [205]. These methods do not explicitly build any global shape model, but they may
implicitly embed the information regarding the global shape constraints (i.e., estimate the shape directly from
the appearance without learning any shape model or appearance model).

Deep learning regression-based methods combine deep learning models, such as CNN, with global shape models
to enhance performance. Early work in this !eld employed Cascaded CNNs [177], which predict landmarks in a
cascaded way. Researchers then presented Multi-task CNNs [208] to further bene!t from multi-task learning to
increase the performance rate. Studies show the cascade regression with deep learning (DL) performs better
than cascade regression and cascade regression better than direct regression [205].

In terms of facial feature point detection and face alignment, the Face Alignment Network (FAN) proposed
by Bulat and Tzimiropoulos [58] is considered to be the state of the art. They constructed FAN by combining
landmark localization with a residual block. They then trained the network on a 2D facial landmark dataset and
evaluated it for large-scale 2D and 3D face alignment experiments. Researchers have proposed di$erent follow-
up methods to reduce the complexity of the original approach. For example, MobileNets is a class of e"cient
models that uses light-weight deep neural networks (DNN) to improve the performance [99].

3.3 Facial Feature Selection and Extraction
If the number of facial features becomes relatively large in comparison to the number of observations in a dataset,
then some algorithms may not be able to train models e$ectively. High-dimensional vectors may cause two
problems for classi!ers: one, data may become sparser in high-dimensional space, and, two, too many extracted
features may cause over!tting [102].

Li and Deng [117] provide a recent comprehensive survey on deep facial expression recognition and include
discussion of feature learning and feature extraction techniques. A few examples are brie#y discussed below.
CNNs have been widely employed for the purpose of feature extraction, due to their ability to being robust
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when encountering facial location changes and variations [87]. For example, researchers in Reference [176]
used R-CNN to combine multi-modal texture features for facial expression recognition in the wild. Moreover,
researchers [116] proposed a Faster-R-CNN technique to prevent from the explicit feature extraction step by
producing region proposals.

Deep autoencoders and their variations have also been used for feature extraction. For example, researchers
[114] used the deep sparse autoencoder network (DSAE) on a large dataset of images to prune learned fea-
tures and develop high-level feature detectors using unlabeled data. The proposed DSAE-based detector is robust
to di$erent transformations, including translation, scaling, and rotation. As another example, researchers [162]
employed contractive Autoencoder network that adds a penalty term to induce locally invariant features, leading
to a set of robust features.

3.4 Facial Feature Classification
In the classi!cation step, the classi!er predicts expressions by categorizing the facial features into di$erent cate-
gories. Similarly to the facial feature extraction stage, classi!cation performance directly a$ects the performance
of the facial expression recognition system.

Early facial feature classi!cation work used techniques such as Naive Bayes [123, 179], multi-layer perceptrons
[55, 150], and SVMs [157]; however, these have fallen out of favor given newer deep learning methods. While
traditional facial expression analysis approaches usually perform the feature extraction step and the feature
classi!cation step independently, deep facial expression analysis approaches are able to perform both steps in
an end-to-end training manner by adding a loss layer as the !nal layer to the DNN to adjust the error and then
directly estimating the probability distribution over a set of classes [117].

For this purpose, many researchers have adapted CNN techniques for expression detection and classi!cation
[57, 119, 211]. The results of work done by Zeng et al. [119] shows that CNN classi!ers trained faster and per-
formed well. Another study indicates CNN classi!ers also provide better accuracy compared to other neural
network-based classi!ers [157]. One main challenge to some of CNN classi!ers is that they are sensitive to
occlusion [119].

In addition to using deep neural networks for end-to-end training, other researchers [40, 76, 142, 170] have used
DNNs for feature extraction and then added independent classi!ers to the system for expression classi!cation.

3.5 Jointly Estimating Landmark detection and Action Unit Intensity
Early FEA work often included a computationally intensive and laborious process (e.g., face and facial landmark
detection, hand-crafted feature extraction, and limited classi!cation methods). Nowadays, researchers bene!t
from having access to comprehensive, large-scale facial datasets, as well as advanced computing resources to
develop more e"cient facial analysis methods [68, 84, 85, 110, 118, 120].

One line of research is the work done on jointly estimating landmark and action unit intensity. For example,
Wu et al. [204] proposed a constrained joint cascade regression framework to simultaneously perform landmark
detection and AU intensity measurement. This method learns a constraint to model the correlation between AUs
and face shapes. Next, they use the learned constraint as well as the proposed framework to estimate the land-
mark location and recognize AUs. The results of the study suggests the connection between these two parameters
can improve the performance for both tasks.

Furthermore, many researchers consider the work done by Ntinou et al. [141] as the state-of-the-art method
for jointly estimating landmark localization and AU intensity. In this work, researchers employed heatmap re-
gression to model the the existence of an AU at speci!c location. For this purpose, they used a transfer learning
technique between the face alignment network and the AU network.

It is worth mentioning that the newer directions for estimating AU intensity seek learning models with little
or no supervision, including work done by Sanchez et al. [168], Wang and Peng [196], Wang et al. [195], and
Zhang et al. [210].
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One of the applications for AU intensity estimation is to further analyze and synthesize facial expressions
representing speci!c feelings, such as pain. Many researchers have already conducted studies that indicate there
is a relationship between a combination of AUs and pain, including work done by Kaltwang et al. [109] and
Werner et al. [199]. Furthermore, it is worth mentioning that a fully functional automatic pain estimation system
requires enough representative data, and for that purpose, there are some pain datasets publicly available (cf.
Reference [122]).

3.6 Facial Expression Analysis So!ware
Dynamic FEA systems integrate automatic FACS to assess human expressions. Several commercial and open
source FEA software packages are available, including iMotions, AFFDEX, FaceReader, IntraFace, and OpenFace
2.0.

iMotions developed a commercial tool for FEA that o$ers assessing FEs in combination with EEG, GSR, EMG,
ECG, and eye tracking [24]. This tool lets users record videos with a mobile phone camera or laptop webcam and
then detects changes in FLs. The researcher can set the tool to apply either the AFFDEX algorithm by A$ectiva
Inc. [80] or the Computer Expression Recognition Toolbox (CERT) algorithm used by FaceReader tool [121]
to classify expressions. Di$erent classi!er algorithms such as CERT and AFFDEX employ various facial datasets,
FLs, and statistical models to train the ML system to perform the classi!cation task [24].

A"ectiva’s AFFDEX software developer kit (SDK) [128] is a commercially available real-time facial expres-
sion coding toolkit that is able to simultaneously recognize the expressions of several people and is available
across di$erent platforms (IOS, Windows, Android). The AFFDEX algorithm uses Viola-Jones [192] for detect-
ing a face and identifying 34 landmarks, Histogram of Oriented Gradient (HOG) to extract facial textures,
SVM classi!ers to classify facial action and, !nally, code seven facial expressions based on combinations of fa-
cial according to FACS [24]. A$dexMe is the name of the IOS-based AFFDEX SDK that enables developers to
emotion-enable their own apps and digital experiences. The tests we performed on the trial version of this SDK
show that the app can e"ciently analyze and respond to seven basic emotions in real-time.

FaceReader [23] is a commercially available automated expression analysis system developed by Noldus. It
enables developers to integrate expression recognition software with eye tracking data and physiology data.
This tool provides an assessment of seven expressions, head orientation, gaze direction, AUs, heart rate, valence
and arousal, and person characteristics.

FaceReader’s algorithm uses the Viola-Jones algorithm [192] to !nd a face, then makes a 3D face model using
facial points and face texture. It then analyzes the face using DL methods, and classi!es the expressions using
an ANN. Studies show that FaceReader is more robust than AFFDEX [173].

IntraFace is a software package developed by De La Torres et al. [73] for automated facial feature tracking,
head pose estimation, facial attribute recognition, and facial expression analysis. This package also includes
an unsupervised technique for synchrony detection that supports the function of discovering correlated facial
behavior between two people.

IntraFace uses the SDM method to extract and track facial feature landmarks, and normalize the image with
respect to scale and rotation [73]. They then extract HOG features at each landmark and perform a linear SVM
for classifying facial attributes. Finally, they use the Selective Transfer Machine learning approach to classify
facial expressions and AUs.

OpenFace 2.0 is an open source and cross-platform tool for facial behavior analysis released by the Multimodal
Communication and Machine Learning Laboratory at Carnegie Mellon University in 2018 [13]. OpenFace 2.0
is capable of performing facial landmark detection, head pose estimation, facial action unit recognition, and
eye-gaze estimation in real time [46].

OpenFace 2.0 uses a newly developed Convolutional Experts Constrained Local Model [206] and optimized
FFPD algorithm for facial landmark detection and tracking that enables real-time performance [46]. Using this
approach also enables OpenFace 2.0 to cope with challenges such as non-frontal or occluded faces and low
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illumination conditions. The algorithm of this tool is able to operate on recorded video !les, image sequences,
individual images, and real-time video data from a webcam without any specialist hardware. GANimation [154,
155] is an anatomically aware facial synthesis method that automatically generates anatomical facial expression
movements from a single image. This method provides the opportunity to control the magnitude of activation
of each AU and combine several of them.

Latent-pose-reenactment [61] uses latent pose descriptors for neural head reenactment. This system can use
videos of a random person and map their expressions to generate realistic reenactments of random talking heads.

4 FACIAL ACTION MODELING FOR SYNTHESIS
In many robotics and AI applications, in addition to recognizing FEs in people, we also need the ability to syn-
thesize them on robotic and virtual characters. We discuss this further in Section 5; however, it is !rst important
to discuss facial modeling.

Facial action modeling (FAM) builds a bridge between facial analysis (recognizing and tracking facial move-
ments) and facial expression synthesis (translating modeled FEs onto an embodied face and animating its facial
components) [167]. Thus, technology developers need to incorporate two key ideas in the design of face mod-
els: (1) patterns that model the human face (e.g, shape, appearance), both in its neutral state and the way facial
movements (i.e., AUs) change to display di$erent expressions, and (2) patterns of the temporal aspects of facial
deformation (e.g., acceleration, peak, and amplitude).

The complexity of facial modeling can vary based on the degrees of freedom (DoF) of the embodiment (e.g.,
a mechanical robot or virtual face). It is less complex to build face models for more machinelike robots with very
simple faces, such as Jibo [28], which only has one eye with varying properties and details. The complexity of
designing a face model increases as the face becomes more realistic and detailed. For both robots with hyper
realistic faces (e.g., Charles [161] and Geminoid HI-2 [138]), or a humanlike computer-generated virtual face
(e.g., Furhat [25]), developers need to design highly accurate models to engage in synthesis.

There are two groups of information processing strategies for face modeling: theory-driven modeling and
data-driven modeling [103].

4.1 Theory-driven Modeling Methods
Ekman and Friesen’s FACS theory [78] describes the facial movements through observing the e$ect of each
facial muscle on facial appearance and decomposes the visible movements of the face in the form of 46 AUs.
Formerly, many researchers adopted FACS theory for facial modeling and embedded FEs derived from this theory
constrained into their social robots [56, 97]. In this approach, programmers selected a small set of (static) FEs
(e.g., tightening and slightly raising the corner of the lip unilaterally to express contempt) [79]. They then asked
actors to contract k di$erent combinations of muscle AUs to display the selected FEs to generate k di$erent face
images and score the face with FACS to verify muscle AUs depicted in each image. Finally, they asked observers
to select which image better mimics each speci!c FEs and therefore identify which combinations of muscle AUs
are signals for each speci!c FE.

However, there are several challenges with the theory-driven modeling methods. For one, these models are
based on FEs that precisely met criteria selected and speci!ed by researchers [79]. Moreover, since these models
are based on static FEs, they lack dynamical data including the temporal order of FE movements (e.g., acceler-
ation, peak, amplitude) [103], resulting in less realistic facial models and ultimately less human-lik simulators.
Furthermore, even in studies on cross-cultural FE analysis where subjects pose cultural-speci!c expressions, still
most subjects are identi!ed as Westerners [137], leading to less diverse face models. Finally, people may have
asymmetric facial expressions, such as people who have facial paralysis or deformities are rarely included, thus
also limiting the diversity of facial models [134]. As a result, expressive robotic and avatar faces developed using
theory-driven modeling methods lack the ability to generate a wide range of FEs. Therefore, these embodiments
are not able to adequately communicate and interact with users.
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4.2 Data-driven Modeling Methods
To address the gaps associated with theory-driven methods, researchers have proposed data-driven modeling
methods (or, example-based deformation models) to computationally model (dynamic) FEs based on real data.
Data-driven modeling methods usually consist of three main steps: data collection, facial expression and intensity
data labeling, and facial expression model creation [103].

4.2.1 Data Collection. Data are generally collected in one of two ways: via recordings of human participants
and through the use of arti!cial data creation.

One way of collecting data is to capture videos of facial expressions of human subjects (e.g., via an actor or
layperson performing facial movements, or use of existing datasets). In this method, a researcher can use any
statistical analysis method or facial expression analysis software package (see Section 3.6) to derive a parametric
representation of facial deformations and identify the AUs correlated to each frame of a video. For example,
Wang et al. [197] created a new FE dataset of over 200,000 images with 119 persons, 4 poses, and 54 expressions,
which is about enough to evaluate the e$ects of unbalanced poses, expressions on the performance of the FE
tasks.

Another way of collecting data is by generating arti!cial data through arti!cial data creation methods. In this
method, developers usually use facial movement generators to randomly generate an enormous range of arti!cial
dynamic facial expression videos. For example, Jack et al. use a facial movement generator, which randomly
selects a subset of AUs, assigns a random movement to each AU by setting random values for each temporal
parameter, combines randomly activated AUs, and !nally projects them to a robotic face to create random facial
animation videos [66].

4.2.2 Facial Expression and Intensity Data Labeling. Researchers have used di$erent techniques for labeling FE
data correlated to each frame of videos and their intensities, including manual labeling by both lay participants
and domain experts and unsupervised data labeling via use of machine learning.

For instance, Jack et al. [66] recruited participants to watch videos of facial expressions. If the projected video
formed a pattern that correlated with the perceivers’ prior knowledge of one of six expressions, then they manu-
ally assigned a label to identify the expression and its intensity rating accordingly. Other researchers working on
labeling FEs use domain experts (e.g., clinicians) to manually label data [134]. Other researchers develop facial
expression datasets that use di$erent semi-supervised or unsupervised techniques to label the data [197].

4.2.3 Facial Expression Model Creation. The next step is the learning phase, where the system uses the shape
and texture variations of several sample images in datasets to build a face model and generate its appearance
parameters. The parameters of the face model are reversible, meaning that they represent the shape and the
texture of all images in the dataset, and therefore, are able to regenerate realistic images similar to each of the
learned sample images. Thus, researchers can reverse-engineer speci!c dynamic FE patterns. This helps to derive
the unique patterns of correlated AUs that are activated over time, which are correlated with human perception
of each expression. For example, Chen et al. [66] developed their models by calculating a 41-dimensional binary
vector per emotion detailing all AUs, and also seven values detailing the temporal parameters of each AU.

Using these three steps, developers can learn and build mathematical models of the dynamic FEs within a
video stream that make it possible to reconstruct these FEs on a robot or avatar’s face and animate them later
[66].

5 FACIAL EXPRESSION SYNTHESIS AND ANIMATION
Facial expression synthesis and animation (FSA) refers to techniques used to animate dynamic expressions
on the faces of avatars or robots using previously developed face models. FSA techniques provide the facial
movement vocabulary that maps the developed model of AU movements and densities into the mesh topology
of the social robot or avatar heads [148]. Using this technique makes the simulated face able to display AU
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Table 2. An Overview of Technical Approaches for the Purpose of Facial Expression Synthesis
and Animation [29, 83, 115, 167]

Categories Process Bene!ts Drawbacks
Skeletal-
based

Rigs a skeletal model to automati-
cally associate each bone and joint
into various parts of the
embodiment’s face and animates it
using skeletal motion data.

• Manipulating the virtual face is Less la-
bor cost, as animators only need to ma-
nipulate a set of vertices (bones) instead
of each individual vertex.

• Generating the accurate mapping be-
tween bones and facial parts is labor
consuming and time consuming.
• This can lead to unrealistic arti!cial-

looking animations and inaccurate
synthesis and unrealistic FEs.

Blend-
shapes

Creates a number of main mesh
topologies of the face, and uses an
automatic interpolation function to
blend these topologies to create a
smooth transition between them.

• It has low computational time
• It is easy to implement

• It needs a great number of main
topologies of di$erent expressions.
• This method only provides synthetic

FEs in between the existing examples
• Mesh design and animation creation is

labor and time consuming.
• Inconvenient for real-time application.

Parametric-
based

Uses a system of parameters to
create both the face model and
di$erent deformation model based
on the visual or physical e$ect of
muscle actions.

• It creates more realistic animations.
• It can create various deformations.
• It makes it possible to create interactive

animations by incorporating text, audio,
or video data.

• It requires using lots of high-quality
motion capture equipment.
• It is not usually feasible to perform it

in real time.

movements corresponding to developed facial expression models. Concerning FSA, many articles have reviewed
state-of-the-art methods and techniques, including References [83, 148, 167].

5.1 FSA Technical Approaches
Existing surveys in facial expression synthesis and animation include Reference [115], Reference [167], and
Reference [83]. The surveys suggest there are three primary categories of techniques for synthesis purposes:
skeletal-based, shape blend-based, and performance-driven approaches. Table 2 provides a summary of common
approaches, which are further discussed below.

Skeletal-based approach (also known as the key-framing approach) works by rigging a skeletal model using
an interactive tool to mimic the contraction of facial muscles and generate synthetic facial movements [29, 83].
For this purpose, animators use the 3D rigging tool !rst to construct a rig of bones and joints based on an
estimation of the locations of facial muscles. They manually de!ne the combinations of muscles representing
each and every facial expression, and associate each bone into di$erent parts of the avatar’s visual presentation
accordingly. Using this mapping, animators can automatically animate the virtual face using skeletal motion
data.

Animating a virtual model using this approach is less labor-intensive, as animators only need to manipulate a
set of vertices (bones) instead of each individual vertex. However, the downside of the skeletal-based approach is
that generating the accurate mapping between the bones with facial parts is labor- and time-consuming. Further-
more, because it is di"cult to accurately model facial movements based on bone movements, using this method
can generate unrealistic arti!cial-looking animations and lead to inaccurate synthesis and unrealistic FEs on a
virtual robot [167].

Blend-shape approach works by creating a number of main mesh topologies of the expressions and poses
examples collected from the face of a real subject (one for each main expression), and then using an automatic
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interpolation function to linearly blending these topologies to create a smooth transition between them [167].
To achieve smooth animations, animation developers need to generate hundreds of blended topologies.

This approach is commonly used to animate virtual faces, as it bene!ts from low computational time and is easy
to implement. However, the performance of this approach greatly depends on the existing examples of di$erent
expressions [29]. Furthermore, this method only provides synthetic FEs in between the existing examples [83].
Furthermore, manually designing the main mesh topologies and manipulating each vertex to create animations
is labor intensive and time consuming, making it an inconvenient modeling technique for creating real-time,
long animations [167].

Parameter-based approach (also known as Motion Capture or the Performance-driven approach) uses a system
of sensors and cameras to record motions and FE movements of a subject [167]. It then learns the face and
deformation parameters from the captured data (including visual or physical e$ects of muscle actions) and !nally
transfers synthetic FEs onto the virtual robot’s face.

In comparison with the other two methods, the performance-driven approach has the potential to be more
realistic [29]. The use of parameter-based models makes it possible to create a wide range of deformations. These
techniques also support creating interactive animations by incorporating text, audio, or video data in the model
developing process [167]. However, to get the best and most accurate simulation using this method, it is necessary
to use lots of high-quality motion capture equipment. Although this method is greatly used by major !lm making
companies, it is not a convenient approach for technology developers and animators [83].

5.2 Advanced FSA Methods
Recently, researchers have performed more research-oriented studies of facial expression generation, that re#ect
ongoing attempts to address several of the challenges with respect to the expressivity of a facial expression
synthesis system. More speci!cally, recent studies have focused on automatically synthesizing facial expressions
from a few or single images using the newest advances in Generative and Adversarial Networks (GAN).

For example, Pumarola et al. [154, 155] introduced GANimation to automatically generate facial expressions in
a continuous domain, without using any facial landmarks. They conditioned the network on a one-dimensional
vector that represents the existence and the magnitude of each AU. This provides the opportunity to control the
magnitude of activation of each AU and combine several of them. Additionally, they trained the network in a
fully unsupervised manner, only requiring images annotated with their activated AUs, leading to an approach
that is robust to changing backgrounds and lighting conditions.

In addition, other recent work addresses face reenactment and synthesis in a landmark-driven way. For in-
stance, Burkov et al. [61] recently proposed a “neural head reenactment system” that uses a latent pose represen-
tation, based solely on image reconstruction losses. This system can use videos of a random person and maps
their expressions to generate realistic reenactments of random talking heads.

Another recent work in this !eld is by Zakharov et al. [207], who developed a system that can generate
plausible video sequences of speech expressions and mimicry of a particular person. They use a deep network
that combines adversarial !ne-tuning into a meta-learning framework to train lifelike digital speaking heads
based on only a few photos of a person (e.g., a few-shot approach). This model can generate photorealistic
animations of both random people and portrait paintings.

Gecer et al. [89] proposed a novel multi-branch GAN architecture that synthesizes photo-realistic expressions.
It adopts a multimodal approach by including multiple 3D features (e.g., shape, texture, normals, etc.). They then
trained the network to generate all modalities in a local and global correspondence, and condition the GAN by
expression labels to create 3D faces with various expressions.

OpenPose, proposed by Cao et al. [62], is a open source, real-time system that detects the 2D pose (including
the face) of multiple people in a single image. It employs a non-parametric representation to learn which body or
facial parts is related to which person in the image. The system achieves high accuracy and real-time performance,
regardless of the number of people.
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Fig. 5. (a) Figure of the Greta virtual agent [27, 145]. (b) Figure of synthesizing dynamic facial expressions onto the Furhat
robot [67]. (c) Figure of the Charles robot mimicking a human [161]. (d) Figure of the Faceposer so!ware interface [22].

5.3 FSA Exemplar
Researchers have mapped the synthesized motions to the face of di$erent embodiments using FSA software
packages (see Figure 5). For example, Faceposer SDK [22] for the Steam Source engine [39] is a virtual platform
that uses synthesis framework to transfer facial expressions and skeletal animations to a virtual character’s
control points for animation. After generating facial movements and transformation parameters from a source
video using one of the methods described in Section 4, Faceposer’s synthesis framework converts the parameters
into 21 control points (Flex sliders). The system saves the values of the Flex sliders in a .VCD scene !le consisting
of a header section with date, simulator, and timescale information; a variable de!nition section; and a value
change section. Finally, after importing the .VCD !le to the Faceposer SDK as the input, the SDK transfers the
FEs on an avatar’s face accordingly and animates the avatar.

Moreover, Pelachaud [145, 146] introduced Greta, which is a conversing socio-emotional virtual agent. This
agent’s software provides users with a real-time platform to control socio-emotional virtual characters and de-
velop natural interaction with humans. Greta animation engine receives body animation parameters and facial
animation parameters as inputs and synthesizes the expressions on a virtual character using Ogre3D or Unity3D
[27].

Furthermore, Chen et al. [66] introduced a social physical-virtual agent displayed on a Furhat robot [25], which
is capable of re-displaying facial expression using state-of-the-art 3D animation techniques. The introduced
agent’s algorithm provides full control over face designs, and includes realistic lip movements, as well as high-
level control over the eyes and other facial movements [25]. It also provides the user with the opportunity to
change the projected face’s ethnicity, gender, language, and even its species. To measure the humanlike-ness of
their synthesis approach, they performed an experiment to compare two FE synthesis methods (one generated
through their reverse-engineering and synthesizing method, and one manually pre-programmed on their social
robot). Their results suggest that users perceived their reverse-engineered expressions as more humanlike than
the existing expressions of the robot [66].

Charles is a humanoid, hyper-realistic robot head from Hanson Robotics [158, 161]. Charles is able to display
lifelike human expressions as it has wrinkles on the skin and 22 DoF in the face and neck. The robot has micro-
controllers to control the motors that move the brow, eyes, midface, lips, mouth, jaw, head, and neck. Its control
system generates motions using a direct AU-to-motor mapping system to synthesize expressions.

6 OUR WORK TO DATE
For the past decade, our team has developed new expressive, interactive RPS and VPS systems. This work has
included new computational pipelines and control systems for FEA, facial action modeling (FAM), and FSM,
new robotic and virtual patient simulator embodiments, and new methods for modeling and synthesizing a range
of conditions including dystonia, pain, Bell’s Palsy (BP), and stroke [130, 132–134, 149, 151, 152, 159, 161]. We
brie#y discuss this work below.
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Fig. 6. Robotic patient simulators are tele-operated, life-size mannequins that can exhibit thousands of physiological sig-
nals, and can breathe, bleed, and respond to medications. However, they are largely inexpressive, leading to poor training
outcomes for CLs, and possibly poor clinical outcomes for patients. Our work addresses this gap by introducing patient
simulator systems with a much wider range of expressivity, including the ability to express pain, neurological impairment
(e.g., stroke, Bell’s Palsy), and other clinically relevant expressions, via simulators with diverse genders, races, and ages.

6.1 Creating New Embodiments for Robots and Avatars
Our work on creating new embodiments for robots and avatars thus far has focused on designing physical and
virtual faces and leveraging robots’ and avatars’ expressivity, diversi!cation, and control modalities to improve
human health and safety [151] (See Figure 6).

The contributions of this work are as follows. We created di$erent virtual avatars with diverse ethnic back-
grounds and genders using the aforementioned Source SDK tool. We also supported the redesign of our team’s
bespoke robotic head and a low-cost expressive face[159] by increasing its DoF to 21 and performing iterative
experimentation to increase their realism and e"cacy. Additionally, we have developed appearances for these
expressive faces to include more diverse backgrounds and to represent di$erent age groups, genders, and races.

The robots are capable of conveying dynamic humanlike expressions meeting or exceeding the current state
of the art. This work may one day help clinicians improve their clinical communication and cultural competency
skills with real patients with di$erent ethnic and cultural backgrounds.

6.2 End-to-End Analysis-Modeling-Synthesis Framework Development
In addition to building robotic and virtual embodiments, we also developed an end-to-end Analysis-Modeling-
Synthesis (AMS) framework that included: automatic FEA, FAM, and dynamic FSA systems (see Figure 7).

The contributions of this work are as follows. First, we extended an FEA system previously developed by
our team [133] to improve automatic FACS ratings of facial AUs. The extended FEA system bene!ts from pre-
processing techniques such as noise reduction and facial alignment techniques to diminish the e$ects of facial
deformations, including translation, rotation, and distance to the camera. Next, a CLM-based tracker [70] is used
in the FEA system, as it is robust to illumination and occlusion. This tracker robustly locates the FL locations on
an input frame based on the global statistical shape models and the independent local appearance information
around each landmark.
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Fig. 7. In our work, we have developed of an end-to-end AMS framework to recognize, model, and synthesize facial expres-
sions of real humans to the face of a physical or virtual robotic head. The AMS framework included automatic FEA, FAM,
and dynamic FSA systems. Furthermore, we developed a novel FPM framework to build accurate computational models of
people with Bell’s Palsy that are constructible in real time.

Second, we proposed a novel data-driven FAM system developed in three steps: First, we collected real dynamic
facial expression data, second, we labeled the FE data correlated to each frame of videos and their intensities
using manual outsourcing technique, and third, we generated reversible appearance parameters by calculating
a 46-dimensional binary vector detailing all AUs. This FAM system makes it possible to computationally model
dynamic FEs tracked by the FEA system based on real human facial expression data, which ultimately can make
it easier for developers to generate a diverse set of realistic face models derived from real patients.

Third, we extended an FSA system previously developed by our team [133] for synthesizing realistic, patient-
like FEs on both our bespoke RPS head and virtual avatar faces. The method is based on data-driven synthesis,
which maps motion from video of an operator/CE onto the face of an embodiment (e.g., virtual avatar or robot).
This platform-independent software makes it possible for SMs to easily and robustly synthesize and animate
realistic expressions on the faces of a range of embodiments, and makes it easy for CEs to perform simulation.

This end-to-end AMS framework models and synthesizes patient-data-driven facial expressions, and can eas-
ily and robustly map these expressions onto both simulated and robotic faces. By leveraging this work, other
roboticists and engineers will be able to discover platform-independent methods to control the FEs of both robots
and virtual agents. This can also help improve how clinicians interact with patients, and increase their cultural
competence when interacting with patients from diverse backgrounds.

6.3 Modeling and Synthesizing Clinically Relevant Expressions
For the past decade, our team has developed new methods for modeling and synthesizing a range of clinically
relevant conditions, including dystonia, pain, BP, and stroke [130, 132–134, 149, 151, 152, 159, 161] (see Figure 8).
We brie#y summarize several of these projects below (dystonia, pain, stroke) and then discuss in a bit more detail
results of recent Bell’s Palsy modeling and synthesis project.

6.3.1 Dystonia. Dystonia is a movement disorder characterized by involuntary motions, often in the head
and neck. People with dystonia often struggle during interaction due to the biases of others. Thus, we were
curious to explore if a robot conveying dystonia could serve as a facilitator to help improve human–human
communication. Our team interviewed four people with head and facial movement disorders and synthesized
their movements on a physical robot. We then experimentally explored using these robots as social facilitators
to improve communication between people with and without disabilities. Our results suggest that a robot may
be useful for this purpose [161]. We also observed a signi!cant relationship between people who hold negative
attitudes toward robots and negative attitudes toward people with disabilities.
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6.3.2 Pain. Another clinically relevant facial expression we have explored is pain. We have modeled and
synthesized both acute and chronic pain, on both virtual avatars and physical robots [130, 132]. In one study,
we explored people’s perceptions of pain, both on a humanoid robot and comparable virtual avatar, using au-
tonomous facial expression synthesis techniques.

We conducted an experiment with clinicians and laypersons to explore di$erences in pain perception across
the two groups, and also to study the e$ects of embodiment (robot or avatar) on pain perception. The results of
this study indicated that clinicians have lower overall accuracy in detecting synthesized pain in comparison to
lay participants. It also suggested that all participants are overall less accurate detecting pain from a humanoid
robot in comparison to a comparable virtual avatar [130].

6.3.3 Stroke. Additionally, we built expressive patient simulator systems that can recognize and synthesize
asymmetrical facial expressions similar to patients with stroke. Stroke, a substantial contributor to the global
disease burden, a$ects 15 million people each year and is the second leading cause of death worldwide [77, 171].
Of those a$ected by stroke, !ve million die and another !ve million are permanently disabled [171]. One of
the contributors to this disease burden is diagnostic failures: stroke is the fourth most common misdiagnosis
reported by clinicians [180].

Research shows CLs often fail to master the neurological examination on simulated patients. This may result
in inadequately performing the exam on real patients [15]. Even if a CL performs the exam well, they may have
little con!dence in the accuracy of their !ndings. Given the subjective nature of interpretation of these !ndings,
low-con!dence in the neurological exam, irrespective of how well it is performed, may lead to an uncertain
interpretation of the results. This uncertainty can lead to missed opportunities for acute interventions, prompt
treatments, and prevention of serious harm [44, 136].

One approach to address the urgent need for a smart training tool for clinicians to practice their stroke diag-
nosis skills is to make simulators capable of realistically depicting non-verbal, asymmetric facial cues that are
important for the rapid diagnosis of neurological emergencies, such as stroke [149, 152]. In our work, we intro-
duced the concept of stroke-mask synthesis on VPS and RPS systems [152]. These systems depict patients with
acute stroke and can help train future generations of neurologists in rapid diagnosis of acute neurological injury.
Our work can also help researchers in the facial recognition community to explore new methods for asymmetric
facial expression analysis and synthesis.

6.3.4 Bell’s Palsy. Every year, 22 million people experience stroke, Parkinson’s disease, Moebius syndrome,
and BP [5, 124, 189], which can cause facial paralysis (FP). Facial paralysis is the inability to move one’s facial
muscles on the a$ected side of the face, leading to asymmetric facial expressions (A-FEs) [48]. The quality of
social interaction that people with A-FEs experience can be poor due to others who have di"culty understanding
their emotions [53]. Studies show observers perceive the emotions of a person with FP di$erently from their
actual emotional states [178]. For example, people with severe FP are perceived as less happy than people with
mild FP [54].

In clinical contexts, these misperceptions can lead to poor care delivery. Healthcare providers frequently have
negatively biased impressions of patients with facial nerve paralysis [186], which may adversely a$ect the quality
of care they receive [161, 164]. If a patient and a healthcare provider do not communicate e$ectively, then there is
a higher chance that their treatment will be unsuccessful [45, 178]. Therefore, new training tools that enable CLs
to practice their interaction with FP patients may result in improved care for people with FP and also improve
how clinicians calibrate their perception of asymmetric expressions.

However, prior development of facially expressive VPS and RPS systems was based on the assumption that
human faces are structurally symmetric and thus have not accounted for expressing A-FEs. Due to the large
number of people a$ected by FP, it is important to also explore synthesizing A-FEs in clinical contexts. To our
knowledge, FP patient simulators have not been explored in this way.
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Fig. 8. Three examples of the expressive patient simulator systems our team has built, with clinically relevant-expressions:
(a) Dystonia [161], (b) Pain [131], and (c) Bell’s Palsy [134].

In our work, we focused on considering people with FP to provide a better training tool for clinicians to practice
how to avoid forming biased impressions, improve clinical communication, and, therefore, improve care delivery
for people with FP. For this purpose, we introduced the concept of facial paralysis mask (FPM) synthesis to
incorporate accurate A-FEs on patient simulators based on real patients’ facial characteristics, situated within
a clinical education context. FPMs are computational models of di$erent pathologies derived from recognized
expressions of real people with FP. FPM synthesis is the process of using pre-built FPMs and overlaying them
on the facial model of the standard analysis-modeling-synthesis framework described in Section 6.2 to recreate
A-FEs on a RPSs and VPSs.

This work explored two research questions. First, How does one computationally model the facial characteristics
of BP, and synthesize them on a patient simulator to help support clinical engagement of those a"ected? To address
this question, the !rst step was to collect self-recorded, publically available videos from people with BP conveying
four expressions (raising eyebrow, furrowing brow, smiling, and closing the eye).

Next, we presented a novel algorithm for the FPM framework to build accurate computational masks that can
model facial characteristics of people with BP and are constructible in real time (see Figure 7). This algorithm
tracks faces in each source video and uses the 2D coordinates of the 34 facial features of the una$ected side of
the face to calculate the 2D coordinates of the other part of the face, assuming that the person did not have A-FEs.
Dividing the actual coordinates of the a$ected side by the calculated coordinates of the a$ected side gave us the
scaling parameters βi,x and βi,y for x and y of each of the facial points. A 68-bit array consisting of the scaling
parameters of all 68 tracked feature points is the calculated mask for the patient with BP.

Our second research question was How realistically do these masks convey signs of BP when applied to a virtual
patient? To address this question, we conducted a qualitative, expert-based perceptual experiment to evaluate the
realism of the synthesized expressions in comparison to actual patients and get feedback for further re!nement.
This is a common method for evaluating synthesized FEs [49, 127].

To perform this validation, after collecting videos from a performer without BP, we inputted the videos into
the AMS framework (see Section 6.2), and overlaid three pre-built masks of BPs to recreate the AFE (see Figure 7).
Next, the generated asymmetric expressions of BP were transferred to the face of a VPS system to create stimuli
videos (see Figure 8(c)).

The results of this study suggest that two of the developed BP masks realistically display signs of BP. Fur-
thermore, clinicians’ perceptions of the synthesized expressions were comparable to their perceptions of the
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expressions of real people with BP. Therefore, the models described in this work have the potential to provide a
practical training tool for CLs to better understand the emotions of people with this facial paralysis.

7 FUTURE RESEARCH DIRECTIONS
There are several opportunities to advance the state of the art of expressive RPS and VPS systems within the
context of clinical learning, as well as in the broader context of robotics and HRI. These include technical ad-
vancements, such as new methods for FEA, FMA, and FSA, as well as socio-technical considerations, such as
stakeholder-centered design and ethical questions. We brie#y outline these below.

7.1 Advancing Expression Recognition and Synthesis Approaches
As discussed, there are many methods for recognizing and synthesizing facial expressions. However, they have
their drawbacks. Many commercially available systems are unable to perform the tasks necessary for FE analysis
or synthesis (e.g., FaceReader is not able to provide head pose estimation). Furthermore, systems may may lack
state-of-the-art performance, rendering them impractical for clinical applications.

Thus, there are many opportunities to advance the state of the art. For example, some regression-based meth-
ods such as CNNs are successful for FL detection and tracking. Furthermore, Gabor features showed promising
results for feature extraction, and the CNN and SVM methods improved classi!cation performance. Integrating
these approaches into facial expression FEA and FSA systems may improve analysis and/or synthesis of dynamic
FEs in individuals with and without facial disorders.

7.2 Combining Domain Knowledge with Facial Model Development
As part of the design process, engaging in stakeholder-centered design with CEs and CLs, as well as conduct-
ing observations of live simulations is important. For example, neurologists can help validate if neurological
impairment models created by the system are realstic and also ensure the patient simulator’s appearance and
expressiveness is well aligned with their clinical education goals.

7.3 Real-world, Spontaneous Data Collection
It is important for developers to release systems that are designed and built using enough real-world, spontaneous
facial expression data [94]. The number of facial expressions used for training and developing FEA, FAM, and
FSA systems should be much higher to lead to more realistic results. In case of having a low number of images
for training, it is challenging to choose the best approaches to enlarge the dataset while developing the system.
Expressive robot developers also need to make sure the system includes a continuous adoption process that
learns each user’s expressions over time and adds them to its knowledge base [94]. It is also important to pay
close attention to include the variability of the facial data in terms of subjects by including data from subjects well
represented in gender and ethnicity, as well as diversity in terms of lighting, head position, and face resolution
[94]. Given that patient simulators are designed to mimic humans and are designed for use by humans, we added
a discussion on the importance of having designs that are informed by human sensory systems and behavioral
outputs. Finally, it is important that datasets are labeled and analyzed in concert with domain experts, but to our
knowledge little work has been done in this area. One potential solution can be to create a large training set of
photorealistic facial expressions generated using existing face generation platforms labeled by human observers.

There are several existing facial expression datasets and Action Unit datasets that tackle some of the data
collection challenges, including DISFA [126], BP4D-spontaneous [209], A$-Wild 2 [111], and SEWA DB [113].
Furthermore, some of the recent facial expression synthesis methods, such as those mentioned in Section 5,
are also intended to address these challenges. However, more work can be done in this !eld to tackle all the
afore-mentioned problems.
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Moreover, newer directions also seek learning models with little or no supervision, both for facial landmarks
(unsupervised landmark detection) and for Action Units that can help to address these challenges.

In terms of identifying databases of images or videos that re#ect real facial expressions, it is important to
consider the relationship between internal states and external facial cues. Work done by Benedek et al. [50]
indicates people perceive the appearance of the face, especially the eyes of others, to understand both their
external goals or actions, and their internal thoughts and feelings. Voluntary facial expressions are sometimes
made in the absence of internal states. However, it is di"cult to detect internal states in case attention is not
presented externally. Therefore, it is critical to identify datasets of real data to better infer the external facial cues
and more accurately interpret internal states.

It is worth mentioning that there is the potential of having a pattern of confusions (false alarms and misses)
in detected facial expressions. False alarms is the errors of describing a facial expression being present when it
was absent. Misses is the errors of describing a facial expression as being absent when it was present. Studies
indicate that the pattern of confusion becomes worse when some other challenges occur at the same time, such
as illumination or occlusion in an image [153].

7.4 Cultural Considerations
Researchers have also explored the caveats associated with cultural variance in the way observers infer internal
experiences from external displays of facial expressions. For example, Engelmann et al. [82] argues that culture
in#uences expression perception in di$erent ways. For one, people from di$erent cultures may perceive the in-
tensity of external facial expressions di$erently. For example, American participants rated the intensity of same
expressions of happiness, sadness, and surprise higher that Japanese participants. Moreover, depending on cul-
tural contexts, there is a di$erence in the way people infer internal states from external facial cues of expressions.
For example, researchers ran an experiment to ask two groups of American and Japanese participants to rate
the intensity of internal and external state of a person expressing certain emotions. American participants gave
higher rates to external facial cues of emotions, while Japanese participants gave a higher ratings to internal state
of emotions. Therefore, it is important to consider these cross-cultural di$erences in inferring internal states and
external expressions.

7.5 Generating Universal Models for Various Pathologies
To generally represent all patients with speci!c pathologies, one can create a universal model for each that
encompasses its predominant features. This can be done by leveraging our previous !ndings in Section 6.3 to
further extend the FPM framework in two directions: (1) Extend the FPM framework to encompass the predomi-
nant features of a speci!c pathology (e.g., stroke) and (2) transfer the framework from being an individual mask
generator to a universal model generator. This can be done by using enough source videos of people with the
speci!c pathology, extracting its common features, and creating a general model (see Figure 9). By leveraging
this work, CLs will have the potential to more accurately diagnose people with diverse backgrounds, and to be
better able to interact with them.

7.6 Sharing Autonomy between Users and Expressive Robots
Considering how to share autonomy between a human and robot is an important aspect to ensuring e$ective
HRI [156]. It can help to reduce an operator’s workload, allow both inexperienced and professional operators to
control the system [86, 156].

As such, it is important to focus on interaction between the control system and human users in the context
of expressive simulator systems. Thus, researchers can design and validate a customizable, shared autonomy
system for expressive RPS systems to leverage the advantages of automation while also having users as “active
supervisors.” For example, in our work, we are designing a shared autonomy system that can support a range
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Fig. 9. The context for performing masked synthesis using the Generalized Stroke FPM framework and the AMS framework.
This can be performed on either a VPS or RPS system.

of adjustable control modalities, including direct tele-operation (e.g., puppeteering), pre-recorded modes (e.g.,
hemifacial paralysis during a stroke), and reactive modes (e.g., wincing in pain given certain physiological sig-
nals) [151]. It also can help overcome common control challenges, including the operator being overwhelmed,
having high workload, and lack of autonomy in robotic simulator systems. This system can help to make robots
adjustable to di$erent control paradigms, so that they reliably support CEs’ workload in dynamic, safety-critical
settings, and improve the operator’s ability to focus on their educational goals rather than on robot control.

8 ETHICAL CONSIDERATIONS FOR PATIENT SIMULATOR SYSTEMS
Using FEA and FSA technologies to develop new RPS and VPS systems and integrating them within clinical learn-
ing contexts presents a number of ethical and social challenges that require speci!c attention. It is important
researchers and technology developers carefully consider these challenges, and work to design inclusive tech-
nologies to avoid unintended consequences. While this is by no means an exhaustive list, a few key challenges
are highlighted herein.

8.0.1 Racial and Ethnic Bias in FEA Technologies. There are many concerns regarding racial, ethnic, misogy-
nistic, and ableist biases in FEA technologies, which can perpetuate social and !scal oppression [51, 139, 140]. For
example, many studies show high rate of misidentifying blacks by recognition systems, which can be due using
FEA algorithms trained on a racially biased datasets, as well as systemic biases embedded within the systems
themselves [59]. Such biased models can then a$ect FSA, and further perpetuating biases in clinical education
[172]. Moreover, there are challenges regarding distancing and dividing e$ects caused by using FEA systems for
controlling patient simulators. For example, an operator of an expressive robot sometimes need to adjust their
feelings to express exaggerated facial expressions (e.g., intense smile) or fake facial expressions (e.g., re#ecting
di$erent feeling than what they genuinely feel at the moment), so the FEA algorithm can detect and/or track the
expression. Although some researchers think these adjustments may only cause minor problems or di"culties,
others think using these technologies can distance and dehumanise people [43].

8.0.2 Privacy. Another concern is on privacy and the extensive use of data in FEA and FSA systems. Wide-
spread use of these systems in healthcare settings can lead to the collection of large amounts of patients’ and
clinical workers’ actions, locations, personal, physiological, and behavioral information. This can raise many
concerns about the ways of protecting the privacy of collected personal data, as well as the ways simulator
developers use the data.
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8.0.3 Uncanny Valley. Another concern that often arises with highly humanlike RPS and VPS systems is
a phenomenon called the Uncanny Valley [135]. This is a theory that suggests that as robots become more
humanlike they are more attractive, until they reach a certain point, where people’s a"nity for these humanlike
robots descends into a feeling of strangeness and unease [108, 135]. This is re#ected in both their appearance and
their behavior [169]. While CLs require highly humanlike RPS and VPS systems to learn proper clinical skills,
ones that miss the mark can cause learner distress, and adversely a$ect their learning, Thus, RPS/VPS designers
should carefully consider learners’ perceptions as part of their design process.

8.0.4 Risks and Benefits of Diverse FSA. Just like humans, humanlike patient simulators that resemble a cer-
tain gender, race, or culture in their design can face judgement and aggression based on the biases towards such
social identities. Designing humanlike robots with diverse appearance and behavior has numerous bene!ts. For
example, building a humanlike robot resembling a patient who has had a stroke for healthcare education applica-
tion provides the clinical learners with a great opportunity to practice their communication and procedural skills
on these robots, preparing them for treating real human patients with stroke in their future careers [149, 152].

However, diversifying the appearance and behavior for simulators also introduces risks. For example, roboti-
cists may implicitly or explicitly reinforce gender biases by assigning a speci!c gender to the robot during the
design process, and CLs/CEs might as well during simulation sessions [172].

People also more readily dehumanize robots racialized in the likeness of marginalized social identities than
those racialized White [174]. As such, people with racist behavioral biases represented similar racist biases while
interacting with humanlike RPS or VPS systems of a similar race.

9 DISCUSSION
The technologies and methods discussed in this review can cultivate a bridge between robotics and healthcare
research, and improve existing clinical training practices, by enabling VPS and RPS systems to become more
diverse, interactive, and immersive for CLs and CEs. This will enable CLs to further engage during training ses-
sions, will help them to signi!cantly improve their communication and procedural skills, and ultimately save
more lives. Building on these approaches will lead to systems with a much wider range of expressivity, such as
the ability to express clinically relevant facial expressions. Through studies with stakeholders, including patients,
clinicians, and clinical learners, technologists can improve the expressiveness of simulator robots, and improve
the interactions between humans and robots for expressive patient simulators and beyond. Ultimately, this work
may help clinicians deliver better clinical care, by both improving their diagnostic skills and by providing new
educational opportunities for reducing racial disparities, by teaching them to be less biased when interacting
with real patients [161]. Furthermore, disseminating the results of this work (and software) to the research com-
munity will help both the broader robotics and healthcare communities employ these novel systems in their own
application domains.
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APPENDIX

Table 3. Simulators: Types, Benefits, and Drawbacks

Type Prior
Work

Process Bene!ts Drawbacks

SHP [41, 47,
91, 188]

Living humans acting
as patients through a
clinical scenario that
is de!ned by CEs.

• Provides live, real-human case study
• Tangible body and face
• Capable of expressing facial cues

• Hard to manually control some of the
physiological parameters

• Di"cult and expensive to recruit, espe-
cially ones at younger ages

APSs [72, 184,
202]

A physical
human-shaped
surface with dynamic
visual imagery of
body parts projected
on the surface.

• Their physicality can convey haptic sim-
ilarity to people

• Their virtual component can display dy-
namic appearances and FEs without be-
ing limited by hardware infrastructure

• Di"cult to display an accurate represen-
tation of naturalistic symptoms

• Limited !eld of view, projection occlu-
sion, hard to have multiple users

VPSs [8, 30,
35]

Interactive digital
simulations of real
patients, displayed on
a screen.

• Can virtually portraying physiology
variables without being limited by hard-
ware infrastructure
• Are able to richly and quickly display

changes in the appearance, symptoms,
behavior, or body language of simulator

• Improve knowledge and skill-building
compared with non-digital methods

• make clinical education more accessible
to CLs in low-resource settings

• Can reduce preventable patient harm
• Have a positive in#uence on CLs’ com-

prehension, con!dence, e"ciency, and
enthusiasm for learning

• Enable CEs to run desired clinical simu-
lation scenarios on realistic patients.

• VPSs ONLY: Limited by the #at 2D dis-
play that makes them unable to repre-
sent a physical 3D human-shape volume
with touchable physiology variables

COMMON BETWEEN VPSs & RPSs:
• Complicated for CEs to use and control
• Running clinical scenarios on them is

time-consuming and need scheduling
• Low technology literacy levels of CLs

along with poorly designed system can
adversely a$ect learning performance

• Can add disruption and change the clin-
ical work#ow in unforeseen directions

• Completely lack FEs, and thus lack the
ability to convey key diagnostic features
of disorders and social cues

• Lack of FEs may adversely a$ect CLs’
learning performance, and they will ul-
timately need to be retrained.

• Even in systems with expressive faces,
inaccurately exhibiting symptoms on a
simulator’s face may reinforce wrong
behaviors in CLs and result in failure to
recognize a disease in Cs’ future careers.

• Di"cult to display accurate representa-
tions of naturalistic symptoms on them.

RPSs [18, 26,
36, 64]

Lifelike physical
robots that can
simulate realistic
patient physiologies
and pathologies.

• Versatility: Can exhibit 5000+ variables
• Have physical bodies comparable to the

bodies of humans, where CLs physically
examine and conduct procedures on.

• Can reduce preventable patient harm
• Have a positive in#uence on CLs’ com-

prehension, con!dence, e"ciency, and
enthusiasm for learning

• Enable CEs to run desired clinical simu-
lation scenarios on realistic patients.

• RPSs ONLY: Limited by hardware in-
frastructure
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