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Abstract—Collaborating with nearby devices to train and
personalize deep learning models opens the potential to support
new mobile application scenarios. In emerging decentralized
learning algorithms, devices communicate over a peer-to-peer
network to share knowledge obtained from local data. However,
communication bandwidth, computing power, and the duration
for which these connections are available are limited and het-
erogeneous. In this paper, we explore the feasibility and efficacy
of adaptive model reduction strategies for decentralized learning
algorithms (Dynamic Reduction (DR)). For this study, we use
as an exemplar an existing opportunistic learning algorithm
(OppCL) that relies on device-to-device model exchanges to
iteratively train a local model based on encounters. In layering
model reduction on OppCL, when a device encounters a potential
learning partner, it dynamically constructs a model reduction
suitable for given computation and communication budget by
quantizing weights and building a dropout version of a neural
network. We term our new approach DR-OppCL and show that
DR-OppCL leads to faster convergence with minimal effort in
tuning hyperparameters related to model reduction, using both
simulated and real-world mobility traces. While we demonstrate
our DR approaches in the context of OppCL, they are generic and
can be easily applied to other decentralized learning algorithms.

Index Terms—mobile computing, collaborative deep learning,
distributed machine learning, decentralized learning

I. INTRODUCTION

Mobile applications can benefit from models learned from

distributed data, for instance, to perform object classification in

images taken with a smartphone, perform activity recognition

on wearable devices, or predict a user’s interactions with

social media. However, the data these models use can be

very private, and it is often not desirable to share it. Federated

learning (FL) [14] allows devices to maintain privacy by

training updates to a global model on end nodes and aggregat-

ing them at a central server. However, relying on a coordinator

maintains concerns of bottlenecks and a single point of failure.

In (fully) decentralized learning [16, 20], devices collaborate

without relying on a centralized entity; decentralized FL is a

subset of decentralized learning [23, 29]. Opportunistic col-
laborative learning (OppCL) [18] enables devices to rely on

device-to-device communication to collaboratively train local

models in an effort to personalize their models by incorpo-

rating knowledge from neighboring devices. In OppCL, each

device trains a personalized local model by asking encountered

devices to compute a model update using local data. OppCL

is suitable for scenarios where devices (i) encounter new

neighbors regularly; (ii) have limited connection to a central

server; (iii) have diverse (personalized) learning goals; and

(iv) hold training data that is private or large.

Support for device-to-device communication has prolifer-

ated [4, 7]. However, decentralized learning approaches are

limited because they assume encountered devices are homoge-

neous in communication, computation, and memory. In prac-

tice, devices in these environments are heterogeneous, ranging

from sophisticated edge or fog nodes, through smartphones

down to resource-constrained embedded IoT devices.

In decentralized learning, model complexity is often tuned

to a device’s specific resource constraints. However, when

devices are diverse and hosting models of different complexity,

opportunities to collaborate are limited to encounters with de-

vices that have similar capabilities and encounters that are long

enough to complete the exchange of model updates. We aim to

allow devices to benefit from opportunistic collaboration even
when encountered devices have diverse resource constraints
or the encounters are short-lived. We have designed an adap-

tive strategy (Dynamic Reduction, or DR) that dynamically

determines the appropriate level of model reduction, utilizing

two techniques from a classic ML toolbox: (1) dropout, which

we use to reduce the models sent to neighbors with lower

computational capabilities and (2) quantization, which we use

to limit the amount of communication in an encounter.

Fig. 1 shows our generic DR strategy for decentralized

learning. When one device (termed the learner) encounters

another (termed the neighbor), the discovery module fetches

information about the neighbor’s resource constraints, includ-

ing computational resources, such as the maximum size model

it can run, and communication resources, such as the data rate

at which it can send and receive. The dynamic reduction mod-

ule uses this information to determine a strategy appropriate

for the learning algorithm. The model is reduced, enabling

collaboration even when data rates are limited, or allowing

collaborative training on a resource-constrained device.

We use OppCL [18] to demonstrate and evaluate our DR

strategy. Because its design relies on encountering a neighbor,

sharing a model, and waiting for the neighbor to complete a

round of training and return an update, the encounters that

OppCL can use are limited to those of a longer duration.

However, when DR is layered on top of OppCL, its ability

to quantize model representations allows it to take advantage

of shorter encounters. Further, OppCL can benefit from the

211

2023 IEEE 20th International Conference on Mobile Ad Hoc and Smart Systems (MASS)

2155-6814/23/$31.00 ©2023 IEEE
DOI 10.1109/MASS58611.2023.00033

20
23

 IE
EE

 2
0t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 M
ob

ile
 A

d 
H

oc
 a

nd
 S

m
ar

t S
ys

te
m

s (
M

A
SS

) |
 9

79
-8

-3
50

3-
24

33
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

M
A

SS
58

61
1.

20
23

.0
00

33

Authorized licensed use limited to: University of Texas at Austin. Downloaded on January 18,2024 at 14:35:07 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1: Overview of Dynamic Reduction (DR). The learner dynam-
ically adapts to the neighbor’s resource constraints.

DR strategy’s use of dropout to create a model suitable to the

neighbor’s resources. The creation of DR-OppCL is just one

example use of the generic DR strategy. The strategy can also

be combined with other decentralized learning protocols.
This paper focuses on the practical application of machine

learning techniques to the resource constraints and hetero-

geneity that real-world mobile computing applications must

overcome. Concretely, we make the following contributions:

• We propose Dynamic Reduction (DR), an adaptive model

reduction strategy for decentralized learning in heteroge-

neously resource-constrained networks.

• We create an adaptive version of dropout to directly ad-

dress the computational heterogeneity of the encountered

collaborators in real-world mobile environments.

• We adaptively determine a quantization rate associated

with communicating model parameters and gradient up-

dates among opportunistically collaborating devices.

• We demonstrate the application of DR to an exemplar

decentralized learning algorithm, OppCL.

DR preserves training accuracy on heterogeneous mobile

devices in real-world mobile networks while deftly navigating

tradeoffs in computation and communication overhead.

II. RELATED WORK

We overview the state of the art in learning disciplines

applied to the context of mobile computing and use them to

frame our approach. We then describe efforts to adapt learning

disciplines to heterogeneous environments, in particular those

with communication and computation constraints.
Learning Disciplines. Interest in machine learning for

dynamic mobile environments has ballooned. With respect

to training on mobile devices, there are several relevant ap-

proaches, including federated learning, decentralized learning,

and opportunistic learning. In federated learning (FL), the

primary goal is to maintain privacy of individual users’ training

data; rather than shipping raw data to a centralized location and

performing training on the aggregated raw data, each device

performs updates to a shared model locally, then returns the

resulting gradients, which are aggregated centrally [14].
In decentralized learning [16], individual devices exchange

model updates in an entirely peer-to-peer fashion. While

devices may learn somewhat different versions of the target

model, the overall objective is still a global one, e.g., to

minimize the average loss of the model across all clients.

Recognizing that different devices may have different,

personalized goal models, OppCL [18] uses ephemeral en-

counters to support devices in training their own local models

using the (private) data of encountered neighbors. Rather than

exchanging gradients learned while seeking convergence to

a global model, devices share their model parameters with

neighbors who then use their own local data to compute an up-

date specific to the neighbor’s goal. In this work, we tackle the

problem that arises when learning in a real-world environment

with heterogeneously resource-constrained devices. Though

we assume that neighboring devices will participate, there are

works on incentivizing opportunistic collaboration [11].

Learning in Heterogeneous Environments. Existing tech-

niques have explored supporting devices with heterogeneous

capabilities in federated or decentralized learning by consider-

ing the potential for leveraging edge or fog nodes [28]. These

approaches leverage edge nodes for offloading computation

as part of training or to support incremental computation

of gradients. Prior work generally falls in two directions:

(1) reducing the size or complexity of the model to support

devices with diverse computational capabilities and reduce

the communication requirements of collaborative learning and

(2) reducing the number of bits used to represent the model

to reduce communication requirements.

There are multiple ways to reduce the complexity of a neural

network (e.g., knowledge distillation [19], model pruning [6],

and Dropout [26]). Dropout randomly selects neurons to omit

from a training iteration to prevent the model from becoming

overly reliant on a specific small subset of hidden units. In

the FL space, dropout reduces both the computation and com-

munication requirements for resource-constrained devices [1].

Given that these approaches apply the reduction techniques to

a centrally coordinated and orchestrated FL task, their success

supports our proposed novel application of dropout to the

entirely decentralized opportunistic learning environment.

While model sparsification addresses both computation and

communication constraints, other approaches focus specifi-

cally on reducing communication overhead of sharing gra-

dients and models. Quantization [8] reduces the number of

bits used to represent the weights in the model, lowering the

communication overhead. Quantization has been explored in

federated learning [3] and in decentralized learning [27].

III. DR-OPPCL: DYNAMIC REDUCTION FOR

OPPORTUNISTIC COLLABORATIVE LEARNING

Decentralized learning algorithms largely neglect the het-

erogeneous capabilities of encountered devices, limiting their

real-world applicability [9, 29]. Incorporating our DR strategy

into decentralized learning can significantly improve effec-

tiveness by enabling smaller devices to participate in training

models that are otherwise too big to train and within shorter-

duration encounters. Of particular importance is that DR is

adaptive—it determines its operating mode on an encounter-

by-encounter basis, depending on the instantaneous capabili-

ties of the collaborators and their communication link.
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Algorithm 1: OppCL [18]

1 Gi: goal label distribution for Ci’s learning task
2 Lj : data distribution advertised by the neighbor Cj

3 Bj : batch of Cj’s data used for training
4 Function ONDISCOVER: (Lj)
5 if DECIDEOPPCL(Gi,Lj) then
6 ask j to compute g ← ∇�(wt

i ;Bj)
7 receive g
8 wt+1

i ← UPDATEMODEL(g)
9 end

10 end

A. OppCL and its Limitations

Because we apply DR to OppCL, we next overview the

behavior of OppCL [18]. When a device (“the learner”)

encounters another device (“the neighbor”), it may request

the neighbor to perform a round of training on the learner’s

model using the neighbor’s data. The learner sends its model

parameters to the neighbor; the neighbor trains the model with

its local data and returns the gradients, which the learner

incorporates into its personal model. Each data item has a

label (e.g., a photo may be labeled with whether it was shared

on social media; a sequence of words may be labeled with

the emoji that follows them). OppCL captures device Ci’s
data label distribution (Li) as the relative frequency of each

label within the local data set. Each device aims to learn a

local model for some personalized task represented by a goal
distribution (Gi) of labels that it desires for its model to be

successful at classifying. It is common for a device’s goal and

data label distributions to differ.

Algorithm 1 shows OppCL as presented in [18]. The

DECIDEOPPCL function abstracts the learner’s decision logic

that determines whether to request training from a discovered

neighbor (line 5). In OppCL, this function simply checks

whether the learner’s goal distribution Gi is sufficiently similar

to the neighbor’s local data distribution Lj . If so, the learner

requests that the neighbor use the learner’s model weights

to compute new gradients on a batch of the neighbor’s local

data, and return the gradients to the learner. Using the received

gradients, the learner updates the local model (line 8).

Two challenges arise in directly applying OppCL. First,

due to limitations in computational power, a neighbor may

be unable to compute a model update. Second, the duration

or bandwidth of an encounter may not always be sufficient to

support sending wt
i or receiving g (lines 6 and 7). Applying

DR to OppCL tackles both problems.

B. Overview of DR-OppCL

Fig. 2 depicts an opportunistic encounter in DR-OppCL.

As part of a continuous discovery process [10] the learner

discovers the availability of the neighbor, which also advertises

a summary of its locally available data. The learner uses this

information to determine whether the encountered neighbor

has had experiences from which the learner seeks to learn.

If so, the learner uses the neighbor’s advertised capabilities

to determine an appropriate dropout rate, uses the expected

duration and quality of the communication link [2] to compute

Fig. 2: An Opportunistic Encounter in DR-OppCL.

Algorithm 2: DR-OppCL

1 Υj : available computational resources advertised by Cj

2 GETDROPOUTRATE(Υj): determines dropout rate based on
the neighbor’s computational resources.

3 GETQUANTIZATIONBITS(d, Cj): determine quantization bits
based on dropout rate d and predicted encounter duration.

4 Function ONDISCOVER: (Lj , Υj)
5 if DECIDEOPPCL(Gi,Lj ,Υj) then
6 d ← GETDROPOUTRATE(Υj)
7 q ← GETQUANTIZATIONBITS(d, Cj)
8 if d �= NIL ∧ q �= NIL then
9 ask j to compute g ← ∇�(Q(D(w t

i , d), q);Bj ))
10 receive Gt

j ← Q(g, q)
11 wt+1

i ← UPDATEMODEL(Gt
j )

12 end
13 end
14 end

the appropriate number of quantization bits, then sends the

model parameters to the neighbor. The neighbor trains the

model using the neighbor’s own local data. When training

is complete, the neighbor returns a quantized version of the

updated gradients, which the learner applies to its model.

Algorithm 2 details a learner Ci’s encounter with neigh-

bor Cj . The neighbor (Cj) continuously advertises its data

label distribution (Lj) and the computational resources it has

available for learning on behalf of neighbors (Υj). When Ci
discovers Cj , DR-OppCL’s DECIDEOPPCL first determines

whether Cj’s label distribution is sufficiently similar to Ci’s
learning goal (line 4; identical to OppCL). If so, the learner

computes the best possible dropout rate, given Cj’s available

resources (line 8; Section III-C) and the optimal number

of quantization bits achievable, given the network context

(line 9; Section III-D). In both cases, we try to make as

much use as possible of the available resources: we choose the

smallest amount of dropout that Cj is capable of computing

and the optimal number of bits that will succeed in being

communicated. If DR-OppCL finds feasible levels of dropout

and quantization for the encounter, then Ci requests that Cj
compute a model update using Cj’s local data. In Algorithm 2,

line 9, D references a function that computes a dropout model

from the learner’s local model using the dropout rate d, while

Q computes a quantized version of this model’s parameters

using only q bits. Once the neighbor has completed training, it

returns the quantized updated gradients to the learner (line 12).
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Finally, the learner incorporates the received gradients into

the local model (wi), using an update procedure adapted to

accommodate dropout versions of the model (Section III-E).

C. Handling Computational Heterogeneity
In selecting the degree of dropout for a given neighbor, DR-

OppCL is greedy—it seeks to use the largest model the neigh-

bor can accommodate, computationally. When characterizing

dropout, we use the rate to refer to the percentage of units

removed from the model, i.e., a dropout rate of 0.1 indicates

that 10% of the units are omitted from the shared model.

We apply the dropout to each layer, similar to Federated

Dropout [1]. Therefore, model architectures resulting from the

same dropout rate are the same. DR-OppCL adapts the rate to

each encounter, based on that encounter’s available resources.
Dropout models can still converge even when many units are

dropped because continuously updating models compensates

for noise that arises in updating them sparsely [26]. However,

a DR-OppCL model mixes diverse dropout rates, which in-

creases the risk for the gradient updates to result in noise and

hinder convergence. To combat this, DR-OppCL dynamically

computes a maximum allowable dropout rate, demax for each

encounter, as the first step of GETDROPOUTRATE (line 8 in

Algorithm 2). The learner then computes the minimum sup-

portable dropout rate, based on the neighbor’s computational

resources. If dCj
> demax , GETDROPOUTRATE returns NIL,

indicating that no usable dropout rate exists for this encounter.
To compute demax , we estimate the distribution of dCj

of the

devices in the learner’s surroundings. We keep a recent history

of the computed minimum dropout rates that encountered

devices can support. We rely on a window We of size w
that contains the dropout rates computed for the w encounters

immediately preceding an encounter e. Based on We, we

compute the max allowable dropout rate for encounter e as:

demax = max
{
d ∈ We : Q

(
σ−1
d ·

( |θi|
|D(θi, d)| − μd

))
≥ τ

}
(1)

Intuitively, the learner uses demax to skip encounters that

require a dropout rate higher than a statistic computed on

the window of dropout rates for recent encounters. When the

learner is in the presence of more resource-poor neighbors,

the value of demax will decrease, instructing the learner to take

advantage of opportunities requiring higher dropout rates.
Q measures the probability that a normal random variable

will exhibit a value larger than a given number of standard

deviations; μd and σd are the mean and standard deviation of

the w samples for d in We; |θi| is the number of parameters

in the learner’s full model; and |D(θi, d)| is the number of

parameters remaining given dropout rate d. This function seeks

a dropout rate demax for which it can be expected that a device

capable of demax will be encountered at least |θi|/|D(θi, d)|
times in the next w encounters with a confidence of τ . τ is

in the range [0.1, 0.9]; it should be larger when an application

seeks to save resources and smaller when the application seeks

to promote faster training. In this paper, we used τ = 0.5.
Selecting demax with Gaussian approximation works well

even with few samples (e.g., w = 30). Further, it is desirable

to choose a w < |θi|/|D(θi, dmax )|, where dmax is a global

upper bound of the dropout rate; dmax is specific to the learn-

ing task and represents the point at which training diverges.

D. Handling Communication Heterogeneity

To handle heterogeneity in communication, we compute qe,

the number of quantization bits to use for the model and

gradient exchanges for encounter e. This computation relies

on a global constant qmin that is an absolute minimum number

of quantization bits to be used for this model. As with dmax ,

this is dependent on the learning task, and represents the point

at which further quantization is detrimental to training.

To compute qe, we rely on the predicted encounter duration

(tenc) [2]; the predicted time for training (ttrain ), based on

the neighbor’s computational resources (Υj); and the selected

dropout rate (de). We use the same number of bits to quan-

tize the model parameters the learner sends to the neighbor

and the gradients the neighbor returns because we assume

the communication link is symmetric. Specifically, assuming

ttrain < tenc , we compute qe as:

qe = max
{⌊

log2

(
(tenc − ttrain) ·Rb

2 · |D(θi, de)|
)⌋

, qmin

}
(2)

To quantize model parameters and gradients, we map the

values of each weight onto a uniformly discretized grid

of range [θkmin , θ
k
max ]. Then we project each parameter or

gradient value to the closest point in the grid. For the model

parameters and gradients to be reconstructed, we also transmit

θkmin and θkmax , each represented as a 64 bit float, which yields

2 · 64+ |θ| · qe bits that must be transmitted in each direction.

E. Incorporating Neighbor Gradients

To incorporate gradients trained with different dropout rates,

we introduce a modified version of the Adam optimizer [12],

AdamMD (Adam for Mixed Dropout). Briefly, Adam main-

tains a learning rate for each model parameter, which it adapts

based on statistics computed over the history of the gradient.

These adaptations rely on both the first moment (i.e., the

gradient’s mean) and the second moment (i.e., the gradient’s

uncentered variance). Adam has been shown to be a good

choice as an optimizer in settings similar to ours [25].

To adapt Adam to mixed dropout, we make a slight adjust-

ment to the update function for the two moment estimates:

mk
t ←

{
β1 ·mk

t−1 + (1− β1) · gk if θk in D(θ, d)

mk
t−1 otherwise

(3)

vkt ←
{

β2 · vkt−1 + (1− β2) · (gkt )2 if θk in D(θ, d)

0 otherwise
(4)

θk is the k-th value of the model parameters, and gk is

the corresponding value in the gradient. If θk is present in

the dropout model, we update the moment according to the

standard Adam update. If θk is not in the dropout model, we

maintain the previous value of the first moment and set the

second moment to 0. Therefore, AdamMD amplifies the next

gradient that is applied to these units, thereby rectifying error
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(a) MNIST, uniform (b) SVHN, uniform

Fig. 3: Comparing different dropout rates.

induced from the reused first moment. We inherit β1 and β2,

the moment estimates’ exponential decay rates, from the Adam

optimizer and use a fixed stepsize of 0.001.

IV. EVALUATION

We evaluate DR-OppCL using (1) controlled experiments

of the impacts of diverse resource heterogeneity and (2) simu-

lation studies that explore performance in real-world mobility.

We rely on three learning tasks; MNIST [17], SVHN [22],

and CIFAR-10 [15]. For MNIST, we use a model similar to

the “2NN” model in [21]. We report results with four dropout

rates: 0 (no dropout), 0.3, 0.6, and 0.9. SVHN and CIFAR-

10 use a CNN model. To apply different dropout rates, we

apply different filter sizes to the layers depending on their

proximity to the input layer; filters near the input are dropped

less than others. We use cross-categorical entropy loss with

L2 regularization, which prevents gradients that exhibit large

differences and cause quantization to lose more information.

A. Controlled Experiments

We evaluate how the accuracy of the trained model changes

when it encounters neighbors with different computational

capabilities and encounter durations. In these experiments, the

learner encounters 30 unique devices repeatedly. For MNIST,

each device is allocated 50 images as its local data and uses

all 50 as a batch when asked to train on behalf of a neighbor.

In SVHN, each device is allocated 100 images and uses all

100 as a batch for each round of training. All experiments are

averaged over 10 runs with different random seeds.

Computational heterogeneity. Because DR adapts to the

real-time capabilities of devices, we report experiments with

different distributions of device capabilities. Each device

is assigned a computational capability that ranges from

{0, 0.1, 0.2, ..., 0.9}. For convenience, these numbers represent

the dropout rates the device can support for training(e.g., a de-

vice with computational capability 0.4 can compute gradients

from models with d ≥ 0.4). We report experiments with two

distributions of device capabilities: uniform (i.e., all device

capabilities are equally likely to occur) and inverse uniform
(i.e., devices with higher capabilities are less likely to occur).

Fig. 3 shows the results for the uniform distribution consid-

ering only dropout and no quantization. Each figure compares

statically assigned dropout rates to DR, computed according

to Equation 1. In the static condition, only neighbors with

computational capabilities that meet dmax are used to collab-

oratively train the model. For instance, when dmax = 0.3, only

neighbors with capability levels 0.3 or smaller are used.

TABLE I: Comparison of dmax

uniform inv. uniform
dmax MFLOPs Accuracy(%) MFLOPs Accuracy(%)

M
N

IS
T

0.9 34.05 86.21 20.29 82.68
0.6 31.16 86.15 12.79 80.07
0.3 18.45 82.46 6.57 70.02
0 4.45 58.14 2.22 38.41

Dyn. 27.01 85.71 15.63 82.49

S
V

H
N

0.5 287.78 68.64 211.30 50.76
0.25 242.50 70.39 141.22 62.64

0 170.01 62.40 67.51 36.37
dyn. 249.07 67.81 151.76 58.89

There is not a significant difference in Fig. 3(a) between

dmax of 0.3, 0.6, and 0.9. However dmax = 0 performs quite

poorly because the learner can only collaborate with similarly

capable devices. For the inverse uniform distribution (not

shown), the performance of dmax ≤ 0.3 falters for the same

reason. Table I compares the accuracy of each model to the

total number of computational steps required to train it. For

MNIST, while dmax = 0.9 achieves the highest accuracy,

the dynamic approach achieves nearly the same accuracy

with significantly less computation. These same general trends

hold for SVHN. Notably for SVHN, the dynamic approach

learns more quickly at the outset, indicating its flexibility to

adapt. Because the drop out rate is highly dependent on

the encountered devices (thus can not be set statically), the

dynamic approach is more feasible with nearly optimal results.

Communication Heterogeneity. To assess DR-OppCL with

different quantizations, we use uniform and inverse uniform

distributions of encounter durations rather than dropout model

size. Fig. 4 shows the results for both MNIST and SVHN.

Using a smaller number of quantization bits increases perfor-

mance up to a point because the learner can take advantage

of very short encounters when using a smaller number of bits

to represent the model. At some point , the quantization is

too much and the model diverges. DR-OppCL’s approach to

preventing the quantization from straying too close to (or past)

qmin allows it to take advantage of heterogeneous commu-

nication opportunities without sacrificing accuracy. Table II

displays this tradeoff more concretely, comparing the number

of bits communicated for each qmin versus the achievable

accuracy. For instance, qmin = 4 bits achieves a good

balance between accuracy and communication overhead for

both models. It is future work to further validate whether this

setting can be generalized across diverse datasets and models.

The result also shows that the setting of minimum quantization

level can be based on application-specific requirements (e.g.,

computation vs. accuracy). Irrespective of the setting, the

dynamically set quantization bits for each encounter (qe in

Equation 2) balances communication constraints and accuracy.

Combining Dropout and Quantization. Next, we combine

dropout and quantization using uniform distributions of device

computational capabilities and encounter lengths. Fig. 5 shows

five approaches for comparison: baseline, which assumes no

dropout and no quantization; three static approaches that fix

the values of dropout and quantization; and the dynamic DR-

OppCL approach. Table III compares the top-performing static

configuration with DR-OppCL. For each model, we chose
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(a) MNIST, uniform (b) SVHN, uniform

Fig. 4: Comparing different q values in mixed quantization.

TABLE II: Comparison of qmin

uniform inverse uniform
qmin Bit(MB) Accuracy(%) Bit(MB) Accuracy(%)

M
N

IS
T

2 642.18 42.44 362.06 20.27
3 569.77 86.85 262.97 83.64
4 446.86 85.81 197.23 79.50
5 298.23 82.33 121.01 73.48
6 160.07 75.29 40.02 43.43

S
V

H
N

2 1164.40 22.74 746.52 19.00
3 1042.52 68.83 620.28 65.23
4 911.93 67.73 496.23 58.63
5 694.29 60.98 330.82 42.20
6 378.70 37.53 156.70 18.78

(a) MNIST (b) SVHN

Fig. 5: DR-OppCL vs. best dmax and qmin .
a statically configured setting that used the empirically best

quantization and dropout rates as the baseline.

DR-OppCL matches the performance of the best stati-

cally configured settings. As shown in Table III, DR-OppCL

achieves nearly the same accuracy for MNIST at a dramat-

ically lower overall computational and communication cost.

For SVHN, the overhead values are very nearly identical,

but the difference here is that DR-OppCL does not need to

be configured a priori to the optimal levels of dropout and

quantization, and was able to discover both on its own.

B. Real-world Scenarios

For our real-world scenarios, we used both generated and

real-world mobility traces. For the former, we used the Levy

walk mobility model [24], following the same setup in [18]

with 45 devices (which act as both learner and neighbor)

and 10 episodes where each episode has 200 timesteps. We

also used HYCCUPS [5] to evaluate DR-OppCL under more

realistic encounter patterns. HYCCUPS comprises traces from

72 participants over 63 days. We selected the 20 devices with

the largest number of encounters and included encounters

only for these devices. In the resulting traces, there were a

total of 4,376 encounters for HYCCUPS (approximately 200

per device). We used the real durations of encounters from

the traces as input to Equation 2. We assumed a Bluetooth

connection with datarate of 2Mbps.

TABLE III: Comparison of top-performers from Fig. 5
MFLOPs Bit(MB) Accuracy(%)

MNIST
dmax = 0.9, qmin = 3 24.13 1132.67 86.06
DR-OppCL 19.84 754.96 84.76

SVHN
dmax = 0.5, qmin = 3 154.20 794.40 62.89
DR-OppCL 154.20 794.40 63.95

TABLE IV: Types of devices.
Edge

Devices
Mobile

Phones 1
Mobile

Phones 2
IoT

Devices
IoT

Sensors

dinfer2NN 0 0 0.2 0.4 0.6

dtrain2NN 0 0.2 0.4 0.6 0.8

dinferCNN 0 0 0.5 0.75 -

dtrainCNN 0 0.5 0.75 - -

We modeled the computational capabilities of five types

of devices (Table IV) and assigned a corresponding dropout

rate to each device. These devices range from powerful edge

devices that can train full models to lightweight IoT devices

and sensors that are so resource constrained they cannot train

even the most dropped-out version of the CNN model (though

they can host a small model for inference and still encounter

neighboring devices that help train their models). Depending

on the device’s capabilities, each type started with a different

model, with weights initialized independently. For instance, a

“Mobile Phone 2” device’s personalized model was already

20% or 50% smaller than the largest possible 2NN or CNN

model, respectively. The independence of the learners’ models

is an important aspect of the DR approach.

Figure 6 shows the final accuracy of all participating devices

as a box plot under four different conditions: (1) baseline
(no quantization or dropout); (2) quantize (qmin = 3; similar

to [13, 27]); (3) dropout (choosing the dropout model dynam-

ically); and (4) DR-OppCL. Table V shows the percentage of

encounters a device uses compared to baseline. DR-OppCL

tends to find more encounters to take advantage of because

they enable collaborating with resource-constrained devices.

For instance, in the SVHN-HYCCUPS experiment, DROppCL

was able to utilize 239.5% of encounters to baseline, which

was realized by requesting more resource-constrained devices

and making use of encounters with short duration.

Overall, DR-OppCL achieves the highest average accuracy

across all scenarios and reduced the variance of the accuracy

across devices. Although the dropout and quantize strategies

improve performance relative to the baseline, they often result

in high variance, and their effectiveness is not always guaran-

teed. For instance, in the SVHN-Levy scenario, dropout led

to greater performance improvement than quantize, enabling

collaboration with resource-constrained devices. In contrast,

in the MNIST-Levy scenario, utilizing shorter encounter dura-

tions appears to be critical for performance improvement, as

quantize brought more improvement than dropout.

The HYCCUPS mobility trace exhibits a very skewed

distribution of encounters per device—seven devices had fewer

than five successful collaborations in the baseline for SVHN-

HYCCUPS. However, because DR enables the learning algo-

rithm to take advantage of a larger fraction of the encounters,

in the case of DR-OppCL, we did not observe any device
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Fig. 6: Accuracies from simulated (Levy) and real-world (HYCCUPS) mobility traces.

TABLE V: Encounters used in comparison to baseline (%).
Quantize Dropout DR-OppCL

L
ev

y MNIST 182.5 261.1 449.2
SVHN/CIFAR-10 199.3 147.6 239.5

H
Y

C MNIST 123.2 198.2 198.5
SVHN/CIFAR-10 358.2 262.7 333.3

with fewer than five collaborations, indicating that DR-OppCL

enables the utilization of resource-constrained neighbors and

encounters with shorter durations.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a generic Dynamic Reduction strat-

egy for decentralized learning and an implementation of the

strategy for OppCL (DR-OppCL). DR-OppCL extends OppCL

to a more complex learning environment where devices and

networks are heterogeneously resource-constrained. In contrast

to opportunistic collaborative learning, our approach (1) re-

moves the need for a central coordinator for initialization,

making the approach truly decentralized; (2) addresses the

heterogeneity of mobile computing devices’ computational

capabilities by using dropout models to reduce the complexity

of the task demanded of collaborating neighbors; and (3) ad-

dresses the heterogeneity of mobile computing communication

links by adaptively determining the best level of quantization

used to communicate model parameters and gradient updates.

Alongside these contributions, we derive a simple extension

to a classic machine learning optimizer that allows integrating

gradients learned using diverse dropout models. Our evaluation

shows that DR-OppCL strikes a balance between maintaining

high accuracy and optimally leveraging the resources in the

neighbors and the network, reducing computation and com-

munication resources contributed by nearby devices.
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