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Abstract—Collaborating with nearby devices to train and
personalize deep learning models opens the potential to support
new mobile application scenarios. In emerging decentralized
learning algorithms, devices communicate over a peer-to-peer
network to share knowledge obtained from local data. However,
communication bandwidth, computing power, and the duration
for which these connections are available are limited and het-
erogeneous. In this paper, we explore the feasibility and efficacy
of adaptive model reduction strategies for decentralized learning
algorithms (Dynamic Reduction (DR)). For this study, we use
as an exemplar an existing opportunistic learning algorithm
(OppCL) that relies on device-to-device model exchanges to
iteratively train a local model based on encounters. In layering
model reduction on OppCL, when a device encounters a potential
learning partner, it dynamically constructs a model reduction
suitable for given computation and communication budget by
quantizing weights and building a dropout version of a neural
network. We term our new approach DR-OppCL and show that
DR-OppCL leads to faster convergence with minimal effort in
tuning hyperparameters related to model reduction, using both
simulated and real-world mobility traces. While we demonstrate
our DR approaches in the context of OppCL, they are generic and
can be easily applied to other decentralized learning algorithms.

Index Terms—mobile computing, collaborative deep learning,
distributed machine learning, decentralized learning

I. INTRODUCTION

Mobile applications can benefit from models learned from
distributed data, for instance, to perform object classification in
images taken with a smartphone, perform activity recognition
on wearable devices, or predict a user’s interactions with
social media. However, the data these models use can be
very private, and it is often not desirable to share it. Federated
learning (FL) [14] allows devices to maintain privacy by
training updates to a global model on end nodes and aggregat-
ing them at a central server. However, relying on a coordinator
maintains concerns of bottlenecks and a single point of failure.

In (fully) decentralized learning [16, 20], devices collaborate
without relying on a centralized entity; decentralized FL is a
subset of decentralized learning [23, 29]. Opportunistic col-
laborative learning (OppCL) [18] enables devices to rely on
device-to-device communication to collaboratively train local
models in an effort to personalize their models by incorpo-
rating knowledge from neighboring devices. In OppCL, each
device trains a personalized local model by asking encountered
devices to compute a model update using local data. OppCL
is suitable for scenarios where devices (i) encounter new

neighbors regularly; (ii) have limited connection to a central
server; (iii) have diverse (personalized) learning goals; and
(iv) hold training data that is private or large.

Support for device-to-device communication has prolifer-
ated [4, 7]. However, decentralized learning approaches are
limited because they assume encountered devices are homoge-
neous in communication, computation, and memory. In prac-
tice, devices in these environments are heterogeneous, ranging
from sophisticated edge or fog nodes, through smartphones
down to resource-constrained embedded IoT devices.

In decentralized learning, model complexity is often tuned
to a device’s specific resource constraints. However, when
devices are diverse and hosting models of different complexity,
opportunities to collaborate are limited to encounters with de-
vices that have similar capabilities and encounters that are long
enough to complete the exchange of model updates. We aim to
allow devices to benefit from opportunistic collaboration even
when encountered devices have diverse resource constraints
or the encounters are short-lived. We have designed an adap-
tive strategy (Dynamic Reduction, or DR) that dynamically
determines the appropriate level of model reduction, utilizing
two techniques from a classic ML toolbox: (1) dropout, which
we use to reduce the models sent to neighbors with lower
computational capabilities and (2) quantization, which we use
to limit the amount of communication in an encounter.

Fig. 1 shows our generic DR strategy for decentralized
learning. When one device (termed the learner) encounters
another (termed the neighbor), the discovery module fetches
information about the neighbor’s resource constraints, includ-
ing computational resources, such as the maximum size model
it can run, and communication resources, such as the data rate
at which it can send and receive. The dynamic reduction mod-
ule uses this information to determine a strategy appropriate
for the learning algorithm. The model is reduced, enabling
collaboration even when data rates are limited, or allowing
collaborative training on a resource-constrained device.

We use OppCL [18] to demonstrate and evaluate our DR
strategy. Because its design relies on encountering a neighbor,
sharing a model, and waiting for the neighbor to complete a
round of training and return an update, the encounters that
OppCL can use are limited to those of a longer duration.
However, when DR is layered on top of OppCL, its ability
to quantize model representations allows it to take advantage
of shorter encounters. Further, OppCL can benefit from the
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Fig. 1: Overview of Dynamic Reduction (DR). The learner dynam-
ically adapts to the neighbor’s resource constraints.

DR strategy’s use of dropout to create a model suitable to the
neighbor’s resources. The creation of DR-OppCL is just one
example use of the generic DR strategy. The strategy can also
be combined with other decentralized learning protocols.

This paper focuses on the practical application of machine

learning techniques to the resource constraints and hetero-
geneity that real-world mobile computing applications must
overcome. Concretely, we make the following contributions:

« We propose Dynamic Reduction (DR), an adaptive model
reduction strategy for decentralized learning in heteroge-
neously resource-constrained networks.

o We create an adaptive version of dropout to directly ad-
dress the computational heterogeneity of the encountered
collaborators in real-world mobile environments.

o« We adaptively determine a quantization rate associated
with communicating model parameters and gradient up-
dates among opportunistically collaborating devices.

o« We demonstrate the application of DR to an exemplar
decentralized learning algorithm, OppCL.

DR preserves training accuracy on heterogeneous mobile

devices in real-world mobile networks while deftly navigating
tradeoffs in computation and communication overhead.

II. RELATED WORK

We overview the state of the art in learning disciplines
applied to the context of mobile computing and use them to
frame our approach. We then describe efforts to adapt learning
disciplines to heterogeneous environments, in particular those
with communication and computation constraints.

Learning Disciplines. Interest in machine learning for
dynamic mobile environments has ballooned. With respect
to training on mobile devices, there are several relevant ap-
proaches, including federated learning, decentralized learning,
and opportunistic learning. In federated learning (FL), the
primary goal is to maintain privacy of individual users’ training
data; rather than shipping raw data to a centralized location and
performing training on the aggregated raw data, each device
performs updates to a shared model locally, then returns the
resulting gradients, which are aggregated centrally [14].

In decentralized learning [16], individual devices exchange
model updates in an entirely peer-to-peer fashion. While
devices may learn somewhat different versions of the target
model, the overall objective is still a global one, e.g., to
minimize the average loss of the model across all clients.
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Recognizing that different devices may have different,
personalized goal models, OppCL [18] uses ephemeral en-
counters to support devices in training their own local models
using the (private) data of encountered neighbors. Rather than
exchanging gradients learned while seeking convergence to
a global model, devices share their model parameters with
neighbors who then use their own local data to compute an up-
date specific to the neighbor’s goal. In this work, we tackle the
problem that arises when learning in a real-world environment
with heterogeneously resource-constrained devices. Though
we assume that neighboring devices will participate, there are
works on incentivizing opportunistic collaboration [11].

Learning in Heterogeneous Environments. Existing tech-
niques have explored supporting devices with heterogeneous
capabilities in federated or decentralized learning by consider-
ing the potential for leveraging edge or fog nodes [28]. These
approaches leverage edge nodes for offloading computation
as part of training or to support incremental computation
of gradients. Prior work generally falls in two directions:
(1) reducing the size or complexity of the model to support
devices with diverse computational capabilities and reduce
the communication requirements of collaborative learning and
(2) reducing the number of bits used to represent the model
to reduce communication requirements.

There are multiple ways to reduce the complexity of a neural
network (e.g., knowledge distillation [19], model pruning (6],
and Dropout [26]). Dropout randomly selects neurons to omit
from a training iteration to prevent the model from becoming
overly reliant on a specific small subset of hidden units. In
the FL space, dropout reduces both the computation and com-
munication requirements for resource-constrained devices [1].
Given that these approaches apply the reduction techniques to
a centrally coordinated and orchestrated FL task, their success
supports our proposed novel application of dropout to the
entirely decentralized opportunistic learning environment.

While model sparsification addresses both computation and
communication constraints, other approaches focus specifi-
cally on reducing communication overhead of sharing gra-
dients and models. Quantization [8] reduces the number of
bits used to represent the weights in the model, lowering the
communication overhead. Quantization has been explored in
federated learning [3] and in decentralized learning [27].

III. DR-OPPCL: DYNAMIC REDUCTION FOR
OPPORTUNISTIC COLLABORATIVE LEARNING

Decentralized learning algorithms largely neglect the het-
erogeneous capabilities of encountered devices, limiting their
real-world applicability [9, 29]. Incorporating our DR strategy
into decentralized learning can significantly improve effec-
tiveness by enabling smaller devices to participate in training
models that are otherwise too big to train and within shorter-
duration encounters. Of particular importance is that DR is
adaptive—it determines its operating mode on an encounter-
by-encounter basis, depending on the instantaneous capabili-
ties of the collaborators and their communication link.
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Algorithm 1: OppCL [18]

1 G;: goal label distribution for C;’s learning task

2 L;: data distribution advertised by the neighbor C;
3 B;: batch of C;’s data used for training

4 Function ONDISCOVER: (L;)

5 if DECIDEOPPCL(G;, £;) then

6 ask j to compute g + Ve&(w!; B;)
7 receive g

8 wit <~ UPDATEMODEL(g)

9 end

10 end

A. OppCL and its Limitations

Because we apply DR to OppCL, we next overview the
behavior of OppCL [18]. When a device (“the learner”)
encounters another device (“the neighbor”), it may request
the neighbor to perform a round of training on the learner’s
model using the neighbor’s data. The learner sends its model
parameters to the neighbor; the neighbor trains the model with
its local data and returns the gradients, which the learner
incorporates into its personal model. Each data item has a
label (e.g., a photo may be labeled with whether it was shared
on social media; a sequence of words may be labeled with
the emoji that follows them). OppCL captures device C;’s
data label distribution (L;) as the relative frequency of each
label within the local data set. Each device aims to learn a
local model for some personalized task represented by a goal
distribution (G;) of labels that it desires for its model to be
successful at classifying. It is common for a device’s goal and
data label distributions to differ.

Algorithm 1 shows OppCL as presented in [18]. The
DECIDEOPPCL function abstracts the learner’s decision logic
that determines whether to request training from a discovered
neighbor (line 5). In OppCL, this function simply checks
whether the learner’s goal distribution G; is sufficiently similar
to the neighbor’s local data distribution £;. If so, the learner
requests that the neighbor use the learner’s model weights
to compute new gradients on a batch of the neighbor’s local
data, and return the gradients to the learner. Using the received
gradients, the learner updates the local model (line 8).

Two challenges arise in directly applying OppCL. First,
due to limitations in computational power, a neighbor may
be unable to compute a model update. Second, the duration
or bandwidth of an encounter may not always be sufficient to
support sending w! or receiving g (lines 6 and 7). Applying
DR to OppCL tackles both problems.

B. Overview of DR-OppCL

Fig. 2 depicts an opportunistic encounter in DR-OppCL.
As part of a continuous discovery process [10] the learner
discovers the availability of the neighbor, which also advertises
a summary of its locally available data. The learner uses this
information to determine whether the encountered neighbor
has had experiences from which the learner seeks to learn.
If so, the learner uses the neighbor’s advertised capabilities
to determine an appropriate dropout rate, uses the expected
duration and quality of the communication link [2] to compute
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Fig. 2: An Opportunistic Encounter in DR-OppCL.
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Algorithm 2: DR-OppCL

1 Y;: available computational resources advertised by C;
2 GETDROPOUTRATE(Y): determines dropout rate based on
the neighbor’s computational resources.
3 GETQUANTIZATIONBITS(d, C;): determine quantization bits
based on dropout rate d and predicted encounter duration.
Function ONDISCOVER: (Lj, T;)
if DECIDEOPPCL(G;, L;, T;) then
d <~ GETDROPOUTRATE(Y ;)
q < GETQUANTIZATIONBITS(d, C;)
if d # NIL A g # NIL then
ask j to compute g < VA(Q(D(w/, d), q); B;))
receive G + Q(g,q)
w; ™! < UPDATEMODEL(GY)
end
end

4
5
6
7
8
9

10
11
12
13
14 end

the appropriate number of quantization bits, then sends the
model parameters to the neighbor. The neighbor trains the
model using the neighbor’s own local data. When training
is complete, the neighbor returns a quantized version of the
updated gradients, which the learner applies to its model.
Algorithm 2 details a learner C;’s encounter with neigh-
bor C;. The neighbor (C;) continuously advertises its data
label distribution (£;) and the computational resources it has
available for learning on behalf of neighbors (Y ;). When C;
discovers C;, DR-OppCL’s DECIDEOPPCL first determines
whether C;’s label distribution is sufficiently similar to C;’s
learning goal (line 4; identical to OppCL). If so, the learner
computes the best possible dropout rate, given C;’s available
resources (line 8; Section III-C) and the optimal number
of quantization bits achievable, given the network context
(line 9; Section III-D). In both cases, we try to make as
much use as possible of the available resources: we choose the
smallest amount of dropout that C; is capable of computing
and the optimal number of bits that will succeed in being
communicated. If DR-OppCL finds feasible levels of dropout
and quantization for the encounter, then C; requests that C;
compute a model update using C;’s local data. In Algorithm 2,
line 9, D references a function that computes a dropout model
from the learner’s local model using the dropout rate d, while
@ computes a quantized version of this model’s parameters
using only ¢ bits. Once the neighbor has completed training, it
returns the quantized updated gradients to the learner (line 12).
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Finally, the learner incorporates the received gradients into
the local model (w;), using an update procedure adapted to
accommodate dropout versions of the model (Section III-E).

C. Handling Computational Heterogeneity

In selecting the degree of dropout for a given neighbor, DR-
OppCL is greedy—it seeks to use the largest model the neigh-
bor can accommodate, computationally. When characterizing
dropout, we use the rate to refer to the percentage of units
removed from the model, i.e., a dropout rate of 0.1 indicates
that 10% of the units are omitted from the shared model.
We apply the dropout to each layer, similar to Federated
Dropout [1]. Therefore, model architectures resulting from the
same dropout rate are the same. DR-OppCL adapts the rate to
each encounter, based on that encounter’s available resources.

Dropout models can still converge even when many units are
dropped because continuously updating models compensates
for noise that arises in updating them sparsely [26]. However,
a DR-OppCL model mixes diverse dropout rates, which in-
creases the risk for the gradient updates to result in noise and
hinder convergence. To combat this, DR-OppCL dynamically
computes a maximum allowable dropout rate, d,,, for each
encounter, as the first step of GETDROPOUTRATE (line 8 in
Algorithm 2). The learner then computes the minimum sup-
portable dropout rate, based on the neighbor’s computational
resources. If de;, > df,,,, GETDROPOUTRATE returns NIL,
indicating that no usable dropout rate exists for this encounter.
To compute d, ., we estimate the distribution of d¢;, of the
devices in the learner’s surroundings. We keep a recent history
of the computed minimum dropout rates that encountered
devices can support. We rely on a window W, of size w
that contains the dropout rates computed for the w encounters
immediately preceding an encounter e. Based on W,., we
compute the max allowable dropout rate for encounter e as:
(0.1 ) 2 ©
Intuitively, the learner uses df,,, to skip encounters that
require a dropout rate higher than a statistic computed on
the window of dropout rates for recent encounters. When the
learner is in the presence of more resource-poor neighbors,
the value of df,,, will decrease, instructing the learner to take
advantage of opportunities requiring higher dropout rates.

Q measures the probability that a normal random variable
will exhibit a value larger than a given number of standard
deviations; pq and o4 are the mean and standard deviation of
the w samples for d in W,; |0;| is the number of parameters
in the learner’s full model; and |D(0;,d)| is the number of
parameters remaining given dropout rate d. This function seeks
a dropout rate d, ... for which it can be expected that a device
capable of dS, .. will be encountered at least |0;|/|D(0;,d)]
times in the next w encounters with a confidence of 7. 7 is
in the range [0.1, 0.9]; it should be larger when an application
seeks to save resources and smaller when the application seeks
to promote faster training. In this paper, we used 7 = 0.5.
Selecting d, .. with Gaussian approximation works well
even with few samples (e.g., w = 30). Further, it is desirable

dipae = max{d € We : Q (ad’l .

214

to choose a w < |0;]/|D(0;, dmaz)|, where dyq, is a global
upper bound of the dropout rate; d.,., is specific to the learn-
ing task and represents the point at which training diverges.

D. Handling Communication Heterogeneity

To handle heterogeneity in communication, we compute ¢°,
the number of quantization bits to use for the model and
gradient exchanges for encounter e. This computation relies
on a global constant ¢,,, that is an absolute minimum number
of quantization bits to be used for this model. As with d,,4,
this is dependent on the learning task, and represents the point
at which further quantization is detrimental to training.

To compute ¢, we rely on the predicted encounter duration
(tenc) [2]; the predicted time for training (f4qin), based on
the neighbor’s computational resources (Y ;); and the selected
dropout rate (d°). We use the same number of bits to quan-
tize the model parameters the learner sends to the neighbor
and the gradients the neighbor returns because we assume
the communication link is symmetric. Specifically, assuming

tirain < tenc, W compute g¢ as:
) J 3 Qmin}

e (tenc - ttra'm) : Rb

q = max{ {log2 (—2 D(:, d°))
To quantize model parameters and gradients, we map the
values of each weight onto a uniformly discretized grid
of range [A* . ~0F 1. Then we project each parameter or
gradient value to the closest point in the grid. For the model
parameters and gradients to be reconstructed, we also transmit
OF . and OF, . each represented as a 64 bit float, which yields

264+ || - ¢° bits that must be transmitted in each direction.

(@)

E. Incorporating Neighbor Gradients

To incorporate gradients trained with different dropout rates,
we introduce a modified version of the Adam optimizer [12],
AdamMD (Adam for Mixed Dropout). Briefly, Adam main-
tains a learning rate for each model parameter, which it adapts
based on statistics computed over the history of the gradient.
These adaptations rely on both the first moment (i.e., the
gradient’s mean) and the second moment (i.e., the gradient’s
uncentered variance). Adam has been shown to be a good
choice as an optimizer in settings similar to ours [25].

To adapt Adam to mixed dropout, we make a slight adjust-
ment to the update function for the two moment estimates:

X
m{

0% is the k-th value of the model parameters, and g"* is
the corresponding value in the gradient. If 6% is present in
the dropout model, we update the moment according to the
standard Adam update. If 6% is not in the dropout model, we
maintain the previous value of the first moment and set the
second moment to 0. Therefore, AdamMD amplifies the next
gradient that is applied to these units, thereby rectifying error

if 0% in D(0, d)
otherwise

k
my

Br-mf g+ (1—B1)-g"
k

me—1

3

if % in D(8,d)
otherwise

Ba-vioy + (1= B2) - (gf)°

0 “
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Fig. 3: Comparing different dropout rates.
induced from the reused first moment. We inherit 3; and 35,
the moment estimates’ exponential decay rates, from the Adam
optimizer and use a fixed stepsize of 0.001.

IV. EVALUATION

We evaluate DR-OppCL using (1) controlled experiments
of the impacts of diverse resource heterogeneity and (2) simu-
lation studies that explore performance in real-world mobility.

We rely on three learning tasks; MNIST [17], SVHN [22],
and CIFAR-10 [15]. For MNIST, we use a model similar to
the “2NN” model in [21]. We report results with four dropout
rates: O (no dropout), 0.3, 0.6, and 0.9. SVHN and CIFAR-
10 use a CNN model. To apply different dropout rates, we
apply different filter sizes to the layers depending on their
proximity to the input layer; filters near the input are dropped
less than others. We use cross-categorical entropy loss with
L2 regularization, which prevents gradients that exhibit large
differences and cause quantization to lose more information.

A. Controlled Experiments

We evaluate how the accuracy of the trained model changes
when it encounters neighbors with different computational
capabilities and encounter durations. In these experiments, the
learner encounters 30 unique devices repeatedly. For MNIST,
each device is allocated 50 images as its local data and uses
all 50 as a batch when asked to train on behalf of a neighbor.
In SVHN, each device is allocated 100 images and uses all
100 as a batch for each round of training. All experiments are
averaged over 10 runs with different random seeds.

Computational heterogeneity. Because DR adapts to the
real-time capabilities of devices, we report experiments with
different distributions of device capabilities. Each device
is assigned a computational capability that ranges from
{0,0.1,0.2, ...,0.9}. For convenience, these numbers represent
the dropout rates the device can support for training(e.g., a de-
vice with computational capability 0.4 can compute gradients
from models with d > 0.4). We report experiments with two
distributions of device capabilities: uniform (i.e., all device
capabilities are equally likely to occur) and inverse uniform
(i.e., devices with higher capabilities are less likely to occur).

Fig. 3 shows the results for the uniform distribution consid-
ering only dropout and no quantization. Each figure compares
statically assigned dropout rates to DR, computed according
to Equation 1. In the static condition, only neighbors with
computational capabilities that meet d,,,, are used to collab-
oratively train the model. For instance, when d,,,, = 0.3, only
neighbors with capability levels 0.3 or smaller are used.
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TABLE I: Comparison of dinaz

uniform inv. uniform
dmaz MFLOPs  Accuracy(%) \ MFLOPs  Accuracy(%)
0.9 34.05 86.21 20.29 82.68
&= 0.6 31.16 86.15 12.79 80.07
= 0.3 18.45 82.46 6.57 70.02
= 0 4.45 58.14 222 38.41
Dyn. 27.01 85.71 15.63 82.49
0.5 287.78 68.64 211.30 50.76
Z| 025 | 24250 70.39 14122 62.64
5} 0 170.01 62.40 67.51 36.37
dyn. 249.07 67.81 151.76 58.89

There is not a significant difference in Fig. 3(a) between
Aimaz of 0.3, 0.6, and 0.9. However d,,,q,; = 0 performs quite
poorly because the learner can only collaborate with similarly
capable devices. For the inverse uniform distribution (not
shown), the performance of d,,., < 0.3 falters for the same
reason. Table I compares the accuracy of each model to the
total number of computational steps required to train it. For
MNIST, while d,,q; = 0.9 achieves the highest accuracy,
the dynamic approach achieves nearly the same accuracy
with significantly less computation. These same general trends
hold for SVHN. Notably for SVHN, the dynamic approach
learns more quickly at the outset, indicating its flexibility to
adapt. Because the drop out rate is highly dependent on
the encountered devices (thus can not be set statically), the
dynamic approach is more feasible with nearly optimal results.

Communication Heterogeneity. To assess DR-OppCL with
different quantizations, we use uniform and inverse uniform
distributions of encounter durations rather than dropout model
size. Fig. 4 shows the results for both MNIST and SVHN.
Using a smaller number of quantization bits increases perfor-
mance up to a point because the learner can take advantage
of very short encounters when using a smaller number of bits
to represent the model. At some point , the quantization is
too much and the model diverges. DR-OppCL’s approach to
preventing the quantization from straying too close to (or past)
Qmin allows it to take advantage of heterogeneous commu-
nication opportunities without sacrificing accuracy. Table II
displays this tradeoff more concretely, comparing the number
of bits communicated for each g,,;, versus the achievable
accuracy. For instance, ¢, = 4 bits achieves a good
balance between accuracy and communication overhead for
both models. It is future work to further validate whether this
setting can be generalized across diverse datasets and models.
The result also shows that the setting of minimum quantization
level can be based on application-specific requirements (e.g.,
computation vs. accuracy). Irrespective of the setting, the
dynamically set quantization bits for each encounter (¢¢ in
Equation 2) balances communication constraints and accuracy.

Combining Dropout and Quantization. Next, we combine
dropout and quantization using uniform distributions of device
computational capabilities and encounter lengths. Fig. 5 shows
five approaches for comparison: baseline, which assumes no
dropout and no quantization; three static approaches that fix
the values of dropout and quantization; and the dynamic DR-
OppCL approach. Table III compares the top-performing static
configuration with DR-OppCL. For each model, we chose
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TABLE II: Comparison of gmin

uniform inverse uniform
Qmin | Bit(MB)  Accuracy(%) | Bit(MB)  Accuracy(%)
2 642.18 42.44 362.06 20.27
; 3 569.77 86.85 262.97 83.64
Z 4 446.86 85.81 197.23 79.50
> 5 298.23 82.33 121.01 73.48
6 160.07 75.29 40.02 43.43
2 1164.40 22.74 746.52 19.00
z 3 1042.52 68.83 620.28 65.23
E 4 911.93 67.73 496.23 58.63
%) 5 694.29 60.98 330.82 42.20
6 378.70 37.53 156.70 18.78
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Fig. 5: DR-OppCL vs. best dmaz and gmin.
a statically configured setting that used the empirically best
quantization and dropout rates as the baseline.

DR-OppCL matches the performance of the best stati-
cally configured settings. As shown in Table III, DR-OppCL
achieves nearly the same accuracy for MNIST at a dramat-
ically lower overall computational and communication cost.
For SVHN, the overhead values are very nearly identical,
but the difference here is that DR-OppCL does not need to
be configured a priori to the optimal levels of dropout and
quantization, and was able to discover both on its own.

B. Real-world Scenarios

For our real-world scenarios, we used both generated and
real-world mobility traces. For the former, we used the Levy
walk mobility model [24], following the same setup in [18]
with 45 devices (which act as both learner and neighbor)
and 10 episodes where each episode has 200 timesteps. We
also used HYCCUPS [5] to evaluate DR-OppCL under more
realistic encounter patterns. HYCCUPS comprises traces from
72 participants over 63 days. We selected the 20 devices with
the largest number of encounters and included encounters
only for these devices. In the resulting traces, there were a
total of 4,376 encounters for HYCCUPS (approximately 200
per device). We used the real durations of encounters from
the traces as input to Equation 2. We assumed a Bluetooth
connection with datarate of 2Mbps.
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TABLE III: Comparison of top-performers from Fig. 5

\ I [ MFLOPs  Bit(MB)  Accuracy(%) |
‘ dmaz = 0.9, gmin = 3 ‘ 24.13 1132.67 86.06 ‘
‘ MNIST | B5R-OppCL [ 1984 7549 8476 |
SVHN || dmas = 0.5, gmin =3 | 15420 79440 6289 |
| DR-OppCL | 15420 79440 6395 |
TABLE IV: Types of devices.
Edge Mobile Mobile IoT IoT
Devices Phones 1 Phones 2 Devices Sensors
amrer 0 0 02 0.4 0.6
dien 0 02 0.4 0.6 038
aaTe 0 0 05 0.75 -
agen 0 05 0.75 - -

We modeled the computational capabilities of five types
of devices (Table IV) and assigned a corresponding dropout
rate to each device. These devices range from powerful edge
devices that can train full models to lightweight IoT devices
and sensors that are so resource constrained they cannot train
even the most dropped-out version of the CNN model (though
they can host a small model for inference and still encounter
neighboring devices that help train their models). Depending
on the device’s capabilities, each type started with a different
model, with weights initialized independently. For instance, a
“Mobile Phone 2” device’s personalized model was already
20% or 50% smaller than the largest possible 2NN or CNN
model, respectively. The independence of the learners’ models
is an important aspect of the DR approach.

Figure 6 shows the final accuracy of all participating devices
as a box plot under four different conditions: (1) baseline
(no quantization or dropout); (2) quantize (qin = 3; similar
to [13, 27]); (3) dropout (choosing the dropout model dynam-
ically); and (4) DR-OppCL. Table V shows the percentage of
encounters a device uses compared to baseline. DR-OppCL
tends to find more encounters to take advantage of because
they enable collaborating with resource-constrained devices.
For instance, in the SVHN-HYCCUPS experiment, DROppCL
was able to utilize 239.5% of encounters to baseline, which
was realized by requesting more resource-constrained devices
and making use of encounters with short duration.

Overall, DR-OppCL achieves the highest average accuracy
across all scenarios and reduced the variance of the accuracy
across devices. Although the dropout and quantize strategies
improve performance relative to the baseline, they often result
in high variance, and their effectiveness is not always guaran-
teed. For instance, in the SVHN-Levy scenario, dropout led
to greater performance improvement than quantize, enabling
collaboration with resource-constrained devices. In contrast,
in the MNIST-Levy scenario, utilizing shorter encounter dura-
tions appears to be critical for performance improvement, as
quantize brought more improvement than dropout.

The HYCCUPS mobility trace exhibits a very skewed
distribution of encounters per device—seven devices had fewer
than five successful collaborations in the baseline for SVHN-
HYCCUPS. However, because DR enables the learning algo-
rithm to take advantage of a larger fraction of the encounters,
in the case of DR-OppCL, we did not observe any device
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TABLE V: Encounters used in comparison to baseline (%).

[ ] [ Quantize [ Dropout [ DR-OppCL |
= MNIST 1825 [ 2611 [ 4492 ]
8 [ SVAN/CIFAR-T0 | 1993 [ 1476 [ 2395 |
O [ MNIST [ 1232 [ 1982 [ 1985 |
% [ SVHN/CIFAR-T0 | 3582 [ 2627 [ 3333 |

with fewer than five collaborations, indicating that DR-OppCL
enables the utilization of resource-constrained neighbors and
encounters with shorter durations.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a generic Dynamic Reduction strat-
egy for decentralized learning and an implementation of the
strategy for OppCL (DR-OppCL). DR-OppCL extends OppCL
to a more complex learning environment where devices and
networks are heterogeneously resource-constrained. In contrast
to opportunistic collaborative learning, our approach (1) re-
moves the need for a central coordinator for initialization,
making the approach truly decentralized; (2) addresses the
heterogeneity of mobile computing devices’ computational
capabilities by using dropout models to reduce the complexity
of the task demanded of collaborating neighbors; and (3) ad-
dresses the heterogeneity of mobile computing communication
links by adaptively determining the best level of quantization
used to communicate model parameters and gradient updates.
Alongside these contributions, we derive a simple extension
to a classic machine learning optimizer that allows integrating
gradients learned using diverse dropout models. Our evaluation
shows that DR-OppCL strikes a balance between maintaining
high accuracy and optimally leveraging the resources in the
neighbors and the network, reducing computation and com-
munication resources contributed by nearby devices.
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