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Abstract—Power grid resource adequacy can be difficult to
ensure with high penetrations of intermittent renewable energy.
We explore enhancing resource adequacy by overbuilding
renewables while modeling statistical correlations in renewable
power at different sites. Overbuilding allows production during
times of low power, and exploiting statistical correlations can
reduce power variability and, subsequently, reduce needed
renewable capacity. In this work, we present a stochastic opti-
mization problem to size renewables and expand transmission
while minimizing the expected dispatch cost. Our method uses
statistical profiles of renewable production and embeds network
constraints using the DC power flow equations. We assess
our method’s effects on feasibility, load shedding, locational
marginal prices, and generator curtailment. On the IEEE 9-
bus system, we found that anti-correlation between generators
reduced generation capacity needs with sufficient transmission.
On the IEEE 30-bus system, we found that the optimal solution
required significant overbuilding and curtailment of renewables
regardless of the marginal cost of schedulable generation.

I. INTRODUCTION

Countries have begun to decarbonize their electricity sec-
tors to counter climate change [1]. Many are moving to in-
termittent renewable power sources, e.g., wind and solar. To
integrate intermittent power into the grid, system operators
must cope with both forecasted changes in renewable power,
termed variability, and unforecasted deviations, termed un-
certainty. Traditionally, system operators handle variability
by scheduling fast-ramping flexible resources [2], such as
gas power plants, hydropower plants, or energy storage.
As gas is phased out, hydropower growth is limited, and
renewable penetrations are increased, the need for flexibility
will grow, leading many to posit that energy storage is
the only solution. Here, we consider an alternative where
we overbuild renewable capacity and dispatch renewables
themselves for flexibility. Overbuilding renewables may be
less expensive and/or greener than energy storage-based
solutions, especially those using chemical batteries.

One method to reduce the variability of renewables is
to build complementary resources. Complementarity refers
to spatial or temporal correlations in energy production at
different renewable sites [3]. Sites with weakly- or anti-
correlated energy production will exhibit reduced aggregate
variability compared to highly correlated sites. For example,
[4] uses complementarity in designing reliable renewable
hybrid power stations.

In this paper, we investigate how statistical correlation of
renewable energy production at various sites affects genera-
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tion planning, transmission planning, and dispatch in mostly-
renewable power grids, defined here as grids dominated by
variable renewables, with only a small amount of tradi-
tional (schedulable) generation. To do this, we formulate
a two-stage stochastic program that co-optimizes renewable
generation and transmission expansion, and then solves for
associated optimal dispatch schedules, including renewable
generation curtailment. The first stage minimizes the con-
struction cost, and the second stage minimizes expected
load shedding and generation costs while accounting for line
limits. Our aim is two-fold: 1) to provide a method to co-
optimize renewable capacity and transmission planning under
complementarity; and 2) to analyze the optimal dispatch of
complementary renewables.

One approach to capacity planning is to manipulate time
series of renewable power potentials. Ref. [S] uses European
wind, solar, and demand time series to find a wind-solar mix
that meets variable demand at minimum capacity. Ref. [6]
uses time series to form probability distributions of renew-
able power forecast error to determine reserve requirements.
These approaches model net power imbalance but do not
consider network constraints.

Other works analyze the use of energy storage to miti-
gate renewable variability. Ref. [7] sites and sizes energy
storage by solving a series of unit commitment problems
to maximize the usage of wind and minimize the cost of
other generation. Ref. [8] presents a probabilistic method that
calculates the expected energy not served for a hybrid wind-
and-storage generator. These papers solve a similar problem
of mitigating renewable variability, but they do not consider
how renewables themselves may be sized for flexibility.

Some papers have proposed power and reserve dispatch
strategies that ensure reliability and security under renewable
forecast errors. Ref. [9] presents a chance-constrained opti-
mal power flow (OPF) that accounts for line flow limit viola-
tions from generators compensating forecast error. Ref. [10]
formulates a chance-constrained OPF to schedule reserves
under N — 1 security constraints and wind power forecast
error. Both approaches embed network constraints into their
optimization problems via the DC power flow equations,
but solve a scheduling and real-time control problem, not a
planning problem, and do not include renewable curtailment.

Other research explores the use of optimization in plan-
ning decarbonization pathways with renewables and energy
storage. Refs. [11], [12] formulate multi-stage stochastic
optimization problems to co-optimize generation, storage,
and transmission investment while accounting for power
variability using scenarios. These works account for comple-
mentarity, changing energy usage patterns, and transmission
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constraints in real-time operation but do not analyze the
effects of complementarity on dispatch.

The contribution of this paper is an exploration of how
renewable complementarity affects grid planning and dis-
patch in a mostly-renewable grid in which renewables, not
storage, provide flexibility. We develop a two-stage stochastic
optimization problem minimizing the cost of construction
and operation, and we use sampled scenarios to capture
variability. To model line flow constraints and power balance,
we use the DC power flow equations. To capture randomness
in renewable generation across multiple sites and time pe-
riods, we model renewable generation capacities as random
variables. We also model correlation in energy production
between sites. Lastly, we test our planning problem solutions
by dispatching the system with a DC OPF, and assess
performance.

The remainder of the paper is organized as follows.
Section II outlines our problem setup and assumptions.
Section III formulates our stochastic planning algorithm.
Section IV contains case studies on the IEEE 9- and 30-
bus systems. We conclude the paper and comment on future
work in Section V.

II. PROBLEM DESCRIPTION

We consider the problem of constructing renewable ca-
pacity to minimize construction and operational costs under
uncertain power generation and demand. Our network has
Npys buses, Ny, renewable generation sites, Ny, schedulable
generators, Ny, lines in set £, and N,y loads. Time-
varying energy and load statistics are indexed by time periods
t =1,..., Nimes- Multiple generation sites or loads can be
attached to a bus.

We now discuss how we model generation and transmis-
sion capacity. To model renewable capacity, we let Py be
the max renewable capacity that can be built at site ¢ and
0 < 214 < 1 be the built proportion of max capacity at
site 4. At zq1; = 0, no capacity is built, while at z1,; = 1,
we can extract max possible power. To model transmission
expansion on the line connecting buses ¢ and j, we define
fi; as the initial max transmission capacity on line i-j,

Z?‘J‘»jd as the max additional transmission capacity on line i-
J»and 0 < x5,;; < 1 as the built proportion of additional
transmission capacity on line ¢-j. At x5 ;; = 0, no additional
transmission capacity is built, while at x5 ;; = 1, the max
possible additional transmission capacity is built. We only
model transmission expansion on existing links and assume
that new links cannot be built.

We conceptualize a two-stage problem where the first
stage decides renewable generation and transmission ca-
pacity, and the second stage decides hourly dispatch of
renewable generation (i.e., curtailment), schedulable gener-
ation, and load shedding. We stack x;;Vi and x5 ;; Vi-j
into the decision variables x; and x5, respectively. In the
second stage, we dispatch the system according to realized
values of load and max renewable generation. We only
model hourly variability, not forecast error or variability in
other timescales. We formulate the problem of constructing

renewable capacity as

min cirxl + C;—l'g + Q(x1,x2) (D

T1,T2

st 0<z <1, )
0<x <1, (3)

where Q(x1,x2) is the optimal operational cost given xq
and x,. In practice, it depends on random variables. Here,
c1 is the renewable capacity construction cost, and cy is
the transmission capacity construction cost. In Section III,
we formulate a two-stage stochastic program to solve this
optimization problem.

To model randomness in max renewable power, we let
P, = [Pi4,...,Pn,+" € RM« be a random vector
where the ith element represents the max possible power
generation at site ¢ at timestep . Similarly, we let D; =
[Dity-- .y DNp,]T € RN be a random vector of the
power demand at each load at timestep ¢. We use the
convention that elements of P; and D, are non-negative. To
model correlations, we assume

(le'~aPNﬁmssaDla~~~7DNumc,)NIP? (4)

i.e., that all renewable generation capacities and loads are
jointly distributed according to some distribution P. We let
r1 ® P model the max power generation, where ©® is the
Hadamard (element-wise) product. Let €2 be the scenario set,
i.e., P/(w), Di(w) are realizations of events w € .

If the power demand is nonzero but the available re-
newable power is zero, then no feasible dispatch exists for
any amount of constructed renewables. To avoid this, we
include a small amount of schedulable generation (that can
be arbitrarily dispatched within constant generator limits)
and load shedding. The schedulable generator could be a
traditional fossil-fuel plant or a renewable resource such
as hydropower. We let Pip: be the power dispatch for
schedulable generation at timestep ¢. Similarly, we define
load shedding as the ability to reduce demand to ensure
power balance. We denote Foaq ¢ as the power dispatch for
a load at timestep t. To account for the costs of dispatching
schedulable generation and load shedding in the planning
algorithm, we must minimize their expected costs together
with the cost of renewables and transmission expansion.

To model power flow, we must map the power from
variable generators, schedulable generators, and loads to bus
injections. We do this by defining matrices My,:, Mcn, and
Mioag, where their (7, j) elements are

1, for variable generator j on bus ¢
(Mvar)ij = & 5)
0, elsewhere,

1, for sched. generator j on bus
(M%ch)ij == g (6)
0, elsewhere,

1, for load j on bus ¢
M, o= 7
( load)” 0, elsewhere. ™
Then, the bus power injection vector Py, can be written as
Pbus = Mvarpvar + MschPsch - MloadiDload- We define the bus

power injection as positive when power is generated.
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To account for line constraints, we use the DC power flow
equations, which linearly approximate full AC power flow
but do not capture reactive power, active power losses, or
voltage magnitudes. Although the equations are approximate,
we use them because they are linear and can thus be used in
convex optimization problems. The DC power flow equations
are

Bo = Pbusa (8)
[(B)ij (65 — 0)] < fij + [ %2,;,9(i ©)

where (8) relates P, to voltage angles 6 via the susceptance
matrix B and ensures power balance, and (9) imposes line
power flow limits, where f;; + ffj‘-idazmj relates available
transmission capacity to the first-stage decision, x5 ;;. Con-
straint (9) can be split into two linear constraints.

Lastly, we make the following additional assumptions.
First, we assume no further schedulable generation capacity
can be built. Second, we do not use inter-period constraints,
such as ramping or unit commitment (on/off) constraints.

,J) €L,

III. TWO-STAGE STOCHASTIC PROGRAM

Here, we describe the two-stage stochastic program.
Our first-stage decision sets z; and x5, the renewable
generation capacity and added transmission. In the sec-
ond stage, we observe the event w € € realized
in random variables (D;(w),D3(w),...,Dn,..(w)) and
(P1(w), Py(w), ..., PNy (w)), ie., the load and max pos-
sible renewable generation per timestep. Then, we take
recourse as a dispatch (Pich,t(w), Pload,t (W), Pyar,t(w), 0t (w))
that satisfies the DC power flow equations and does not
exceed x1 @ P;(w), the max possible renewable generation
for w and ¢. Our notation indicates that the dispatch depends
on w. Recall the first-stage deterministic program (1)—(3).
Letting y2(w) = (Psch(w), Pioad(w), Poar(w), 8(w)) be the
second-stage decision variables, the optimal second-stage
cost Q(x1,x2) is the optimal objective value of

Niimes

;gl(ig) E { ; (3 Paeni(w) + ¢f [Di(w) — Pmad,t(w)]} (10)

s.t. Vt =1,..., Nimes,
0< Part(w) <210 P(w), (11)
0 < Pioad,t(w) < Di(w), (12)
0 < Pent(w) < Py, (13)
BOy(w) = Mya Pear,t (W) + M Pich,t (W) — Mioad Pload,t (W),
(14)
(B)ij(05,6(w) = 05,4 (w))] < fij + [ w05, ¥, 5) € 1(31~5)

Here, c3 is the marginal cost of schedulable generation, and
c4 is the cost of load shedding, both of which we assume
to be linear costs. Also, Pgi* is the max power output of
schedulable generation. In words, Q(x1, x2) is the expected
cost of the DC OPF given a decision z; and x5 under
variability in P; and D;. Our two-stage problem consists
of (1)—(3), corresponding to the first stage, and (10)—(15),
corresponding to the second stage.

27

Finding Q(z1,xz2) is generally intractable because €2 is
of infinite cardinality. We solve this problem with sample
average approximation (SAA). We generate a finite scenario
set ) by sampling (4) for each time period, where we
use a tilde to mark variables that change in our SAA.
We choose the number of samples to well-approximate the
actual expected value. We notate scenarios as w® € () for
s = 1,..., Nyen- Each w?® corresponds to a realization
(D3, Ds,...,Dy,. ) and (P7,Ps, ..., Py ). Our second-
stage decisions are, for each w?® € Q and time t, an optimal
dispatch (Pgy 4, Paaa.r» Par,es 0F). We collect these into a
vector yo. Together with first-stage decisions y; = (1, z2),
the two-stage problem (1)—(3), (10)-(15) can be reformulated
into the following linear program,

min clTxl + C;l‘g

y1,¥2
Nicen Niimes
Z Z CS ch t + Cq (Dé ‘Plf)ad,t) (16)
Nscen = =
st 0< a2y <1, (a7
0<xz <1, (1%
Vs=1,...,Nyen, Yt =1,..., Nimes,
0<Pvart<$1®Ptsv (19)
0 < P < Df, 20
0< Pin: < Pan D
B6; = Mvarpvar ¢ + M Py, sch, Mloadplf)ad,tv (22)

|(B)ij (67 —

Eq. (16) defines the objective function. Constraints (17)—(18)
limit the buildable renewable generation and transmission
capacity. For each scenario, (19)—(21) limit dispatchable
power, while (22)—(23) are the DC power flow equations.

03 ) < fij + fij xg,ij,V(i,j) e L. (23)

IV. RESULTS AND DISCUSSION

In this section, we discuss our test setup, results, and
solution validation. We solve the optimization problem with
Julia, PowerModels.jl [13], JuMP [14], and Gurobi. We set
the cost parameters cj, ca, c3, and ¢4 and analyze the results.
Since we are more interested in the relative costs of various
resources, we do not attach currency units to costs.

A. Variability Model

We now describe the probability distributions of renew-
ables and loads. We assume that, for ¢ = 1,..., Nimes,
P, follows a truncated joint normal distribution with mean
e € RNwr | covariance 3, € RM«*Narand interval bounds
0 < P, < 21OP;;**. We assume that Dt is constant. We also
let P, and D; be independent across time. We use truncated
joint normals, do not model load variation or correlation, and
ignore temporal correlations for convenience, but our sce-
nario approach can accept arbitrary distributions, including
ones that model these effects differently.
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B. Test Metrics

We now describe how we quantify the reliability of our
system given optimal x; and x, obtained from (16)—(23).
We conduct our analysis by first obtaining a test scenario
set, 0, which is a finite set with Ngscen scenarios. Then,
for each scenario 5§ = 1,.. ., Nigscen, W€ run the following
DC OPF to obtain an optlmal dispatch for each time period,

Yt - (Psch t) Pload t? Pvar,t? etq)
min 3 Py, + ¢j (D — Piyay) (24)
Yt
st.O<S P, <210 P, (25)
0 < By < Dj, (26)
0 < Psch t s[?k;lx’ (27)
Be; = Mvaera; t + MsohPch t Moadplzad,m (28)
(B)ij (05, — 05 )| < fij + fi{%w2,;,¥(i,5) € L. (29)

This problem differs from (10)—(15) since it gives the optimal
dispatch at one time period instead of the expected value of
optimal dispatch over multiple time periods. Using the DC
OPF dispatch, we formulate the following metrics.

1) Feasibility: We define the probability of feasibility as
the probability that we can dispatch to serve all loads com-
pletely. We determine this from the proportion of scenarios
for which DC OPF is feasible with no load shedding.

2) Load shed quantiles: Next, we quantify how much
additional capacity is needed to ensure feasibility. First, we
calculate the total load shed needed in scenario s and time ¢,
defined as Pj.q, = 17 (Df — P,q,). Then, we calculate the
0.99 quantile of Pjq.; over all scenarios and time periods,
which is the total amount of additional power needed for
feasibility in 99% of operating periods.

3) LMPs: We define the LMP at each bus as the dual vari-
able of (28), interpreting the dual variable as the additional
load shedding induced by increased load served at some bus.
LMPs increase with system congestion and lack of energy.

4) Curtailment: We use curtailment to quantify how far
a generator is operating from its maximum power. For each
scenario s and timestep ¢, we define schedulable generator

J— max . max
i’s curtailment as Pcurt it T (Psch i PSChﬂ,t)/Psch ; and
renewable generator ¢’s curtailment as
21,4t Py —Porit s 7& 0
s _ x1,i,tPf ’ t
Pcurt,i,t - ¢ ot B (30)
0, P =0
A generator is producing at maximum when Py = 0,

and it is not producing at all when Py = 1.

C. IEEE 9-Bus System

We first use a simple test case to isolate the effect of
renewable generation correlation on planning and dispatch.
We set Nimes = 1 and use the IEEE 9-bus system from
MATPOWER [15], as shown in Fig. 1. All loads have
their values from [15]. We let Generator 1 be schedulable
and Generators 2 and 3 be variable renewables, so there
is one correlation variable. We let the variable generators
have 50% capacity factors. The capacity factor is defined
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Gen. 1

Fig. 1. Single line diagram for 9-bus system [15].

TABLE I
IEEE 9-BUS SIMULATION PARAMETERS

Parameter Value
Psré‘ﬁxl, Max schedulable power at bus 1 250 MW
c1, Renewable construction cost 1
co, Transmission construction cost 1
c3, Schedulable generation cost 0/ MW
c4, Load shedding cost 0.05-1/ MW

as the ratio of max available energy to energy produced at
nameplate capacity. We calculate generator ¢’s capacity factor

(EN"‘““IE[ )/ (ZN‘”“‘ Px). Their power standard
dev1at10ns are 15% of their max capacity. Table I contains
simulation parameters. We calculate the planned generation
and transmission capacity while letting the correlation coef-
ficient between the two renewable generators be in [—1, 1].

We use our planned capacity to simulate dispatch on
scenarios drawn from the same distribution as those used in
the planning algorithm. Fig. 2 contains our results. We found
that anti-correlated renewables improved power delivery. We
can see that when generator power production is correlated,
the planning algorithm 1) constructs more capacity; 2) is
feasible in fewer scenarios; 3) sheds more load; and 4)
has increased objective value. In these tests, there were
no binding transmission constraints in any scenario, SO no
additional transmission was built.

Next, we carry out tests where we again vary the correla-
tion coefficient, but all lines have 50% of their prior capacity.
Decreasing transmission capacity reduced the effectiveness
of anti-correlated generation. Fig. 3 contains the constructed
capacity, feasibility probability, load shed quantiles, LMPs,
objective value, and line 1-4 constructed transmission plotted
against correlation. Our algorithm only added transmission
on line 1-4, which connects the schedulable generation to
the network. Again, we see that increasing the correlation
coefficient increases the objective value, generation con-
structed, and load shed quantiles. However, it also increases
the feasibility probability and decreases the LMPs. While
anti-correlation decreased the load shed, there were more
scenarios in which small amounts of load needed to be shed
to meet power balance. Additionally, the higher LMPs at
lower correlations indicate greater congestion in dispatch.
We conclude that we should prefer un- or anti-correlated
generation, but only with sufficient transmission capacity.
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D. IEEE 30-Bus System

We now use a larger test case to analyze the behavior dur-
ing optimal multi-period dispatch, investigating the effects
of varying the schedulable generation cost c3. We use the
IEEE 30-bus system from MATPOWER [15], which has 6
generators and 18 loads, as shown in Fig. 4. Fig. 5 displays
the total load in each test scenario and the mean total load.
We place schedulable generators at buses 1 and 22, wind
generators at buses 13, 23 and 27, and solar at bus 2. Table II
contains test parameters and summary statistics for the 30-
bus case. Note that solar capacity factors are low because our
dataset exclusively uses data from January. We scale the cost
of each renewable so that their cost per MW is equal. For our
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Fig. 4.

Single line diagram for 30-bus system [15].

TABLE II
IEEE 30-BUS SIMULATION PARAMETERS AND SUMMARY STATISTICS

Parameter Value
PLaX, Max constructable capacity at bus 2 12 GW
Pwrfr%fs’ Max constructable capacity at bus 13 74 GW
P55, Max constructable capacity at bus 27 24 GW
Pw‘ﬂéé‘:g, Max constructable capacity at bus 23 2.0 GW
P, Max schedulable power at bus 1 30 MW
PS‘ES;EQ, Max schedulable power at bus 22 30 MW
c1/ P\g‘ra", Renewable construction cost 2-1/ MW
ca/ fadd, Transmission construction cost 4-1/ MW
c4, Load shedding cost 0.05-1 /MW
Summary statistic Value
Capacity factor at bus 2 13.3%
Capacity factor at bus 13 47.0%
Capacity factor at bus 27 65.5%
Capacity factor at bus 23 51.2%

variability model, we obtained hourly wind, solar, and load
data for January 2020 from [16], [17]. With this data, we
modeled days in January by calculating hourly means and
covariances for all 24 hours, giving us 24 times. We used
this mean and covariance data in our planning algorithm and
dispatched our system with additional planned transmission
and generation on the actual data.

First, we give results for schedulable generators with no
marginal cost, i.e., c3 = 0 / MW. We find that our method
generally curtails renewables and favors schedulable gener-
ators providing steady load. Table III contains the capacity
added for each renewable generator and each line. Fig. 6
contains the proportion of feasible scenarios for each time
period. Notably, the dips in the feasibility curve coincide with
peaks in the load curve, indicating that the system is unable
to satisfy peak demand. Next, we analyze the dispatch of the
renewable resources. Fig. 7a contains the mean generation
on each hour over all scenarios for each type of generation.
We see that wind generation peaks in the morning and early
afternoon, coinciding with the peaks in load. Fig. 7b contains
the mean curtailment of each renewable generator in each
hour over all scenarios. We see that on average, the wind
generators are about 80% curtailed, and most of their energy
is spilled. Meanwhile, the schedulable generators run closer
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TABLE III
RESOURCES BUILT FOR 30-BUS SYSTEM WITH AND WITHOUT
SCHEDULABLE GENERATION MARGINAL COST c3
Resource Capacity Added Capacity Added

c3 =0/ MW c3 =0.05-1/ MW
Solar at bus 2 (Solar 1) 72777 MW 856.65 MW
Wind at bus 27 (Wind 1) 1087.33 MW 1405.46 MW
Wind at bus 23 (Wind 2) 507.15 MW 494.27 MW
Wind at bus 13 (Wind 3) 1066.84 MW 1100.71 MW
Total generation added 3389.09 MW 3857.09 MW
Line 6-8 16.76 MW 13.66 MW
Line 12-13 20.21 MW 19.99 MW
Line 15-18 N/A 1.51 MW
Line 21-22 1.55 MW 0.22 MW
Line 15-23 16.00 MW 16.00 MW
Line 22-24 1.55 MW 11.49 MW
Line 24-25 N/A 8.41 MW
Line 25-27 3.58 MW 12.08 MW
Line 27-30 0.29 MW 0.29 MW
Line 6-28 0.41 MW 10.95 MW
Total transmission added 60.35 MW 94.6 MW

to their full capacity except during the middle of the day,
during which solar produces more power.

Next, we rerun our planning and dispatch for a case where
schedulable generators have a marginal cost of c3 = 0.01-1/
MW. We find that even though schedulable generators curtail
more often, there is no appreciable change in renewable
curtailment because our planning algorithm sized renewables
larger. Again, Table III contains the planning results for
the case with marginal cost for schedulable generation. We
see that increasing the marginal cost led to the planning
algorithm constructing about 470 MW more generation and
35 MW more transmission capacity. Next, we look at power
generation in Fig. 8a and curtailment in Fig. 8b. Even though
Fig. 8a shows that DC OPF dispatched more power from
renewables, Fig. 8b shows that the curtailment of renewables
did not change significantly between the two cases.

V. CONCLUSION

We have developed a stochastic optimization framework to
size renewables and transmission while minimizing the cost
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Fig. 6.  Proportion of feasible periods for 30-bus system over 24 hours
without schedulable generation marginal cost, i.e., c3 = 0/ MW.

of construction and load shedding. Our framework overbuilds
renewables and curtails them during times of excess capacity.
On the simpler 9-bus case, we found that anti-correlation of
generation resulted in lower power variability and generation
capacity needs. However, these benefits were only fully
realized with sufficient transmission capacity. On the 30-
bus system, we found that minimum-cost solutions relied
on renewables, particularly wind, as a source of flexibility
by heavily curtailing them during dispatch, even when we
increased the cost of schedulable generation.

Future work includes modeling improvements, further
analysis of dispatch, and comparison of renewable over-
capacity with storage. Here, we modeled renewable and
load variability via truncated joint normal distributions that
were independent across time, and we captured spatial (not
temporal) correlations. This choice may not be accurate,
e.g., because we model renewable power standard deviation
as scaling linearly with capacity. However, our planning
algorithm could be extended to this case because our method
does not assume a distribution. We could also analyze how
using anti-correlation affects day-ahead dispatch, because in
day-ahead dispatch, operators must account for forecast error
in addition to variability. Anti-correlation may change the
impact of forecast error on day-ahead dispatch and genera-
tion capacity needs. Lastly, we could extend our analysis to
compare our approach to one that includes energy storage, or
we could extend our planning method to co-optimize storage.
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