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Abstract—As the number of distributed energy resources par-
ticipating in power networks increases, it becomes increasingly
more important to actively manage network constraints to ensure
safe operation. One proposed method that has gained significant
attention and implementation, particularly in Australia, is the use
of dynamic operating envelopes. Operating envelopes represent
net export limits set by the system operator on every node in the
distribution network that change as system conditions change.
They are calculated using an optimal power flow problem,
frequently using a linearization or relaxation of the nonlinear
power flow equations. This paper presents two case studies and
some numerical analysis to explain why a second order cone
relaxation of the power flow equations will lead to ineffective
operating envelopes. A modification to the objective function
which allows the second order cone relaxation to nearly recover
the solution to the nonlinear formulation is also presented.

Index Terms—Distributed Energy Resources, Operating En-
velopes, Safe Operation

I. INTRODUCTION

The number of small-scale distributed energy resources
(DERs), like roof-top solar photovoltaics (PV), batteries, and
electric vehicles, connected to distribution networks has been
growing rapidly in recent years [1]. DERs will play an
important role in the decarbonization of the electricity sector,
as they provide needed flexibility [2]. This flexibility refers to
the capacity to adjust power production/demand to maintain
safe network operations. Individually, DERs are too small to
provide significant flexibility to the system, but aggregated
together they can have a much bigger impact. Active partic-
ipation by DERs and DER aggregations in the distribution
network can lead to network violations like over- and under-
voltages [3], [4]. Numerous solutions have been proposed to
maintain safe operations in distribution networks under the
presence of DERs and DER aggregations, including coordina-
tion strategies between aggregators and distribution network
operators (DNOs) [5], constructing a constraint set on aggrega-
tor controls [6], constructing a convex inner approximation of
the optimal power flow (OPF) to quantify feeder capacity [7],
and constructing dynamic operating envelopes [8]–[11].

Operating envelopes represent the import and/or export lim-
its at each active node in the distribution network that would
prevent unsafe operations [11]. An active node is defined as
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any node within the distribution network that has a controllable
DER capable of exporting or importing power connected to it.
An efficient way to do this is to solve a modified version of the
OPF problem. The OPF problem is an optimization problem
which was originally formulated to find the lowest cost gener-
ator dispatch that lies within network constraints [12]. Since its
introduction, it has been generalized so that OPF can refer to
any optimization problem subject to the power flow equations
and other operational constraints [13]. The OPF problem is
nonlinear and non-convex, making it difficult to solve and
computationally intractable for large networks. The use of
convex relaxations of the power flow equations can alleviate
this issue. However, relaxations do not always give exact or
feasible solutions [14]. Here we investigate how they work
for operating envelope problems, which have been proposed
to ensure safe operations of active distribution networks.

The objective of this paper is to highlight issues that can
arise when using a SOC relaxation of the power flow equations
to calculate operating envelopes. A review of existing literature
suggests that either a SOC relaxation or a linearized version of
the power flow equations is typically utilized in the calculation
of operating envelopes. For example, the current injection-
based three-phase power flow equations are linearized about
a predefined voltage point using a first-order Taylor series
in [9], [15]. In [11], the three-phase branch flow power flow
equations are linearized about an estimate of the real and
reactive power flows. Both of these linearization techniques
require an estimate or measurement of either voltage or power
and may run into problems if the estimates are inaccurate or
if there is a significant change in the system state. Alterna-
tively, a second-order cone (SOC) relaxation of the power
flow equations was used in [10]. A SOC relaxation provides
computational tractability, but does not require estimates or
measurements like linearization-based approaches. However,
SOC relaxations do not always produce feasible solutions to
the original nonlinear problem.

There are two main contributions of this paper. The first is
a discussion of the use of the SOC relaxation of the power
flow equations to calculate operating envelopes. Specifically,
the paper outlines why the SOC relaxation of the power flow
equations will not produce feasible solutions to the original
nonlinear operating envelope problem and should not be used
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to calculate operating envelopes. Two case studies illustrate
this and a discussion of the numerical results is presented.
The second contribution of the paper is a modification to
the objective function of the SOC formulation that results
in a solution very close to the solution of the full nonlinear
problem.

Section II presents the paper’s notation and OPF for-
mulations for calculating operating envelopes. The modified
objective function and discussion of its merits are given in
Section II-C. Section III presents two case studies to illustrate
issues with using the SOC relaxation within the operating
envelope problem. Conclusions are given in Section IV.

II. PROBLEM FORMULATIONS

Consider a radial distribution network with a set of nodes N
and a set of lines L. For simplicity, we assume the network is
balanced and therefore can be represented by its single-phase
equivalent circuit. We will use the branch flow method for
representing power flow [14], where the voltage and current
angles of the system can be omitted by writing the power flow
and voltage difference equations in terms of the voltage and
current magnitudes squared. Let zij = rij + jxij represent
the impedance on the line connecting nodes i and j. The
reactive power demand at node i is qdi . The apparent power
flow limit on the line connecting nodes i and j is sij . The per
unit squared voltage limits at each bus are v, v.

Equity or fairness is an important consideration when
formulating an optimization problem to find operating en-
velopes [9]–[11], [15]. When a linear objective function is used
to maximize the aggregated operating envelopes, nodes further
down the feeder receive significantly smaller allocations [11].
This means that a customer with PV who is far from the feeder
head will have less ability to sell their excess power production
than would a customer who is close to the feeder head. There-
fore, the operating envelope formulation in this paper utilizes
the objective function proposed in [10], which maximizes the
smallest operating envelope to allocate operating envelopes
fairly across active nodes. We also analyzed a version of
the formulation presented in this paper with the objective
of maximizing the sum of the operating envelopes across
the feeder. The results were similar in terms of inexactness
and infeasibility of the solution with respect to the original
nonlinear problem. Those results are not included for brevity.

A. AC-OPF Branch Flow Formulation

We first define the full nonlinear operating envelope prob-
lem, which leverages the AC power flow equations. This for-
mulation is based on the formulation given in [10] but differs
in that we do not explicitly define the operating envelopes as
the difference between PV generation and load at every node.
Rather, we define the operating envelopes as the net export at
every node. Additionally, we do not model an upper limit on
the operating envelopes based on DER capacity.

Our decision variables are pexp, a vector with elements
pexpi representing the operating envelope at each node i, i.e.,
the maximum net real power export at each node i; pexp,

the smallest magnitude operating envelope in the network;
P, a matrix of active branch power flows with elements
pij representing the active power flowing from node i to
node j; Q, a matrix of reactive branch power flows with
elements qij representing the reactive power flowing from
node i to node j; v, a vector with elements representing
the squared voltage magnitude vi = |Vi|2 at each node i;
and L, a matrix of squared current magnitudes with elements
lij = |Iij |2 representing the squared current magnitude on the
line connecting nodes i and j. Let x be a vector of stacked
decision variables. We compute operating envelopes pexp by
solving,

max
x

pexp (1a)

s.t. pexp ≤ pexpi , ∀i ∈ N (1b)∑
i:i→j

(pij − rij lij) + pexpj =
∑

k:j→k

pjk, ∀j ∈ N (1c)∑
i:i→j

(qij − xij lij)− qdj =
∑

k:j→k

qjk, ∀j ∈ N (1d)

vi = vj + 2(rijpij + xijqij)− (r2ij + x2
ij)lij , ∀i ∈ N (1e)

p2ij + q2ij = lijvi, ∀ij ∈ L (1f)

p2ij + q2ij ≤ s2ij , ∀ij ∈ L (1g)

v ≤ vi ≤ v, ∀i ∈ N (1h)

Constraint (1b) transforms a maxmin objective into a
linear objective by defining the smallest operating envelope
to be maximized. Constraints (1c) and (1d) enforce active and
reactive power balance, where notation i : i → j specifies
that we should sum over all lines ij injecting power into j,
and k : j → k specifies that we should sum over all lines jk
consuming power from j. Constraint (1e) defines the voltage
drop between bus i and the downstream bus j. Constraint (1f)
defines the squared apparent power flowing from bus i to j
and (1g) limits it. Finally, constraint (1h) enforces the voltage
limits at each bus. This formulation assumes monotonicity, i.e.,
if pexp defines a valid operating envelope, then any injection
less than pexp is feasible. We note that this may not always
be true in practice since (1f) is nonconvex.

With the exception of the objective and constraint (1b),
problem (1) is a standard OPF formulation. Constraint (1f)
is non-convex, making the problem difficult to solve and
impractical to scale to large systems. For this reason, operating
envelopes are generally calculated using a linearization or
relaxation of the power flow equations [9]–[11], [15].

B. Second-Order Cone Relaxation

The SOC relaxation was first proposed for the branch flow
model in [14]. The only difference from the full nonlinear
formulation (1) is that constraint (1f) is replaced with the SOC
constraint∥∥∥∥∥∥

2pij
2qij

lij − vi

∥∥∥∥∥∥
2

≤ lij + vi, ∀ij ∈ L, (2)
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which is equivalent to p2ij + q2ij ≤ lijvi, a relaxation of (1f).
Then, the SOC formulation is

max pexp (3a)

s.t. (1b) − (1e), (1g), (1h), (2). (3b)

The solution given by this formulation is exact, i.e., it is the
solution to the full nonlinear problem, if it is feasible in the full
nonlinear problem, i.e., p2ij + q2ij = lijvi for every ij ∈ L. For
a solution of the SOC problem that is not exact, the difference
between the left-hand and right-hand sides of this equation can
be used to quantify the inexactness of the solution.

While this SOC relaxation has been successfully used for a
variety of OPF problems, the SOC relaxation is problematic
when used in operating envelope problems, as we will show
in Section III. We next give some intuition for why this is the
case. In this SOC formulation, there is no direct calculation
of squared current lij . Instead it is constrained by (1c)-(1e),
(2), and indirectly by the remaining constraints. Some upper
and lower bounds on the squared currents can be derived from
these constraints. For example, (2) gives us a lower bound

lij ≥
p2ij + q2ij

vi
, (4)

and (1e) together with (1h) give us an upper bound

lij ≤
v − vj − 2(rijpij + xijqij)

(r2ij + x2
ij)

, (5)

and a lower bound

lij ≥
v − vj − 2(rijpij + xijqij)

(r2ij + x2
ij)

. (6)

Further bounds can be derived from the other constraints.
Within these bounds, the squared currents can take any value.
However, only one of the possible values is a solution to the
power flow equations for a given voltage, real power flow,
and reactive power flow, i.e., the value that satisfies (1f). The
SOC formulation will not find that solution because larger
currents can result in calculated feasible voltages correspond-
ing to larger operating envelopes. Specifically, the flexibility
introduced by the SOC relaxation of the power flow equations
allows for artificial increases in the squared current. A larger
squared current in (1c) permits larger values of pexp without
significant changes to real power flow, and simultaneously,
decreases the change in voltage between node j and node i
in (1e). Hence, this flexibility will lead to operating envelopes
that are too large to be effective.

Furthermore, the objective of maximizing the smallest oper-
ating envelope across the network does not meet the conditions
needed to prove the exactness of a SOC relaxation of an OPF
formulation utilizing the branch-flow model outlined in [14].
Namely, the cost function is not strictly decreasing in current
or line losses.

C. Objective Function Modification

In this section, a possible method for improving the efficacy
of operating envelopes calculated using SOC relaxations of the
power flow equations is presented.

As mentioned in the previous section, the solution from
the SOC formulation takes advantage of the flexibility in the
squared current variables to permit larger operating envelopes,
which fail to ensure safe operation of the actual (nonlinear)
power network. A possible remedy for this is to penalize
power losses in the objective, as they are a function of current
squared. We believe that this makes the objective function
strictly decreasing in both current and line losses, satisfying
conditions in [14]. The simplest augmented objective function
would be

max
x

pexp −
∑
ij∈L

lijrij . (7)

However, differences in magnitude between the two terms can
lead to undesirable outcomes. Because the losses term is a
sum over the entire network, it can have a greater magnitude
than pexp. If so, the solution will prioritize loss minimization,
and therefore power flowing through each branch, rather than
maximizing operating envelopes.

In order to achieve a solution close to the full nonlinear
operating envelope problem solution, we can add a weight to
the losses term such that the augmented objective function
becomes

max
x

pexp − λ
∑
ij∈L

lijrij , (8)

where λ is a weighting parameter found heuristically.
The issue with this approach is that the solution to the full

nonlinear operating envelope problem must be known in order
to precisely tune the weighting parameter. However, it can be
possible to approximately tune the parameter without prior
knowledge of the full nonlinear solution using the inexactness
as a guide, as we will show in Section III. We note that the
best choice of weighting parameter is dependent on the system
loading conditions, meaning the parameter must be re-tuned
as the system conditions change. This tuning process could be
challenging in real time.

III. CASE STUDY

A. Setup

In this section, two case studies will be used to highlight
the implications of using the SOC relaxation of the operating
envelope problem. The first case study will be on a simple
4-bus network, based on the MATPOWER “case4 dist” test
case [16], where numerical results will provide clear insights
on the impacts of using a SOC relaxation. Subsequently, a
56-bus network, which was modified from the IEEE 123-bus
network and presented in [17], will be used to illustrate the
extent of the problem in a larger, more realistic network. The
4-bus network is shown in Fig. 1(a) and the 56-bus network
is shown in Fig. 1(b). Note that the substation is considered
to be the last bus, or bus 4 in the 4-bus network and bus
56 in the 56-bus network. In both cases, bus 1 is the bus
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(a) 4-bus network (b) 56-bus network

Fig. 1. One line diagrams of the (a) 4-bus network, based on a network
available from [16], and (b) 56-bus network presented in [17].

connected to the substation. In this study, we assume there
are no capacitor banks in the network and we assume there
are no voltage regulators except for one at the substation. The
voltage at the substation is set to 1.0 p.u. For simplicity, we
assume that there is a controllable DER at each bus. This
means that power can be injected at every bus and therefore
every bus needs an operating envelope. Voltages between 0.95
and 1.05 p.u. are considered safe. Any operation that leads to
values below or above these limits will be considered unsafe.

To show how the SOC relaxation of the power flow equa-
tions impacts the calculation of operating envelopes, both the
full nonlinear operating envelope formulation and the SOC
formulation will be used to calculate operating envelopes for
each node in the network. The solutions will be compared in
terms of the magnitude of the obtained operating envelopes,
and the exactness of the SOC relaxation will be discussed.
To analyze the efficacy of the resulting operating envelopes,
the nonlinear power flow equations will be solved for each
formulation assuming the net power inject at each node is
equal to the upper limit set by the operating envelopes.

Both the nonlinear and SOC problems were solved in Julia
using the JuMP package [18]. The solvers used were IPOPT
and CPLEX 12.7.1 for the nonlinear and SOC problems,
respectively.

B. Results

This section presents the solutions to the full nonlinear
operating envelope formulation and the SOC formulation of
the operating envelope problem for both the 4-bus and the 56-
bus networks. Also presented in this section are the results
for solving the AC power flow equations given the net real
power injections corresponding to the limits of the operating
envelope at each bus in the network.

1) 4-Bus Network: The results in this section are for the
4-bus network. Under the full nonlinear operating envelope
formulation, the operating envelopes found are 6.84 MW at
buses 1 and 2, and 12.47 MW at bus 3. When the active
power injection into the network is equal to these operating
envelopes, the voltages at each bus correspond to the values
shown in Fig. 2. As can be seen in the figure, the voltage at
every bus is within safe limits. Using the SOC relaxation, the
operating envelopes found are 8.28 MW at buses 1 and 2, and

Fig. 2. The voltage at each bus in the 4-bus network resulting from solving
AC power flow with power exports at each node equal to the operating
envelope limits calculated using the nonlinear and SOC operating envelope
formulations.

TABLE I
NUMERICAL RESULTS FOR SOC FORMULATION

Bus 1 2 3
Operating Envelope (MW) 8.28 8.28 10.19
Voltage (p.u.) 1.015 1.031 1.026
Line 4-1 1-2 4-3
Active Power (MW) -13.414 -7.283 -9.810
Reactive Power (MW) 6.713 2.204 0.978
Current (kA) 26.797 18.278 11.386

10.19 MW at bus 3. The bus voltages resulting from solving
the AC power flow when power equal to the corresponding
operating envelope is injected at buses 1-3 in the network are
also shown in Fig. 2. The operating envelopes found by the
SOC relaxation do not prevent unsafe operations.

Fig. 3 shows the difference between lijvi and p2ij + q2ij as
a reflection of the inexactness of the relaxation. The values
for each of the variables in the SOC formulation solution
are given in Table I and the results from solving the AC
power flow assuming the active power injections are equal
to the operating envelopes found by the SOC relaxation are
given in Table II. The values for each of the variables in
the full nonlinear operating envelope problem solution are
given in Table III. A comparison of the three values for each
variable can be used to illustrate why the SOC relaxation
is not exact, and why the resulting operating envelopes are
ineffective. Compared to the SOC formulation, the AC power
flow using the operating envelopes generated from the SOC
formulation results in larger active power flows through the
branches, smaller reactive power flows through the branches,
smaller current magnitudes through the branches, and higher
voltage magnitudes at the buses. Using these trends and
(1c), it can be deduced that the SOC relaxation is using
the flexibility in the current values to increase the operating
envelopes by increasing the line losses, which are represented
by rij lij in (1c). The total system losses in the solution to the
full nonlinear operating envelope problem are 1.085 MW. In
comparison, the total system losses in the solution to the SOC
problem and the AC power flow using the resulting operating
envelopes are 3.545 and 1.196 MW, respectively.

2) 56-Bus Network: The following results are from the
56-bus network. Under the full nonlinear operating envelope
formulation, the operating envelope at every node is equal to

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 11,2023 at 00:36:41 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
NUMERICAL RESULTS FOR AC POWER FLOW USING OPERATING

ENVELOPES GENERATED FROM SOC FORMULATION

Bus 1 2 3
Operating Envelope (MW) 8.28 8.28 10.19
Voltage (p.u.) 1.038 1.059 1.026
Line 4-1 1-2 4-3
Active Power (MW) -15.638 -8.102 -9.903
Reactive Power (MW) 2.265 0.567 0.792
Current (kA) 15.507 7.890 9.804

TABLE III
NUMERICAL RESULTS FOR FULL NONLINEAR OPERATING ENVELOPE

FORMULATION

Bus 1 2 3
Operating Envelope (MW) 6.84 6.84 12.47
Voltage (p.u.) 1.032 1.050 1.032
Line 4-1 1-2 4-3
Active Power (MW) -13.045 -6.718 -12.040
Reactive Power (MW) 1.693 0.455 1.076
Current (kA) 13.155 6.523 12.088

161.5 kW. When every node is injecting 161.5 kW of power
into the network, the voltages at each bus correspond to the
values shown in Fig. 4. As can be seen in the figure, the
voltage at every bus is within safe limits. A few of the buses
far away from the substation are at the upper voltage limit,
but this is to be expected at the edge of safe operation.

When the SOC relaxation of the power flow equations is
used with the same objective function, the solution found gives
an operating envelope at every node equal to 627.9 kW. This
value is significantly larger than the value given by the full
nonlinear operating envelope formulation. The bus voltages
resulting from solving the AC power flow when power equal
to the corresponding operating envelope is injected at each
bus in the network are also shown in Fig. 4. It is clear from
the figure that these operating envelopes do not prevent unsafe
operation. Using the limits calculated from the SOC relaxation
would likely lead to extremely high over-voltages.

These unsafe voltages calculated according to the nonlinear
power flow equations do not match the voltages given as
part of the solution to the SOC operating envelope problem.
The difference between the voltages calculated from the SOC
formulation and from the AC power flow equations arises
from the dependence on current. Fig. 5 shows the difference

Fig. 3. The inexactness of the SOC relaxation of the power flow equations
for the 4-bus network.

Fig. 4. The voltage at each bus in the 56-bus network resulting from solving
AC power flow with power exports at each node equal to the operating
envelope limits calculated using the nonlinear and SOC operating envelope
formulations.

Fig. 5. The inexactness of the SOC relaxation of the power flow equations
for the 56-bus network.

between lijvi and p2ij + q2ij for each bus in the network. If the
SOC relaxation were exact and the power flow equations were
satisfied, the difference at each bus would be zero. As can be
seen in the figure, that is not the case. Given that the calculated
voltages must be between 0.95 and 1.05 p.u. to be a feasible
solution to (3), the very large differences must arise from large
current values. These large currents would lead to large real
power losses. The total system losses in the solution to the
full nonlinear operating envelope problem and in the solution
to the SOC problem are 0.491 and 13.756 MW, respectively.

If the objective function for the SOC formulation is modified
to take the form of (8) with λ = 0.15, the resulting operating
envelopes have maximum export limits of 161.5 kW at each
bus, nearly matching the nonlinear solution. Fig. 6 shows the
bus voltages resulting from solving the AC power flow when
power equal to the corresponding operating envelope generated
with the modified SOC formulation is injected at each bus
in the network. Also, Fig. 7 shows the inexactness of the
modified SOC formulation; it is very small compared to that
of Fig. 5. Fig. 8 shows the sum of the inexactness as the
weighting parameter is increased. It also shows the resulting
operating envelope for each bus (i.e., all buses have the same
operating envelope). In this case, to achieve low inexactness
with relatively large operating envelopes, one should choose
λ between 0.1 and 0.17. Choosing a value of λ higher will
lead to overly conservative operating envelopes, but choosing
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Fig. 6. The voltage at each bus in the 56-bus network resulting from solving
AC power flow with power exports at each node equal to the operating
envelope limits calculated using the nonlinear, original SOC, and modified
SOC operating envelope formulations.

Fig. 7. The inexactness of the modified SOC relaxation of the power flow
equations for the 56-bus network. Note the different y-axis scale from Fig. 5.

a smaller λ will lead to unsafe operating envelopes.

IV. CONCLUSIONS

This paper presented two case studies to illustrate the issues
that can arise when a SOC relaxation of the power flow equa-
tions is used to compute operating envelopes. Accompanying
the case studies is a numerical explanation as to why the SOC
relaxation leads to ineffective operating envelopes. In brief, the
SOC relaxation introduces flexibility in what values the branch
currents can take. This flexibility allows for larger operating
envelopes with calculated voltages within the limits. However,
this flexibility does not exist in real power flow, which is
governed by the nonlinear power flow equations, and so the
large operating envelopes result in unsafe voltages in reality.

A potential fix to the issues discussed was also presented.
By modifying the objective function to also minimize a
weighted sum of the system losses, the true optimal solution
can nearly be recovered. The flaw in this method is that know-
ing how to tune the weighting parameter relies on knowing the
solution to the nonlinear problem.
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