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With the increase of uncertain and intermittent renewable energy supply on the grid, the power system has
become more vulnerable to instability. In this paper, we develop a demand response strategy to improve
power system small-signal stability. We pose the problem as an optimization problem wherein the total
demand-responsive load is held constant at each time instance but shifted between different buses to improve
small-signal stability, which is measured by small-signal stability metrics that are functions of subsets of
the system’s eigenvalues, such as the smallest damping ratio. To solve the problem, we use iterative linear
programming and generalized eigenvalue sensitivities. We demonstrate the approach via a case study that
uses the IEEE 14-bus system. Our results show that shifting the load between buses, can improve a small-
signal stability margin. We explore the use of models of different fidelity and find that it is important to
include models of the automatic voltage regulators and power system stabilizers. In addition, we show that
load shifting can achieve similar improvements to generation shifting and better improvement than simply
tuning power system stabilizers.

1. Introduction

The small-signal characteristics of the transmission network are
strongly influenced by intermittent and uncertain renewable energy
sources [1]. There is a growing concern that supply fluctuations may
cause transmission networks to operate closer to their stability bound-
aries. Small-signal stability refers to the system’s ability to maintain
synchronism when subjected to small disturbances [2]. It is well known
that tuning power system stabilizers (PSSs) is an effective approach to
improve small-signal stability via increased damping [3,4]. However,
tuning PSSs may not be enough to ensure sufficient damping. Generally,
PSSs are not tuned in real time because of implementation difficulties.
Furthermore, small signal stability issues may be exacerbated in the
future with the reduction in power system inertia due to the introduc-
tion of higher penetrations of power-electronics-interfaced renewable
energy sources. Therefore, multi-faceted strategies to optimize damping
in a short period of time are needed.

The operating point of the power network can be shaped to en-
sure that the network’s small-signal responses are desirable [5]. This
is usually done by generator rescheduling. Some strategies proposed
for redispatching generators to improve small-signal stability rely on

the Small-Signal Stability Constrained Optimal Power Flow (SSSC-
OPF) [6-8], which imposes a stability constraint on the optimal power
flow solution achieving a lowest-cost operating point that is small-
signal stable. Another approach to improve small-signal stability uses
sensitivity-based analysis to determine the change in direction of the
generation pattern to improve small-signal stability [9-11].

In this paper, we propose a strategy that uses Demand Response
(DR) to improve power system small-signal stability. Many demand-
responsive loads can respond faster than ramp-limited conventional
generators. Fast-acting demand-responsive loads have long been pro-
posed to support power system frequency stability, e.g., [12,13], and
there have also been some proposals to use loads to support voltage
stability [14-16]. Recently there have been a large number of demon-
strations of loads providing fast ancillary services [17-20]. Some past
work has already proposed using DR to improve small-signal stability.
For example, [5] mentioned load reduction could be used as a last
resort to reduce tie-line flows in order to increase the damping of the
inter-area oscillation, [21] proposed shifting load in time to improve
small-signal stability, and [22] proposed an algorithm that co-optimizes
generation and demand to enhance small-signal stability while also
considering frequency stability. However, changes in system-wide load
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Notation

Functions

fe) System dynamic equations

g(*) System algebraic equations
H;;() Line flow for line (i, j)

hi; () Linearization of H;;

Sei() Ceiling function of AVR at bus i
Sets

M Set of critical eigenvalues

N Set of all buses

Spy Set of PV buses

Spq Set of PQ buses

Sg Set of buses with generators
Sbr Set of buses with demand-responsive load
Spss Set of generators with PSS

Variables & Parameters

Aei»Be; Ceiling function parameters of AVR at bus i

B;; Susceptance of line ij

D, Damping of gen at bus i

G;; Conductance of line ij

H,; Inertia of gen at bus i

K, Kei» Kp; Parameters of AVR at bus i

Ky, Gain of PSS at bus i

iqisiq dg-axis currents of gen at bus i

Ly Left eigenvector of eigenvalue m

M Number of finite eigenvalues

P Real power demand at bus i

Do, Real power generation at bus i

Ga.i Reactive power demand at bus i

i Reactive power generation at bus i

Fin Right eigenvector of eigenvalue m

Fai Armature resistance of gen at bus i

S, Stability metric n

SS; Numerical Sensitivity with respect to gener-
ator i

T Ty Tein Tt Time constants of AVR at bus i

Ty Ty T Ts;, Ty, Time constants of PSS at bus i

V; Voltage magnitude at bus i

Vais Vo, dg-axis voltages of gen at bus i

Vii Field voltage of gen at bus i

I7fy,- Output signal of AVR at bus i

Vi Voltage measured by AVR at bus i

VirisVeoi Internal signals of AVR at bus i

Viiis Vso.i Input and output signals of PSS at bus i

Vi Vi Internal signals of PSS at bus i

Vief. Reference terminal voltage of AVR at bus i

xéj, x(’],i dq-axis transient reactances of gen at bus i

Xy, Xp,is Xq.i Internal states of PSS at bus i

X, XG, X, Xg Dynamic states

require corresponding changes in system-wide generation, in order to
maintain system frequency, and so the speed of the overall response is
limited by the ramp rates of the generators.

In contrast to load shedding or temporal load shifting, we propose a
spatio-temporal load shifting strategy to improve small-signal stability.

Y Yo YGs YR Vs Algebraic states

a Magnitude of largest real part of eigenval-
ues

Wps P Real, imaginary parts of eigenvalue m

Y Weighting factor for stability metric n

5; Rotor angle of gen at bus i

£,€ Step size maximum, minimum limits

o Damping ratio of eigenvalue m

fg Smallest damping ratio of generator modes

n Damping ratio of critical inter-area mode

0; Voltage angle at bus i

Am Eigenvalue of a matrix

Wa,is Vai dg-axis magnetic fluxes of gen at bus i

Ui Real to reactive power demand ratio at bus
1

X Arbitrary system state

T Mechanical torque input of gen at bus i

; Rotor frequency of gen at bus i

To simplify notation, we assume there is at most one generator
(gen) per bus. Superscript ‘O’ denotes setpoint/nominal values.
Superscript ‘*’ denotes values at the current operating point.
Overlines and underlines denote maximum and minimum lim-
its for the corresponding variable. Bold symbols denote vectors
including all variables of a type.

The strategy reallocates load to different buses while keeping the
system-wide loading constant at each time instance, so as not to impact
system frequency or require generator redispatch. Spatial load shifting
is realized by increasing the energy consumption of flexible loads at
some buses while decreasing the energy consumption at others; we do
not need to physically shift loads in space. Later in time we will ‘pay
back’ the changes. Over time each load receives as much energy as it
would have consumed without participating in DR, but the timing of
its consumption is changed (subject to its own flexibility constraints
defined by the DR participant). We proposed a similar strategy for
improving voltage stability in [14]. Our strategy could be used when
the system does not have an adequate stability margin and generators
are unable to respond sufficiently quickly to correct the problem. In
that case, fast-acting demand-responsive loads would respond initially
until the slower generators can take over. We anticipate that it would
not be cost-effective to develop DR capabilities just for this application,
but that loads already capable of fast response for other DR applications
could also support small-signal stability, increasing the value to both
the power system and DR participant.

The contributions of this paper are as follows. (1) We formulate
an optimization problem that uses spatio-temporal loading shifting to
optimize small-signal stability metrics that are functions of subsets
of the system’s eigenvalues. (2) We use iterative linear programming
(ILP) and generalized eigenvalue sensitivities [23,24] to solve the
optimization problem. (3) We conduct case studies using the IEEE 14-
bus system to determine stability improvements and optimal loading
patterns, and we compare the results obtained using different system
models — with and without Automatic Voltage Regulators (AVRs) and
PSSs - to assess the impact and importance of model fidelity. (4) We
compare the performance of spatio-temporal load shifting to generator
redispatch, load shedding, and tuning the gain of PSSs to show the
relative potential of DR to provide stability-related services.

This paper substantially builds on our preliminary work [25] that
showed that a small-signal stability margin of Kundur’s two-area sys-
tem [26] can be improved by shifting load from area 2 to 1 while
keeping the system-wide load constant. However, that paper modeled
the load as constant impedance rather than constant power and so
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stability improved because of spatial load shifting and the change in
load impedance, instead of shifting alone. To focus our investigation
on the effectiveness of spatial load shifting, we model the load as
constant power in this paper. In addition, that paper used eigenvalue
sensitivities corresponding to the reduced system matrix, resulting in
high computational cost to solve the problem. Here we use generalized
eigenvalue sensitivities, which reduce the computational cost (further
details are provided in Section 4). Furthermore, [25] did not consider
AVRs or PSSs, but since they are commonly used in practice to enhance
power system stability [27,28], we consider them here. Under certain
circumstances, the AVR/PSS parameters may be incompletely known.
Our work investigates whether the inclusion of the models of AVR/PSS
will significantly alter the optimal design. Lastly, here we use a larger
and more realistic system, i.e., the IEEE 14-bus system, rather than the
simpler system used in [25].

The remainder of the paper is structured as follows. Section 2
describes the problem. Section 3 introduces the models used within the
optimization formulation, which is presented in Section 4 along with
the solution algorithm. Section 5 details the case studies and Section 6
gives conclusions.

2. Problem description

Poorly damped swing dynamics are a substantial concern in the bulk
power grid. When the system is poorly damped, a small disturbance
could lead to the failure of the protection system, the reduction of inter-
area power transfer, or more seriously, system instability and cascading
failure. While grid controls and operations are proactively designed to
reduce the likelihood of poor-damping scenarios, the power grid is still
susceptible to periods of low damping; this susceptibility becomes more
pronounced as more intermittent renewables are integrated into the
grid, since this increases the variability of system operating points.

Traditionally, damping concerns that arise during operations have
been resolved through generation redispatch and, less commonly, other
means for shaping the operating solutions (e.g., rerouting of power
using new power electronics devices). However, generation-side power
redispatch is slow (taking tens of minutes due to ramping rate con-
straints), costly, and spatially limited. In some cases, the bulk power
system can degrade quickly toward poor damping and eventually in-
stability, and generator redispatch may have neither the speed nor the
spatial support to resolve the damping issues. Hence, alternate methods
for resolving damping issues are needed.

Here, as an alternative, we consider demand-side strategies for
resolving poor damping in the bulk grid. Many DR actions can be
executed within seconds. Moreover, in many systems, the number of
buses with demand responsive loads now exceeds the number of buses
with adjustable generators, so demand-side strategies can potentially
provide more flexibility to modify the system loading pattern compared
with generator redispatch. The following simple example shows the
potential benefit of using demand responsive loads to maintain sys-
tem stability under disturbances. The example is based on a standard
Matlab/Simulink simulation [29] of the Kundur two-area system [26].

In this example, we focus on the change of the voltage magnitude
at Generator 1 after a small disturbances. A three-phase fault at Bus 7
occurs at 2 s and is cleared at 2.5 s This voltage magnitude is shown in
blue in Fig. 1. The system is initially poorly damped and, as a result,
the voltage magnitude at Generator 1 has sustained oscillations after
the disturbance. The oscillations cannot be reduced unless the damping
of the system is improved by redispatch. A typical large coal generator
may be able to ramp 1% of its capacity in 1 min [30]; therefore, the
generators need minutes to realize the required dispatch to enhance
system damping. As an alternative, we have implemented a demand-
side strategy for improving the damping. The original load is 967 MW
in Area 1 and 1767 MW in Area 2. In this simulation, we increase
the load in Area 1 by 300 MW and decrease the load in Area 2 by
300 MW, i.e., spatial load shifting between the two areas. The voltage
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Fig. 1. Voltage magnitude at Generator 1 in the Kundur two-area system when a
three-phase fault occurs at 2 s and is cleared at 2.5 s. Spatial load shifting improves the
damping of the system after a small disturbance. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Small-signal
stability region

Power flow
feasibility region

Fig. 2. Conceptual illustration of the problem. The green and blue areas are the power
flow feasibility and small-signal stability regions, respectively. The purple cross is the
initial operating point with an inadequate stability margin. The red diamond is the
operating point after a demand response action. The orange square is the operating
point after the follow-up generator actions. The blue triangle is the operating point
after the loads return to their initial values. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

magnitude at Generator 1 with spatial load shifting is shown in red in
Fig. 1. In this case, since system damping is quickly improved via spatial
load shifting, the oscillations are reduced after the small disturbance,
showing that the damping of the system is improved.

Our aim in this paper is to develop a general methodology for
demand-side power shifting to resolve poor damping, based on an
optimization formulation. Fig. 2 shows a conceptual illustration of the
problem. The green shaded region is the feasibility region of power flow
(with respect to different generation and load patterns) considering
various engineering limits (e.g., line flow, voltage magnitude), and the
blue shaded region is the small-signal stability region; they intersect
with each other and are both non-convex in general. The initial op-
erating point is shown with the purple cross. The system is initially
operating with an inadequate stability margin. Examples of stability
margins include: (1) the difference between the smallest damping
ratio (SDR) of the linearized model’s eigenvalues and a pre-defined
damping ratio threshold for that system [7,31]; (2) the magnitude
of the largest real part among the eigenvalues, i.e., the closest dis-
tance of an eigenvalue to the imaginary axis; and (3) the distance of
the operating solution to the instability boundary in a suitable state
or parameter space. The system operator would like to improve the
stability margin by initially only changing the power consumption of
fast-acting demand-responsive loads. The system operator shifts load
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between buses while the total load remains constant. We assume that
the active power production of the generators is fixed at the values
determined previously via economic dispatch, with the exception of
the (fast-acting) generator at the slack bus, which changes its active
power production to compensate the change in system losses resulting
from the change in loading pattern. Due to the DR action, the oper-
ating point moves to the red diamond (Step 1). The loading pattern
is maintained for a short period of time while the system operator
redispatches slower-acting generation to maintain or improve the new
stability margin and also compensate energy to the demand-responsive
loads, moving the operating point to the orange square (Step 2). Energy
compensation enables loads that reduced (increased) consumption to
increase (reduce) consumption for some amount of time to ensure that
each load receives as much energy as it would have consumed without
participating in DR. Finally, the operating point moves to the blue
triangle (Step 3) at which loads return to their initial values and the
generators alone ensure small-signal stability.

In this paper, our goal is to determine the optimal dispatch of
demand-responsive loads corresponding to the red diamond, i.e., Step
1. Extending our approach to include the other steps would be straight-
forward, using the same type of multi-period formulation we proposed
for using spatio-temporal load shifting to improve voltage stability
in [14]. However, to focus on the impacts of DR actions on small-
signal stability, we only present the formulation and results for Step
1, i.e., single-period spatial load shifting, here.

3. System model

The swing dynamics of a power system can be modeled with a set of
nonlinear differential-algebraic equations (DAEs) [32]. For simulation
and analysis, these equations are often linearized around a current
operating point. Here, we consider stability metrics defined from the
linear model - specifically, functions of the eigenvalues — which are
indicative of the system’s damping. Noting that the damping level of the
swing dynamics is primarily governed by the inertial responses of the
synchronous machines together with control systems including AVRs
and PSSs, we use a standard (simplified) model which captures these
elements — the electromechanical dynamics and excitation system, and
its associated control systems. In this section, we introduce this model,
and in turn give a complete formulation of the design problem, with
the aim of highlighting various factors that may influence the spatial
load-shifting design.

Formally, we consider a bulk power transmission system with buses
belonging to set . A subset of the buses have generators and also
belong to set S;. We assume there is at most one generator per bus; this
is not a limitation of the approach, but rather for notational simplicity.
One bus in set S; is modeled as a slack bus while the others are
modeled as PV buses belonging to set Spy. The remaining buses in N
are modeled as PQ buses belonging to set Spy. A portion of the buses
within M contain demand responsive loads and those buses belong to
set Spg.

3.1. Network and load model

To model the network, we use the AC power flow equations [33]

0=V, ) V,(G;;cos(6, — 0,) + By sin(9, - 0,)

JEN
— Dy + g ViEN, (1a)
0=V, Y Vi(G;sin(0, - 0;) — B;; cos(6, — 0,))
JEN
—qy;+4q;, Vi €N, (1b)

where V;, 6, are the voltage magnitude and angle at bus i; G;;, B;;
are the conductance and susceptance of line ij; p,;, g,; are the real

and reactive power generation at bus i; and py;, q4; are the real and
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reactive power demand at bus i. For PQ buses, Pg = g, = 0. Egs. (1) are
algebraic equations and we define the algebraic state vector associated
with power flow as y,;; = [V;,6,]Vi € N.

Here, we model all loads as constant power loads (with respect
to voltage and frequency), as is relatively common in small-signal
modeling of the bulk grid. The damping in our formulation arises from
the generators alone. However, voltage-dependent loads (e.g., repre-
sented with a ZIP load model) or frequency-dependent loads can easily
be included. The additional static and dynamic equations would be
included in the system model, and thus the system eigenvalues would
change. In our previous work [34], we studied the impact of the choice
of load model on a similar spatial load shifting approach to improve
voltage stability margins. We found that it is difficult to interpret
and compare stability margins when the system undergoes structural
changes resulting from the use of different load models. Conceptually,
although the inclusion of frequency-dependent loads increases bus
dampings, this does not necessarily mean that changing the operating
point through spatial load shifting would lead to more improvement in
damping ratio. Future work could explore this in simulation.

3.2. Synchronous machine model

A standard differential-algebraic equation model is used for each
synchronous machine, which represents its inertial electromechanical
dynamics and excitation system, and allows representation of controls.
The differential equations for each machine are [35]:

5,- =w;, Vi € S (2a)

. 1
:

= T Dyw;), Vi € Sg (2b)

(Tm,i —Wailqi + Wailai —
where §;, »; are the rotor angle and frequency; i4;, iy; are the dg-axis
currents; yy;, ¥y, are the dg-axis magnetic fluxes; and 7, ;, D;, H; are
the mechanical torque input, damping, and inertia of the generator at
bus i. We define the dynamic state vector associated with generators as
xg, = [6,, w;1Vi € Sg,

The algebraic equations for each machine are:

0= V;sin(3, - 6,) — Vy,, Vi € Sg, (3a)
0=V, cos(s; —0;) — V. Vi € Sg, (3b)
0=Vyiq; + Vqilqi = Pai» Vi € Sgs (30)
0= Vyiia; = Vailqi = 4gi» Vi € Sg» Bd
0=y, + xéjid’,‘ — Vi Vi € S, (3e)
0=wy, + X:}i’.q,i’ Vi € Sg, (30)
0= —yy; + Vy; + raiiqi» Vi € Sg, (3%)
0=wy; +Vq;+ryia; Vi € Sg, (3h)
0=V, -V, VieSg, )

where Vg, V,; are the dg-axis voltages; r,;, V;; are the armature resis-
tance and field voltage; x(’iwk,x(’1 . are the dg-axis transient reactances;
and Vro, is the setpoint of the field voltage of the generator at bus i.
Egs. (3a) and (3b) link the voltage phasor V;£6; to the dq-axis voltages;
(3c) and (3d) define the real and reactive power injections in terms
of the dq-axis voltages and currents; (3e) and (3f) are the magnetic
equations; (3g) and (3h) are the stator equations; and (3i) fixes the field
voltage to its setpoint. We define the algebraic state vector associated
with generators as yg; = lig»iq» Vai» Vair P dei» Va.i» Wi V2i1 Vi € Sg-

Generally, the field voltage V;; is governed by the AVR. When the
AVR model is excluded, this quantity is assumed as fixed, as shown in
(3i). Otherwise it is governed by the differential equation models for
the AVR presented next.
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Vref * + Ka, Vi1,i 1 Vei
_ d Tais+1 + Te,is + Ke;
Vi B
1
Trs+1 Set)
o Vrzi Kgs
i
v, [ Tgs+1

Fig. 3. AVR block diagram for one generator i, based on [35].

Vsi Twis | Ywi| Tys  [VYpi| Tas Vso,i
W Tyis + 1 Tpis+ 1 Tyis + 1
Xw,i Xp,i Xq,i

Fig. 4. PSS block diagram for one generator i, based on [26].

3.3. Automatic Voltage Regulator (AVR) model

AVRs provide primary voltage control [26]. We assume each gener-
ator has one AVR with the control architecture shown in Fig. 3. When
a generator has an AVR, V;; in (3i) is set equal to the output of the

AVR; therefore, (3i) becomes
0= 7~ Vi, Vi € S “)

Based on the block diagram, the differential equations associated
with AVRs are [35]

- 1 .

Vi = T—_(V,- = Vi)s Vi € Sg, (5a)
T,

Vi = T__(Ka,i(Vref,i = Vak = Vo) = Vi), Vi € S, (5b)
a,l

~ 1 ~ ~ .

Vii= F(Vrl i — KeiVii — Sei(Ve)), Vi € Sg, (5¢0)
e,

. 1 ~ X

Viai = —_(Kr,in,i = Vi), Vi € Sg,
1

=Tfl (Tez( Ketth_S(Vtt)) r21> (Sd)

where V,,, ;. Vi1 Vt i» V12, are the measured voltage, first internal signal,
output signal, and second internal signal; V., is the reference ter-
minal voltage; T, ;.T,;.T.;, T;; are time constants; and K,;, K.;, K¢,
are parameters of the AVR on the generator at bus i. The ceiling
function Sc’[(17f’[) = A, eBe'Wf il, where A,;, B,; are the ceiling function
parameters of the AVR on the generator at bus i. We define the dynamic
state vector associated with AVRs as xg; = [V}, Vi1, ny,-, Vioi1Vi € Sg.
One more algebraic equation is included,

0= Vg — Vi € Sg. 6)

ref ’

where VOf is the setpoint of the reference terminal voltage of the AVR

on the generator at bus i. The reference terminal voltage equation is

modified when a PSS is included, as described in the next subsection.
We define the algebraic state vector associated with AVRs as yp; =

[Vref’,-]Vi € S5
3.4. Power System Stabilizer (PSS) model

PSSs are used to add damping to generator rotor oscillations [26].
We assume a subset of generators have PSSs, where buses with gener-
ators with PSSs belong to the set Spgs. The output signal V,; of the
PSS modifies the reference terminal voltage V;¢; of the AVR and so (6)

becomes
0="Vief; — ref, = Veo,i> Vi € Spgs, (7a)
0= Viets = Veog» Vi € Sg \ Spss- (7b)

Sustainable Energy, Grids and Networks 36 (2023) 101214

Based on the block diagram in Fig. 4, the differential and algebraic
equations associated with PSSs are given as follows [26]. The first
block is a high-pass filter and the following two blocks are phase
compensators.

1

Xyi= Vii» Vi € Spss, (8a)
TW i

Xpi = Vii = Vpi» Vi € Spss;, (8b)

%qi = Vpi = Vioi» Vi € Spss. (8¢c)

where x,,;, X, ;, Xq; are internal states; V,,;, V;,; are internal signals; V,;
is the output signal, and T,,; is a time constant of the PSS on the
generator at bus i. We define the dynamic state vector associated with

PSS as xg; =[xy, Xpj, Xq,i] Vi € Spgs.

0=V, — Ky, Vi € Spss, (9a)
0= Vsll - Vw,i — Xw,i» vie SPSS’ (gb)
0=V, Ty; = Ve Trs = Xps» Vi € Spgs. (90)
0= Vi, Ty; = Vo Ty = Xqus Vi € Spss. (9d)

where V;; is the input signal; K,,; is the gain; and T; , T, T5 4, Ty
are time constants of the PSS on the generator at bus i. We define

the algebraic state vector associated with PSSs as yg; = [V, Viois
Vi,ir Vil Vi € Spss.

3.5. Linear state-space model and stability metric

In general, the full dynamic state vector is

X = [XGiesss XRieSss *¥S.icSpss |’

the full algebraic state vector is

Y = [Yprien YGiiesg: YRieSq: VS.icSpss 1>

function f includes the differential equations (2), (5), and (8); and
function g includes the algebraic equations (1), (3a)—(3h), (4), (9)
and (7). However, we will also explore cases with no PSSs and no
AVRs, which removes the corresponding states from these vectors and
equations from these functions.

Linearizing the nonlinear DAEs around an operating point yields
[26]

[o] - 2IT @

where f,, fy, g, and g, are the partial derivatives of dynamic and
algebraic functions f,g with respect to dynamic and algebraic states

0 0

Ax Ax
i [AY] =4 L\y] ' an

. . I 0 .
x, y, respectively. Define B = [ . Then, (10) can be rewritten as

We are interested in designing the small-signal characteristics of the
power system, which are based on the M finite eigenvalues 1 € RM of
the generalized eigenvalue problem (A, B). We index the eigenvalues
with m, i.e., 4,,. There are a variety of metrics, defined as functions
of subsets of these eigenvalues, used to quantify small-signal stabil-
ity. Here we list three, though others are possible. Our optimization
approach described in the next section could use any of these, or a
combination of them.
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3.5.1. Smallest damping ratio (SDR)

The damping of the system is one measure of disturbance attenua-
tion. Therefore, the smallest damping ratio (SDR) is a common metric
for quantifying small-signal stability [7,31]. It is defined as

fig = min(7), (12)

where 7 € RM is a vector of damping ratios 7, = ——2—, where

B
Ve +h;

a,, = Re{4,,} and B, =Im{4,}.

3.5.2. Damping of the critical inter-area mode
Another metric is the damping of the critical inter-area mode [32]
—a;

m=—— (13)
2, g2
Vet b

where a; = Re{i;} and f; = Im{4;}, and 4, is the eigenvalue

corresponding to one critical mode that has inter-area oscillations.

3.5.3. Largest real part of the eigenvalues
A third metric is the magnitude of the largest real part of the
eigenvalues [36]

a; = —max(a), as

where @ € RM is a vector of the real parts of the eigenvalues.
4. Optimization approach

In this section, we present the formulation of the optimization
problem and then introduce the solution algorithm.

4.1. Formulation

Our goal is to choose the demand-responsive load pg;.qq;. Vi € Spr
to maximize a linear combination of small-signal stability metrics. Any
change to the demand-responsive load will alter the system’s operating
point, and thus affect the matrix A as well as its eigenvalues and
damping ratios. The full optimization problem is

max. Y 7,S,(A(x, ) (15a)
p

s.t. g(x,y) =0 (15b)

Y pai= Y, P, (15¢)
i€SpR i€SpR

Pdi = Hida,i VieN (15d)

pa; =Py, vie N\ Spr (15€)

Pyi = Py Vi € Spy (15

v, =v? Vi € Sg (15g)

Ogtack =0 (15h)

Py < Pg;i < DPa; Vi € Spr (15i)

4y, S0 < qa, Vi € Spr (15))

H;0.V)<H; vi,jeN (15K)

H,(0.V)<H; vjiieN (151

Py ctack S Pestack < P slack (15m)

4,, <495 < g, Vi e Sg (15n)

V, <V, <V, vie N (150)

where the objective (15a) is to maximize a weighted linear combination
of stability metrics S, (e.g., ng, #;, and «;), and y, is the weighting
factor corresponding to metric n. The stability metrics are functions
of the eigenvalues 4, which in turn are functions of the dynamic and
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algebraic states x,y defined in the previous section. Constraint (15b)
includes all algebraic equations and will be different for systems with
and without AVRs/PSSs. Constraint (15c) requires the total demand-
responsive load to remain constant, where superscript ‘0’ denotes the
nominal value. Constraint (15d) models all loads as constant power
factor loads, where y; is the real to reactive power demand ratio at bus
i. In Section 5, we also explore the performance of spatial load shifting
when the real and reactive power consumption of demand-responsive
loads are changed independently. Constraints (15e)-(15h) fix the real
power demand of non-responsive loads, the real power generation at
all PV buses, the voltage magnitudes of buses with generators, and
the voltage angle of the slack bus to their nominal values. Constraints
(15i) and (15j) limit the flexibility of demand-responsive loads, where
underlines and overlines are used to denote lower and upper limits,
respectively. Constraints (15k)—(150) limit all additional variables that
may change with a change in demand-responsive load (i.e., additional
decision variables), specifically, line flows, where H;; is a function
that computes the flow on line i,j based on the full AC power flow
equations; real power generation at the slack bus; reactive power
generation at all generators; and voltage magnitudes at all buses.

4.2. Solution algorithm

The optimization problem (15) is challenging to solve in a single
shot due to its non-linear, non-convex constraints. Therefore, we use
iterative linear programming (ILP) [33]. Next, we give an overview of
the approach. Then, we describe the method to approximate changes
in the eigenvalues as a function of changes in the decision variables
and present the linear program solved at each iteration.

The iterative process is described as follows and a flowchart is
shown in Fig. 5. At each iteration of ILP, we first linearize the objective
function and each of the nonlinear constraints at the current operating
point (x*, y*). Then, we solve the resulting linear program (LP) where
the new decision variables are the changes in the original decision
variables (e.g., 4py;, 4q4,.Vi € Spr). We bound the changes because
the linearization is only valid in a small region around the original
operating point. Adding the optimal changes to their corresponding
values at the current operating point (e.g., 4py; + Py Ade; + 4y, Vi €
Spr» Where the superscript “*’ denotes values at the current operating
point) yields an estimate of the solution for the original nonlinear pro-
gram. However, this estimate may not be a feasible solution to the AC
power flow equations. Therefore, the new operating point is computed
by solving the AC power flow equations using solution estimate. The
process is then repeated, i.e., the nonlinear program is re-linearized
around the new operating point to obtain a new linear program, and
this linear program is solved to get another estimate of the solution. The
iterations continue until the solution estimate converges to the solution
(or at least a local maxima) of the original nonlinear program.

We use generalized eigenvalue sensitivities to approximate the
changes in the eigenvalues A1 as a function of changes in the decision
variables. For any system state y that matrices A and B depend on, the
derivative of A with respect to y is [23]

94 0B

oi _ (S, = A5
iy IT Br
where r and / are the right and left eigenvectors corresponding to A.
This formula is used to design the HVDC damping controllers in [23]
and FACTS devices in [24]. Since ? = 0, we can approximate the
change in eigenvalue 4,, with respect to a change in all dynamic and
algebraic states (4x Vi, Ay Vk) around (x*, y*) as

, (16)

T 0A [T oA,
mox; ™ ™oy ™
Ao = 2 e, | 2+ 2 | an
joom Gery®)y ko TmEm ey

We next explain why we use generalized eigenvalue sensitivities
rather than the more typical approach. Generator modes are usually ob-
tained from the eigenvalues of the reduced matrix A* = f, — fy(gy)_lgx
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[ Input: (pg, q5) ]

4

Solve g(x*,y*) = 0, get (x*,y")

4

Compute (18b) - (18t)

Solve (18) at (x*,y*) to
obtain Ap; and Aq,

4

Pa < Pa+Apa, 95 < qa +Aqq

[(18a)| < 10~*?

[Output: (Pa, 92) ]

Fig. 5. Flowchart of the solution algorithm.

[5,7] rather than the solution of the generalized eigenvalue problem.
This is because the reduced matrix has only finite eigenvalues, whereas
the generalized eigenvalue problem produces a mixture of finite and
infinite eigenvalues. However, to compute eigenvalue sensitivities from
A*, one needs to evaluate a(;«;* numerically (by applying a small distur-
bance 4y), leading to high gomputational cost for large systems since
large systems mean a large size of y. In contrast, generalized eigenvalue
sensitivities can be expressed analytically, as shown in (17), which is
why we use this approach. An alternate approach, which solves the
quadratic eigenvalue problem, is used in [10,11,37]. The computation
complexity is the same as that of the generalized eigenvalue problem;
however, the approaches requires the system to be lossless and only
allows the reactive power demand to be voltage-dependent. Our ap-
proach includes losses and allows both the real and reactive power
demand to be voltage-dependent, though here we only investigate cases
with constant power loads.

Finally, we can present the LP solved at each iteration. Using the
generalized eigenvalue sensitivity (17), we linearize (15) about (x*, y*)
resulting in the following optimization problem that must be solved in
each iteration.

max. Zy,,AS,,(A/l(Ax, Ay)) (18a)
s.t. (17) Vme M (18b)
Aa,, = Re{44,,}, Vme M (18¢c)
Ap,, =Im{4A,} Vme M (18d)
—(p* 2Aam +atprAp,
an, = (=@B;) ,,,ﬁ,,,3 Bn) Vim e M (18¢)
(@) +(p2)1)2
Z;_g ij+z"_g 4y, =0 (18
7 PNl yn E DYkl
D Apg; =0 (18g)

i€Spr
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Apy; = HiAqy,; Vie N (18h)
4py; =0 Vie N\ Spr (18i)
Ap,; =0 Vi € Spy (18j)
AV; =0 Vi e S (18Kk)
Abgo =0 18D
P, < Py; + 8pa; <Py, Vi € Spr (18m)
4y, <40, + A0 < g Vi € Spg (18n)
hij(x".y*. A0, AV) < h;; Vi,jeN (180)
hj(x*,y*, A0, AV) < h;; vjieN (18p)
Py ack = Py stack F APgstack < Py slack (18q)
4, S Qi+ Adys <4y, Vi€ Sg (18r)
VSV +4V, <V, Vie N (18s)
e<Aag <t e<Afg<E (18t)

where (18b) uses the generalized eigenvalue sensitivity (17) to estimate
the change in each eigenvalue 44, in the set of critical eigenvalues
M (i.e., eigenvalues used to compute stability metrics), (18c) and
(18d) compute the real and imaginary part of 44,, and (18e) estimates
the change in the damping ratios 4z,,. Constraints (18f)-(18s) are the
linearization of (15b)-(150) and h; is the linearization of Hy;. To
ensure the accuracy of the linearization, (18t) is added to limit the size
of the change of the eigenvalues, where the step size limits ¢,z can be
tuned to improve convergence.

It is possible that when we change the demand-responsive load to
improve the damping ratio of the critical eigenvalue (i.e., the eigen-
value with the SDR) it decreases the damping ratio of another eigen-
value so much that eigenvalue becomes the critical eigenvalue. There-
fore, in each iteration we determine which eigenvalues are critical at
the current operating point and use these eigenvalues in (18b)-(18e).

The algorithm is terminated when the absolute value of the objec-
tive function (18a) goes below a threshold (here, we use 1074).

5. Case studies

In this section, the IEEE 14-bus system is used to test the effective-
ness of our spatial loading shifting strategy on small-signal stability and
also illustrate the performance of the ILP approach. We consider only
one stability metric, the SDR, since this system does not have inter-
area modes. Therefore, the objective function (15a) is set equal to #g.
The system data and generator parameters can be found in Appendix
D of [35, p. 523-526]. The real to reactive power demand ratio is
set equal to the nominal ratio, i.e., y; = pg’i /qui Vi € N. To clearly
demonstrate the impact of the approach, we assume a substantial
amount of demand-responsive load. Specifically, we assume the load
at all buses except bus 4 (which has the only load with a leading
power factor) is demand responsive, resulting in 211.2 MW of demand
responsive load out of a total system load of 259 MW. We also assume
the load can decrease to 20% of its nominal value or double, i.e., Py =
0.2py4; and py; = 2py,; Vi € Spg. The nominal loading pattern for buses
with demand-responsive load is shown in the first row of Table 1.
We use step size limits ¢ = —0.001, £ = 0.001. All computations are
implemented in MATLAB on an Intel(R) i5-6600K CPU with 8 GB of
RAM.

5.1. SDR improvement & optimal loading patterns

We first describe the SDR improvement and optimal loading pat-
terns resulting from the use of different system models. Specifically,
we consider two models: (1) without AVRs or PSSs, and (2) with AVRs
at each generator and a single PSS connected to the generator at bus
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Table 1
Nominal and optimal loading (MW) at buses with demand-responsive load.
Bus 2 Bus 3 Bus 5 Bus 6 Bus 9 Bus 10 Bus 11 Bus 12 Bus 13 Bus 14
Nominal, pj, from [35] 21.70 94.20 7.60 11.20 29.50 9.00 3.50 6.10 13.50 14.90
Optimal, without AVRs/PSS 4.34 141.17 5.92 13.18 5.90 1.80 0.70 30.65 4.56 2.98
Optimal, with AVRs/PSS 26.38 58.09 66.37 26.58 12.1 4.82 3.24 3.04 4.08 6.51
Load shedding, with AVRs/PSS 20.95 75.18 7.33 10.83 28.48 8.69 3.35 5.66 12.52 13.82
Optimal, with AVRs/PSS and PSS tuning 22.06 48.55 84.98 24.36 13.72 9.53 0.77 1.39 2.75 3.09
A N SR S S ¢ T Table 2
Performance comparison across cases with different decision variables and/or
demand-responsive load constraints.
0.65- il Case 1 2 3 4 5 6 7
Decision variables
9 Py 4 v
- - -Without AVRs/PSS @ v v v v v
055 | DR load constraints
Pa = Hdq 4
14 = g41 < 100 MVar v/ v
0.5 : s w \ | ‘ lg — g4l <20 MVar v v
0 ! 2 T3ime ) 4 5 6 Results
Optimal SDR (%) 0.696 0.702 0.638 0.720 0.704 0.726 0.768

Fig. 6. Convergence of the SDR (i) for the 14-bus system with AVRs and one PSS
(blue solid line), and without AVRs/PSSs (red dashed line).

1, with parameters K,,; = 1, T;; = T5; = 028, T,;, = T,; =
0.02.%? In addition to showing how the approach improves the SDR by
shifting the load, we compare the results corresponding to each model
to demonstrate the importance of including AVR/PSS models in the
optimization formulation.

We apply the ILP algorithm to each model; Fig. 6 shows the con-
vergence of the SDR. The nominal and optimal SDRs are different for
the different models. The critical mode without AVRs/PSS corresponds
to the generator at bus 2 while with AVRs/PSS it corresponds to the
generator at bus 3. The nominal SDR without AVRs/PSS is 0.663% and
the optimal is 0.691%. The nominal SDR with AVRs/PSS is 0.514%
and the optimal is 0.696%. We also note that the algorithm converges
faster when the system does not have AVRs/PSS. This is not surprising
since matrix A is larger with AVRs/PSS and so the computation of the
eigenvalue sensitivity (17) takes more time.

The optimal loading pattern corresponding to each model is shown
in the second and third rows of Table 1. Note that the loading patterns
are significantly different from each other. If we were to apply the
optimal loading pattern determined without considering AVRs/PSS to
the system that has AVRs/PSS, the SDR would decrease from 0.514% to
0.350%, implying that accurate system models are very important in
determining optimal loading patterns to improve the SDR.

5.2. Comparison of SDR improvement

We next compare seven cases with different decision variables
and/or demand-responsive load constraints; case descriptions and re-
sults are shown in Table 2. The results shed light on the relative value
of shifting real versus reactive power demand and demand versus gen-
eration, and the impact of the demand-responsive load characteristics
on the results. All cases use the model with AVRs at all generators and
a single PSS connected to the generator at bus 1 from the previous
subsection.

Case 1 corresponds to optimization problem (15) and the results
presented in the previous subsection for the model with AVRs/PSS. In

2 The AVR and PSS parameters are not optimally tuned, resulting in small
damping ratios. However, our results (i.e., qualitative increases in SDRs) are
representative and our approach can be applied to general cases.

Percent improvement (%) 35.4 36.5 24.1 40.1 36.9 41.2 49.5

this case, both real and reactive power demand are decision variables
but reactive power is tied to real power via a fixed power factor.
Case 2 spatially shifts only real power demand (reactive power demand
is fixed to the nominal reactive power demand), which achieves a
slightly better optimal SDR. In contrast, Case 3 spatially shifts only
reactive power demand (real power demand is fixed to the nominal real
power demand), and we limit the change in reactive power demand at
each bus with demand-responsive load to +100 MVar. As shown in the
table, optimizing the reactive power demand does not improve the SDR
as much as optimizing the real power demand (24.1% versus 36.5%
improvement). Case 4 allows the real and reactive power demand
to change independently; the SDR is greatly improved. Case 5 uses
a smaller and more realistic limit on the change in reactive power
demand (+20 MVar at each bus with demand-responsive load) resulting
in a lower optimal SDR than that of Case 4, but higher than that of
Case 1, which does not allow real and reactive power demand to change
independently.

Case 6 allows only real power generation to change. The purpose of
this case is to enable a comparison of SDR improvement due to demand
changes to SDR improvement due to generation changes. As shown in
the table, generator actions can achieve a larger percent improvement
(41.2% versus 24.1-40.1%). The greatest SDR improvement is achieved
when we allow load and generation to change together (Case 7). In this
case, the SDR improves by 49.5%. However, in practice, generators may
need more time than loads to respond, which can reduce the generators’
ability to improve the SDR. For example, if we re-run Case 6 with
ramp limits on the generators at buses 2-5 that restrict changes in real
power generation to 1 MW, we obtain an SDR of 0.575%, which is less
than that achievable through DR, i.e., 0.696%. Additionally, changing
generator dispatch to improve the SDR will increase operational costs.

5.3. Comparison to load shedding

We formulate and solve an optimization problem to determine the
minimum load shedding needed to achieve the same SDR improvement
as obtained in Case 1. Load shedding could be an alternate approach
to improve small-signal stability, but it comes at a high cost and
inconvenience to consumers. The formulation of the minimum load
shedding problem is

min. Z (Pg,,- —Dq;)
i€Spr

(19a)
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Table 3
Maximum SDR when shifting between two DR buses.
3 0.6423
5 0.5208 0.6817
6 0.5386 0.6005 0.5288
9 0.5932 0.6054 0.5681 0.5278
10 0.5391 0.5958 0.5312 0.5191 0.5140
11 0.5228 0.6031 0.5199 0.5153 0.5157 0.5156
12 0.5290 0.5874 0.5238 0.5159 0.5152 0.5150 0.5140
13 0.5488 0.5917 0.5368 0.5188 0.5150 0.5148 0.5140 0.5141
14 0.5568 0.5667 0.5437 0.5237 0.5148 0.5146 0.5166 0.5165 0.5171
Bus # | 2 3 5 6 9 10 11 12 13
s.t. g > 0.696% (19b) to its sensitivity. However, after implementing the change, the actual
SDR achieved is only 0.697%, which demonstrates the limitation of this
p ,SPd,'SPg- Vi € Spr (19¢) . e . Y %
—d.i ’ o simpler sensitivity-based approach.
Constraints (15b), (15d)-(15h), (15j)—(150) (19d)

which we again solve using ILP with generalized eigenvalue sensi-
tivities. We find that the system load (shown in the fourth row of
Table 1) would need to drop by at least 11% to achieve the same SDR
improvement as achieved by spatial load shifting.

5.4. Comparison to PSS tuning

We investigate whether it is possible to improve the SDR simply
through tuning the PSS gain, K, ;. The maximum SDR achieved by
tuning the gain (from 1 to 0.48) is 0.668%, which is a 30.0% improve-
ment, smaller than that achievable through spatial load shifting. When
we co-optimize the gain and the loading pattern, the SDR increases to
0.703%, with K,,; = 1.12 and the optimal loading pattern shown in the
fifth row of Table 1. Note that the optimal loading pattern is similar to
that obtained by spatial load shifting alone (third row of Table 1) and
the optimal gain is close to its previous value of 1. Tuning the gain after
optimizing the loading pattern (i.e., fixing the loading to the values in
the third row of Table 1 and then tuning the gain) results in an optimal
K, of 1.01 and a SDR of 0.699%. Therefore, in this case, once the
loading pattern is optimized, tuning the PSS gain does not change the
gain or improve the SDR significantly.

5.5. Benchmarking against a simpler method

We compare the performance of our optimization-based spatial load
shifting strategy with the simpler sensitivity-based generation redis-
patch strategy proposed in [7]. To do this, we compute the sensitivity
of the SDR to the real power generation numerically. Specifically, for
each generator other than the generator at the slack bus, we determine
the eigenvalues associated with the SDR at the current operating point
An = a, = jpB, and also the eigenvalues associated with the SDR
at a new operating point corresponding to a change in real power
generation of generator i by a small value 4p, ;. We then compute the
changes in the real and imaginary parts of these eigenvalues Aa and
Ap, respectively. Then, the sensitivity of the SDR to the real power
generation of generator i is

A N T

R A
(@2 +p2)2 Pl (@2 +p2) e

i (20)
Based on the sensitivities, we can change the outputs of the generators
to achieve the desired improvement to the SDR.

Here, we find that the numerical sensitivities of the SDR to the
real power generation of the generators at buses 2-5 are 0.0051%,
0.031%, 0.013%, and 0.013%, respectively. Since the generator at bus
3 has the largest sensitivity, we explore the impact of changing its real
power generation on the SDR. Specifically, we attempt to achieve the
SDR obtained by the optimization-based method through generation
redispatch alone (Case 6), i.e., 0.726%. This requires the generator
at bus 3 to increase its real power generation by 6.8 MW according

5.6. Understanding optimal loading patterns

Lastly, in an effort to understand why loading patterns change the
way they do when we maximize the SDR, we explore the impact of
shifting load between each combination of two buses with demand-
responsive load. To do this, we solve modified versions of (15) for
the model with AVRs/PSS wherein each instance of the problem only
allows shifting between two specific buses and no load shift limit is
considered. The maximum SDR associated with shifting between each
combination of two buses is shown in Table 3. The largest maximum
SDR (bolded) is achieved when we shift load between buses 3 and 5.
Two possible reasons for this are as follows. The first is that, by com-
puting the participation factors [32, p. 229] of the critical eigenvalue,
we find that the critical eigenvalue is associated with the generator at
bus 3 and so the SDR is particularly sensitive to the loading at bus 3.
The second possible reason is that the combined load of buses 3 and 5
is the largest among all combinations.

To eliminate the second reason and focus on understanding the
first, we change the loading in the network to make the real and
reactive power consumption at all buses with demand-responsive load
equal, specifically, pg’i = 15 MW, qg,i = 5 MVar Vi € Spy, and we
re-compute the SDR for each case. The results are given in Table 4.
The largest maximum SDR (bolded) is achieved when we shift load
between buses 2 and 12 and the critical eigenvalue is associated with
the generator at bus 2. We explored a number of nominal loading cases
and found that, in most cases, the largest maximum SDR occurs when
the bus connecting the generator associated with the critical eigenvalue
is involved. This leads us to the hypothesis that changing the load
at this bus plays a key role in improving the SDR. Much remains to
be done to fully understand the optimal loading patterns; we hope to
pursue this in future work. A fuller understanding of these results could
help us to develop heuristic spatial load shifting strategies to improve
the SDR without needing to solve the optimization problem.

6. Conclusion

This paper developed a new DR strategy to improve small-signal
stability. The optimal loading pattern was determined by solving an
optimization problem using iterative linear programming and gener-
alized eigenvalue sensitivities. We demonstrated the performance of
the strategy via case studies using the IEEE 14-bus system. We showed
that the SDR is improved by spatially shifting load and the improve-
ment is greater than that achieved by slow-acting generators. We also
found that use of different system models resulted in different optimal
loading patterns and that neglecting AVR and PSS models can cause a
significant reduction in the SDR, suggesting the importance of properly
modeling the system in the formulation. Additionally, we benchmarked
our approach against to a simple sensitivity-based generation redis-
patch method, and showed that our optimization-based approach can
achieve a better stability improvement.
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Table 4
Maximum SDR when shifting between two DR buses with equal loading (pg =15 MW, qg =5 MVar Vi € Sp).
3 0.6928
5 0.7009 0.6918
6 0.7197 0.6934 0.6958
9 0.7102 0.6978 0.7002 0.6937
10 0.7114 0.6975 0.6998 0.6938 0.6920
11 0.7147 0.6960 0.6983 0.6941 0.6932 0.6934
12 0.7227 0.6947 0.6969 0.6922 0.6932 0.6933 0.6931
13 0.7200 0.6950 0.6972 0.6928 0.6932 0.6934 0.6931 0.6918
14 0.7136 0.6971 0.6994 0.6942 0.6925 0.6919 0.6926 0.6935 0.6936
Bus # ‘ 2 3 5 6 9 10 11 12 13
Future work will seek to gain a better understanding of the optimal [7]1 C. Chung, L. Wang, F. Howell, P. Kundur, Generation rescheduling methods

loading patterns. Our preliminary investigation pointed to the impor-
tance of the generator associated with the critical eigenvalue, but more
work is needed to understand optimal loading patterns and develop
computationally-simpler heuristic spatial load shifting strategies. In the
future, we will also consider including different types of load models
and also N-1 security constraints in the formulation. Other avenues
for future work include combining multiple stability objectives into a
single optimization problem to avoid circumstances in which improving
one type of stability negatively impacts another. We are also interested
in developing DR strategies to improve transient stability.
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