2023 IEEE 20th International Conference on Mobile Ad Hoc and Smart Systems (MASS) | 979-8-3503-2433-4/23/$31.00 ©2023 IEEE | DOI: 10.1109/MASS58611.2023.00048

2023 IEEE 20th International Conference on Mobile Ad Hoc and Smart Systems (MASS)

CANDor: Continuous Adaptive Neighbor Discovery

Evan King and Christine Julien
Department of Electrical and Computer Engineering, University of Texas at Austin
{e.king, c.julien}@utexas.edu

Abstract—Many applications require continuous awareness of
the set of surrounding devices. A user entering a smart space
benefits from the ability to quickly discover which devices they
can control nearby. This ability to know “who is around” is
commonly provided by continuous neighbor discovery protocols,
which entail a schedule on which devices alternate between
beaconing to advertise their presence and Ilistening to detect
the presence of neighbors. In existing protocols, these schedules
are carefully configured to achieve application-level objectives—a
target discovery latency, discovery probability, and energy con-
sumption. These configurations are determined statically based
on assumptions about network conditions (e.g., the number of
expected neighboring devices, or nodes). However, the conditions
that a given node typically experiences are dynamic. To handle
these dynamics, existing protocols tend to be configured for the
worst case, which results in schedules that waste energy. In this
paper, we identify a signal for adaptation of continuous neighbor
discovery and show how existing protocols can incorporate this
signal to adapt their behavior to achieve consistent discovery
probability and latency. The signal we adapt to is changing
node density, and our novel insight is that we can extract this
signal directly from the performance of neighbor discovery itself.
We show that our approach effectively senses and adapts even
when using initially suboptimal schedules in dynamic mobile
environments, allowing neighbor discovery protocols to maintain
their performance guarantees without added sensing overhead.

Index Terms—continuous neighbor discovery, mobile comput-
ing, adaptive networking

I. INTRODUCTION

Many mobile computing technologies rely on continuous
discovery and awareness of surrounding devices. These tech-
nologies run the gamut, from user interfaces that provide
control of nearby smart devices [1], to contact tracing during a
pandemic [2]. This is enabled by continuous neighbor discov-
ery, which relies on a schedule of when devices advertise their
presence and listen for the presence of neighbors. The schedule
determines how likely it is for devices to discover each other
within a window after initial contact, as well as how much
energy is consumed doing so. Suboptimal schedules result in
slow discovery or consume excess energy.

As the number of deployed devices grows, an increasingly
important factor in neighbor discovery performance are bea-
con collisions that occur when devices advertise at the same
time. This effect is particularly significant in areas with a high
density. Crowded spaces, for instance, where digital contact
tracing applications might be expected to provide an accurate
assessment of disease risk are ironically the places where
neighbor discovery is least effective due to collisions [3].

Reducing collisions by configuring schedules to account for
dynamics of node density can provide increased confidence

that a target discovery probability and latency can be met
with minimal energy consumption. Prior work has shown
that such schedules can be determined using analytical mod-
els [4] [5] [6], but with a notable limitation: these methods
assume the number of surrounding devices is static. This
is far from realistic, especially in mobile applications: users
often divide time between diverse environments throughout the
day—from home, to busy urban spaces, to the office, to nature
retreats. In spite of this, application developers must choose a
fixed estimate of the number of neighbors at pre-deployment
time. Over-estimates and under-estimates both negatively im-
pact performance. Overestimation can shave meaningful time
off a device’s battery life due to missed opportunities for
energy conservation; in the case of underestimation, lofty
expectations about discovery probability and latency fail to be
met—discovery and control of nearby smart devices therefore
becomes frustrating for users due to lag, and applications that
rely on accurate discovery fail to perform as expected.

We address these challenges with CANDor, a method for
Continuous Adaptive Neighbor DiscOveRy that uses an an-
alytical model to continuously adapt devices’ schedules to a
sensed estimate of the true node density. CANDor centers on
the intuition that the performance of neighbor discovery is a
signal that can be analyzed to glean information about the
state of the dynamic network. By assessing and adapting to
the real state of the network environment, mobile applications
can make use of neighbor discovery capabilities with higher
assurance that pre-deployment promises about energy use,
discovery probability, and discovery latency will be kept.

Our contributions are summarized as follows:

« We formalize an adaptive approach that does not require
additional sensing hardware or contextual information to
adapt neighbor discovery to the number of neighbors.

« We apply our approach to two exemplars, showing that
it generalizes to existing neighbor discovery protocols.

« We show that CANDor is capable of sensing surrounding
node density and adapting a protocol, even in unstable
and dynamic mobile environments.

II. BACKGROUND & RELATED WORK

Slotted protocols model fixed-length “slots” during which
a device is either advertising, listening, or sleeping (e.g.,
Nihao [7], U-Connect [8], and Birthday [6]). Our approach
draws inspiration from Birthday in particular since it is one
of the earliest works to investigate partial adaptation (nodes
switch between schedule modes depending on discovery state)
and because it explicitly models collisions. Slotless approaches

2155-6814/23/$31.00 ©2023 IEEE 336
DOI 10.1109/MASS58611.2023.00048
Authorized licensed use limited to: University of Texas at Austin. Downloaded on January 18,2024 at 14:37:42 UTC from IEEE Xplore. Restrictions apply.

place fewer constraints on the respective lengths of advertis-
ing, listening, and sleeping (e.g., Singlelnt and Multilnt [5],
BLEnd [4], and Griassdi [9]). Griassdi is an interesting ex-
ample of partial adaptation, where nodes perform “assisted
two-way discovery” that adapts advertising and scanning to
minimize latency; similarly BLEnd adaptively transmits bea-
cons to enable two-way discovery based on beacons received.

Adaptive approaches improve neighbor discovery perfor-
mance often using additional sensing capabilities to choose
schedules that are sensitive to context, e.g., based on patterns
at a location or based on past encounters [10]. Such approaches
assume that devices have positioning hardware (e.g., GPS)
and additional storage to log the location of previous contacts.
Renzler et al. use information about encounters—specifically,
trends in user interaction with an immobile smart device—
to choose schedules that are more optimal for different times
of day [1]. Hess et al. use mobility as input to adaptation,
choosing to beacon only at periods with low movement (and
thus a higher probability of prolonged encounters) [11]. Both
approaches are similar to ours in that they exploit informa-
tion already available to adapt. Both cases leverage context
for narrowly-focused applications: either an immobile smart
device with no consideration of mobility, or requiring devices
to be mobile to provide adaptation. Our approach differs from
existing ones in that it generalizes to a variety of application
scenarios—mobile or immobile—by relying only on contex-
tual signals in the behavior of neighbor discovery itself. We do
not rely on additional hardware, providing adaptation for free.
While we focus on the tradeoffs in employing a particular
discovery signal for adaptation, these approaches could be
combined in applications where multiple signals are available.

III. BEST GUESSES & STATIC SCHEDULES

Continuous neighbor discovery protocols switch between
advertising to announce one’s presence and listening to hear
neighbors advertising their presence. A protocol’s schedule
) determines when to advertise, listen, and sleep. Practical
applications typically require that the protocol operate within
an energy budget while providing a bound on discovery
probability P and discovery latency A. P is the probability
of a node discovering all of its neighbors with the latency
given by A. The protocol’s ability to achieve the target P and
A within an energy budget is a function of the schedule (2
and the estimated number of neighbors within communication
range, V.. In existing protocols, schedules are established
statically. However, in real world deployments, the number
of neighboring devices can vary dramatically over time [12],
making static schedules perform sub-optimally.

‘We motivate adaptive neighbor discovery using an exemplar
protocol [4] to empirically show two things: (1) when a
protocol over-estimates node density, energy resources are
wasted and (2) when a protocol under-estimates node density,
it fails to achieve target performance guarantees.

Schedules that achieve P within A while considering colli-
sions tend to listen more and advertise less as [N, grows [4],
[6]. More frequent (continuous) listening, however, comes at

337

WA static
optimal

battery lifetime (days)

Ny=2 N,=10 N, =20 N, =30 N, =40 N, =50

Fig. 1: Battery lifetime comparison (N, = 50).

1.04

0.9

0.8

discovery rate

0.7

0.6 T T T T T
100

=
o

©
L

o
L

IS
f

discovery latency (sec)

N
L

T T T T

80 160
Fig. 2: Performance of a static schedule set for N, = 20. As
N, exceeds ., discovery rate and latency miss the target.

a cost. Ideally, less talkative schedules are used only when the
actual node density (which we term N,) is high so that energy
is not needlessly consumed by frequent listening. Using a
statically-configured schedule in different-than-expected node
densities, however, results in missed opportunities for energy
savings, as we illustrate in Fig. 1.

Small differences between schedules compound. For exam-
ple, if a schedule on a low-power sensing device (e.g., a TI
SensorTag) with a 320 mAh battery is configured for N, = 50,
yet has N, = 20 for its entire lifetime, its battery is expended
about /2 days sooner than if the schedule reflected the actual
number of neighbors.

If the potential for wasted energy is a concern, applica-
tions can underestimate N, for a target P and A. However,
schedules that assume a lower N, than reality will harm P
and A due to an increase in beacon collisions caused by
more talkative schedules. The top of Fig. 2 depicts the actual
discovery rate relative to the promised P as N, grows past
an underestimated value V.. The bottom portrays the inverse
effect on discovery latency—as N, grows past N., the time
it takes for devices to discover one another grows. The conse-
quences of broken discovery probability and latency promises
are degraded application performance: this can frustrate users
attempting to control nearby devices, or make it difficult to
provide an honest assessment of disease risk [3].

Application developers tasked with configuring discovery
schedules must choose between two evils: overestimate /N, at
the expense of battery life, or underestimate it at the cost of
broken promises about performance. There is thus a strong
justification for adaptive neighbor discovery.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on January 18,2024 at 14:37:42 UTC from IEEE Xplore. Restrictions apply.

IV. APPROACH

We first formalize discovery performance as a signal then
describe how we use this to adapt protocol schedules.

A. Neighbor Discovery as a Signal

Our framing principle is that observing the real-time per-
formance of neighbor discovery provides insight into the true
state of the surrounding network—even when that state is
sampled using a suboptimal schedule. We sense the actual
surrounding node density, N,, by analyzing the observed
performance of a schedule 2 optimized for an estimate of
node density, N.. This estimate enables us to adapt €2 such
that NV, better approximates IV,. To estimate IV,, we compare
the actual performance of € to its expected performance, as
captured by an analytical model of the protocol. In short, we
compare the number of nodes we expect to discover with the
number of nodes the protocol actually discovers.

We formalize our approach under a few assumptions:

o all N, nodes have the same schedule

« for a window in which we explore adapting, /N, is stable

o the underlying neighbor discovery protocol models the
fraction of N neighbors expected to be discovered given
a schedule €2 over a given window of time

The first of these simplifies our formalization—it allows us
to model a single value for the schedule parameters across
all nodes. Clearly, it is impossible for all nodes to adapt
independently and achieve this goal; our evaluation shows
that this assumption is unnecessary in practice. We also later
demonstrate that the second assumption can be relaxed.

Consider a function F,;(£2, N,w) that computes for any
schedule) and node density N what fraction of N are
expected to be discovered during a window w. The units and
value of w vary based on the protocol—for slotted protocols,
it is typically a number of slots, while for slotless protocols it
is a number of full periods of listening and advertising.

We extend F; to define the expected number of nodes
discovered in w, D(Q, N,w) = Fy(2, N,w) x N. Choosing
the hypothetical value of N input to D provides insight into
how €2 is expected to perform in different contexts. If we input
N, the estimated number of neighbors, we get the number of
neighbors we expect to discover when our estimate is correct.
Consider N, = 10 and we know from a model of the protocol
that some specific schedule QO is expected to discover 90%
of those nodes in the window of time w. In other words,
Fy(9,10,@) = 90%, meaning D(£2,10,%) = 0.9 x 10 = 9
nodes. If the protocol discovers 9 neighbors using the schedule
) during 1, the actual number of neighbors N, may be equal
to our estimate V.. There are indeed situations where this is
not the case, which we address in the following.

To compare these expectations with reality, we define an
observed quantity Ng,, the number of neighbors actually
discovered in the window w. We can compute D(, N, w)
a priori since we know 2 and N.. We must measure Ny, at
run time. However, a single sample of N, over one window
w does not reveal what fraction of IV, has been discovered in

338

N, =10
N, =20
N, =30
N, = 40
N, =50
N, =60
N, =70
N, = 80
N, = 90
N, = 100

80% -

60% -

frequency

40%

20% A

0% q

20
Nairt,

Fig. 3: Empirical distributions of Ny for N, = 20.

30 40

w. Consider a situation where N, = 10 but N, = 100, i.e., QO
is constructed with parameters that exceedingly underestimate
the true number of nearby devices. This will result in talkative
schedules that produce a large number of collisions and thus
degrade performance. It is possible, then, that D(£2, 10, %) = 9
nodes and Ny, also equals 9, not because there are actually
N, = N, = 10 neighbors, but because performance is so
degraded by collisions that Q severely underperforms.

We gain more information by measuring the difference in
the number of unique neighbors discovered between unequal
time windows. We define this as Ngy, , a sample of the
difference in actual neighbors discovered between a window
w and a larger w’ (Ngg, N/, — Nao). The chosen
windows w and w’ must share the same start time, ensuring
that N;, > Ng,. While values of w’ # 2w may be worth
consideration, we choose 2w for simplicity.

Samples of Nz, obey a probability distribution with mean
and variance based on €2 and N, (Fig. 3). When N, = 10 and
N, = 20, the schedule is parameterized to work for more
neighbors than it needs to, and neighbor discovery is likely
to discover almost all neighbors in the first window, at the
expense of extra energy (e.g., consider the line N, = 10 in
Fig. 3,with mean and variance close to zero). Alternatively,
e.g., when N, = 100, higher node density increases the mean
of the samples since extending the window from w to w’
results in novel discoveries. Furthermore, many collisions are
unaccounted for, leading to less stable discovery performance
and a dramatic increase in the variance of Ny .

Sampling N5, provides valuable information about the
surrounding node density because different schedules met
with different surrounding node densities result in uniquely-
identifiable distributions of samples in Ny . Since multiple
such samples are required to characterize the distribution, we
capture a sequence s of n samples of Ny, :

(M

We are concerned primarily with the mean g and variance
o2 of (s;), which indicate whether or not a schedule Q is
accurately estimated, overestimated, or underestimated in situ.
The last step in deriving a numerical estimate of N, is to
compare the observed distribution to an analytical model that

(si)izo = (Naigr ,» Naigy ., -+ Naigr,,,)

Authorized licensed use limited to: University of Texas at Austin. Downloaded on January 18,2024 at 14:37:42 UTC from IEEE Xplore. Restrictions apply.

tells us which values of N, result in which distributions for a
given schedule. If the model suggests that, given the current
schedule €2, some value N produces a distribution that matches
the observed distribution of (s;), it is likely that N = N,.
With minor modification, we use D to define an empirical
value Nz, the computed difference in number of neighbors
discovered between time windows w and w':

D(Q, N, w) @

Since D is derived from a closed-form equation given by
the protocol, Ny tells us what the difference in neighbors
discovered between windows will be for any schedule (2
(optimal or not) surrounded by any hypothetical node density
N. In essence, we can compare the observed difference in (s;)
with the computed difference given by Ng for the current
schedule across a range of NV to determine what N, is.

Naigr is a powerful analytical tool that connects the ob-
served performance in (s;) of any schedule © surrounded
by any true node density N. We introduce a ‘“schedule
topography” which relates €, N,, and Ny, allowing us to
derive a numerical estimate for N, using the current perfor-
mance of the schedule. The schedule topography reduces the
computational complexity of estimating actual node density
when implemented on resource-constrained devices since it
can be pre-computed and stored in a small table rather than
calculated at runtime. It provides a map of the landscape given
any combination of schedule €2 and node density N,.

Detecting Accurate Estimates. Once a node collects a
sequence of Nz samples in (s;), we compute the mean g
of (s;), which represents Ngyz —overall. If 1 ~ Ny then
N, ~ N, and our schedule is accurately parameterized.

Detecting Overestimates. Next we consider the case when
N, >> N,. The schedule quickly discovers a large fraction
of the neighbors, overshooting the target discovery probability
(and wasting energy). The variance of (s;), o2, will be low
since it is unlikely that additional neighbors will be discovered
in w’. We introduce a threshold, 7, which varies based on the
schedule’s V.. 7 can be determined empirically by analyzing
the distribution of Ny, when N, = N,. We use a threshold
T2 for the variance and a separate threshold 7,, for the mean.
When 7, > p > 0 and 7,2 > 02 > 0, we assume that the
actual number of neighbors N}, discovered in w’ is equal to
N, and our new estimate is N. = N}, = N,.

Detecting Underestimates. Values of p and o2 beyond
their thresholds signal that €2 is underestimating the number
of neighbors. Higher ;. implies the protocol is discovering a
larger number of neighbors than expected. Higher o2 suggests
an increase in collisions that makes discovery intermittent. We
use Ng;g to analytically determine a new estimate by inputting
Q into Ny for different N using the w and w’ used to collect
the samples in (s;) and note the value N that results in a value
Naig =~ . We use N as our new estimate, N, = N ~ N,.

Ndiﬁ = D(Q, N, w') —

B. Adapting Schedules to Node Density in Existing Protocols

Any neighbor discovery protocol that models collisions
can compute a new set of parameters given the application’s

339

requirements (e.g., P, A, energy budget) and the node density
estimated by CANDor. To examine how to adapt a protocol’s
behavior, we use two exemplar protocols: a slotted protocol,
Birthday [6] and a slotless protocol, BLEnd [4]. These choices
are partially of convenience, as both analytical models directly
reference the surrounding node density.

Birthday. In the slotted Birthday protocol, each node
chooses in each slot whether to listen, transmit, or sleep
with probabilities p;, p;, and p,, respectively, i.e., p4.y =
[p1, pt, ps]. The schedule depends on which “mode” the proto-
col is in; for simplicity, we use the probabilistic round robin
(PRR) mode since its schedule is derived using an estimated
node density. The three parameters of a PRR schedule are:

1
7,]95:0 (3)

N, N,

The fraction of N nodes discovered over n slots is given as a
Poisson distribution dependent on the schedule:

P =——,p=1-

N-—1
FdBday (QBday7 N, TL) =1 — e "PtP;

“)

We can define Dpgqy using Fy,,, . Since Birthday is slotted,
we express w in terms of slots;we set w to n slotsSsince Fyy,,,
expresses P in terms of n, N, and Qpgqy, We solve for n to
determine the number of slots required to achieve P:

=]

Adapting Birthday to sensed node density is now straightfor-
ward. Using a sequence of samples in (s;) gathered over n and
n' = 2n slots, we sense a new estimate of N, and compute
new schedule parameters using Eqn. 3.

BLEnd. BLEnd uses a slotless scheme in which schedules
are parameterized using an epoch length E (the total duration
of one period of advertising and listening) and an advertis-
ing interval A (the time between beacons). The probability
Py(QpLEnd, N, k) of discovering N neighbors with a schedule
Qprend = [F,A] over k epochs is given in [4]. Since P,
is intuitively an expression of the fraction of neighbors we
expect to discover, we treat it as directly interchangeable with
Fq,,a- Pa 1s expressed in terms of a number of epochs k,
so we define k in terms of E and w to derive our window:

= [2)

We substitute Fy,, . - into D to derive the expected number of
neighbors discovered. We sample Ny, using w = k epochs
and k' = 2k. Using Dprgnq, We can also compute Ngp.
BLEnd uses a brute-force optimization that derives a
QprLEnd With minimal energy consumption given a target P,
A, and N,.. By creating such a brute force implementation
of the optimization approach in [4], we can simply input the
new estimate of N, sensed by our approach, along with the
application’s required P and A to derive an optimal Q7 gn4.

P, P € QBday

—log(1— P)

pp(N 1)

VRV ZRS QBday

Authorized licensed use limited to: University of Texas at Austin. Downloaded on January 18,2024 at 14:37:42 UTC from IEEE Xplore. Restrictions apply.

Bday

BLEnd

6 Zb 40 60 Sb 160
Ny
Fig. 4: Sensed node density N/ versus actual node density IV,

using schedules configured for different N,.

V. EVALUATION

We evaluate our approach using a simulator implemented in
Python using SimPy'. Each node has a position in 2D space
and implements a neighbor discovery protocol that issues
“beacon”, “scan”, or “sleep” events according to its schedule—
discoveries occur if exactly one beacon overlaps with at least
one scan, and a collision (i.e., failed discovery) occurs if
multiple beacon events overlap. Each node maintains a set
of discovery events that include the time and the neighbor
discovered. We leverage protocol-specific models to aggregate
samples of N , analyze them, and periodically update the
estimate of surrounding node density. CANDor then invokes
a protocol-specific function to derive a new schedule.

A. Sensing Node Density

We first evaluate how well CANDor estimates NN/ using
schedules parameterized for different N.. For each (N, N,),
we use the protocol’s analytical model to determine the
optimal schedule. We execute that schedule in a context where
the actual number of nodes is IV, and measure a new estimate
N!. In Fig. 4, we plot N, vs. N.. We wait until the sensed
estimate N/ stabilizes and report the average across all nodes.
In Birthday, CANDor can estimate N, with high accuracy
given schedules that overestimate or slightly underestimate NV,
(Fig. 4). Exceedingly underestimated schedules, however, are
less capable of providing accurate estimates because schedules
in Birthday never sleep, which produces a catastrophically
high number of collisions when N, grows far beyond N..
This could likely be addressed by occasionally switching
nodes out of PRR and into birthday-listen mode [6], which
would reduce collisions. In BLEnd, CANDor can estimate
N, with good accuracy given any schedule, overestimated
or underestimated. Even for a very low initial estimate of
N. = 2, however, we arrive at accurate N/ across the full
range of N,. Since CANDor’s ability to sense node density
incurs no additional overhead, sensing and adapting to any
estimate improves performance over a static schedule.

"https://github.com/UT-MPC/dulcet

340

1.0 static Bday

0.84 —— adaptive Bday
0.6 1
044/

0.29

0.0
0.0

1.04

discovery rate

0.8
0.6
0.4

static BLEnd
—— adaptive BLEnd

0.2

0.0 T T
0.0

T

T T
15 2.0 2.5

time (min)
Fig. 5: Static vs. adaptive with initially underestimated sched-
ules and stable surrounding node density (N, > N,)

3.0

B. Adaptive Schedules

We next compare static BLEnd and Birthday to adaptive
versions, measuring the average discovery rate of all nodes.
Both runs start with schedules optimized for highly-inaccurate
underestimates (!N, = 2 for BLEnd and N, = 30 for Birthday,
selected based on Fig. 4 to test the limits of each protocol
to adapt from a suboptimal initial schedule) and a target
discovery probability of 90%, with an actual node density
of N, = 80. Fig. 5 shows that even with suboptimal initial
schedules, CANDor enables both protocols to adapt to the true
node density and achieve superior discovery probability. In
Birthday, adaptive performance plateaus at about 70% relative
to 40% for the static schedule. Adaptive BLEnd also outper-
forms its static counterpart, ultimately converging on the target
discovery probability of 90% while the static schedule plateaus
at around 60%. Note that each node senses the surrounding
node density and changes its schedule independently; even
when nodes no longer have the same schedule, all of them
still converge on higher-performing configurations.

C. Dynamic Node Density

We next evaluate CANDor in the presence of node densities
that change over time. We first model a scenario where
additional nodes are gradually introduced to the collision
domain, as may be true in a sensor network or smart space. We
start with two schedules—static and adaptive—both perfectly-
estimated to the actual initial number of nodes (i.e., N, =
N, = 20) with a target discovery probability of 90%. Every
minute, we introduce 10 additional nodes until the final
number of nodes is N, = 100. From Fig. 6, we can see that
the discovery rate of the static schedule for both protocols
suffers a drop every time new nodes enter. In Birthday, the
adaptive schedule maintains significantly superior performance
relative to the static schedule, which quickly degrades. For
BLEnd, the adaptive schedule’s performance tracks with that
of the static schedule until about the 3 minute mark, at which
point it pulls away. The difference in responsiveness between
protocols is due to the window of time required to gather

Authorized licensed use limited to: University of Texas at Austin. Downloaded on January 18,2024 at 14:37:42 UTC from IEEE Xplore. Restrictions apply.

N, =30 40 50 60 70 80 90 100
1.0 D R T R S I A static Bday
0.8 MW —— adaptive Bday
. Eour (SN
5 i VY
0.6 9 P
0.4 ()
et Sy
3 0.2 I
e N
S 00 ; ; ; e
9] 0 2 4 6 8 10
>
o
2 1.0
o
0.8
0.6
0.44
o2d v v e static BLEnd
: —— adaptive BLEnd
0.0 T T T T
0 2 4 6 8 10
time (min)
Fig. 6: Static vs. adaptive with accurate initial schedules (N, =
N, = 20) as nodes are added to collision domain
N, =90 80 70 60 50 40 30 20
e ettt ot o g e T i]
0.44
wo2d Vvt v 1 static Bday
® : —— adaptive Bday
> 0.0 T T T T
[0 2 4 6 8 10
>
S
2 109 e e N TS PITT L ECL ST RTINSt QER LI IR
0.81
0.6
0.44
o2d v o e static BLEnd
: —— adaptive BLEnd
0.0 T T T T
0 2 4 6 8 10
time (min)

Fig. 7: Static vs. adaptive with accurate initial schedules (N, =
N, = 20) as nodes are removed from collision domain

samples—hundreds of milliseconds for Birthday versus several
seconds for BLEnd—in conjunction with the time required for
all nodes to independently adapt their schedules.

Our next evaluation demonstrates the effect of node density
decrease over time, as we iteratively remove nodes rather than
adding them. Fig. 7 shows the results. For Birthday, as the
node density decreases, the adaptive schedule reconfigures to
provide performance above the target. In BLEnd, the static
schedule performance stays constant while the discovery rate
with adaptation decreases slightly to approach the target.
Perhaps counter-intuitively, this is desirable: over-estimated
schedules waste energy; CANDor adapts to conserve energy.

D. Node Mobility

We next evaluate CANDor’s performance in the presence
of realistic node mobility using a scenario based on Levy
walk mobility [13], which models the dynamics of real human
mobility [14]. Each of N, = 100 nodes in our scenario moves
for 30 minutes according to this model, resulting in a highly
variable number of neighbors over time. We first analyze the
results of this scenario from the perspective of a single node
before providing a view of aggregate performance.

341

1.0
13
4@ 0.8
>
S 0.6
>
8 0.4+
So0d static BLENd, Ne =2
! —— adaptive BLEnd
0.0 +— T T T T T T
0 5 10 15 20 25 30
s0{ — — N,
—
» 60 4
o —
£ 40 ~
K=y —
g 204
04 —
T T T T T T T
0 5 10 15 20 25 30

time (min)
Fig. 8: Static vs. adaptive BLEnd, one node. Top: discovery
performance. Bottom: actual neighbors vs. sensed estimate.

1.0
081 ,
e o it T e
0.6
0.4 A
eo024 staticleay
© —— adaptive Bday
> 0.0 T T T T T T
g 0 5 10 15 20 25 30
o
7
2
----- static BLEnd
—— adaptive BLEnd
0.0 +— T T T T T T
0 5 10 15 20 25 30

time (min)
Fig. 9: Static vs. adaptive Birthday and BLEnd with underes-
timated initial schedules (N, = 2 and N, = 30, respectively)

Adaptation is resilient to small changes in node density.
In Fig. 8, for the first 10 minutes, adaptive BLEnd maintains
superior performance as the number of neighbors gradually—
but noisily—declines from around 50 to 20. Recall that while
all nodes begin with the same default schedule, their schedules
gradually diverge as they independently move in different
contexts. Even when nodes have dissimilar schedules, adapta-
tion successfully maintains performance. While we formalized
CANDor under the assumption that all nodes have the same
schedule, it is resilient in practice to less-ideal circumstances.

Adaptation stabilizes after unpredictable leaps in the
number of neighbors, as may be the case when an individual
in a new location is surrounded by a new “neighborhood” of
devices. Around the 12 minute mark in Fig. 8, the adaptive
version of BLEnd converges on a better-performing schedule
than its static counterpart. A user could expect performance
consistent with a designated target within only a few minutes
of arriving at a new destination. The Birthday protocol shows
a similar performance (figure omitted for brevity).

Adaptation behavior varies with the underlying protocol.
CANDor adapts more frequently to node density in Birthday
than in BLEnd due to a shorter sensing window. While this

Authorized licensed use limited to: University of Texas at Austin. Downloaded on January 18,2024 at 14:37:42 UTC from IEEE Xplore. Restrictions apply.

increase decrease increase decrease
1.0 1.0
0.5 I o 054
o
: ik : [
€
£ 0.0 E ool N
L S
= i
I g
-0.51 =0.51 B adaptive
2’ = optimal
-1.0 T T T T -1.0 T T T T
BLEnd Bday BLEnd Bday BLEnd Bday BLEnd Bday

Fig. 10: Battery lifetime and performance of adaptive and op-
timal schedules, normalized to the values for a static schedule.

Ne =20 Ne =60 Ne =20 Ne =60
1.0 1.0
0.5 o 054
o g
= ©
£ oo - E E o001—= 1 -
= 2
B g
=0.51 =0.51 B adaptive
optimal
-1.0 -

BLénd Bz:;ay BLénd Bd'ay BLénd Bd'ay BLI;_nd Bc;ay
Fig. 11: Battery lifetime and performance of adaptive and

optimal schedules, normalized to static during mobility.

may appear ideal for a single node, it causes instability in the
broader neighborhood since devices update schedules more
frequently. However, across all nodes, adaptation consistently
outperforms static schedules for both protocols (Fig. 9).

E. Cost and Benefit Tradeoffs

The application benefits of adaptation come at a cost—
schedules able to handle a higher number of collisions also
require more energy to ensure a high rate of discovery.
Conversely, when the number of neighbors is lower, there is
an opportunity to adapt to conserve energy.

We assign an energy cost E, in mAh of instantaneous
current draw of a schedule period. We use empirical measure-
ments from a reference device [4] to set the current draw I of
transmitting ¢, listening [, and sleeping s. We find E g gnq by
integrating over samples of / for the radio state at each time
step in a schedule period. We define E4q, by weighting the
current draw of each radio state by the probability that a slot
is spent in that state, Fpgqy = Iyp; + I1p1 + Isps.We log every
node’s actual number of neighbors and the number estimated
by CANDor, allowing us to compare the overall energy
consumption of the adaptive schedule to an “optimal” one that
always perfectly estimates the number of neighbors. We report
the normalized difference in battery lifetime between a static
schedule and the adaptive and “optimal” ones.

Fig. 10 depicts the results of both the density increase
and decrease evaluations from Section V-C. When density
increases, the improved performance of adaptation comes at
the cost of increased energy (i.e., shorter lifetime). Lifetime
is improved over the static schedule with negligible impact
on performance when density decreases. If we consider these
results in aggregate, they suggest that adaptation in mobile
contexts (where node density varies from high to low over
time) can make smarter use of available energy, taxing the

342

battery only when necessary to provide the target performance,
and opportunistically conserving energy when possible.

Fig. 11 depicts the energy cost and performance benefit
comparison for the mobility scenario in Section V-D, relative
to static schedules for different N.. While CANDor does
successfully exploit opportunities for energy savings, these
savings do not fully offset the added cost of adaptation in
more dense environments. On the whole, CANDor provides
consistently superior discovery performance in dynamic con-
texts, with a small net increase in energy cost.

VI. CONCLUSION

We presented CANDor, an approach to continuous adaptive
neighbor discovery that leverages signals within a neighbor
discovery protocol to adapt schedules to sensed estimates of
the surrounding number of devices. Our approach enables
neighbor discovery to provide more reliable performance
through adaptation without a need for additional sensing over-
head. We formalized our approach, applied it to two exemplar
protocols—slotted Birthday and slotless BLEnd—then showed
that CANDor is capable of estimating and adapting to sensed
node densities in dynamic operating environments.

ACKNOWLEDGEMENTS

This work was funded in part by the National Science
Foundation under grant CNS-1909221. Any opinions, findings,
conclusions, or recommendations expressed are those of the
authors and do not necessarily reflect the views of the NSF.

REFERENCES
[1]

T. Renzler et al., “Improving the efficiency and responsiveness of smart
objects using adaptive ble device discovery,” in Proc. of SmartObjects,
2018, pp. 1-10.

A. Trivedi and D. Vasisht, “Digital contact tracing: technologies, short-
comings, and the path forward,” ACM SIGCOMM Computer Communi-
cation Review, vol. 50, no. 4, pp. 75-81, 2020.

P. H. Kindt, T. Chakraborty, and S. Chakraborty, “How reliable is
smartphone-based electronic contact tracing for covid-19?” Communi-
cations of the ACM, vol. 65, no. 1, pp. 56-67, 2021.

C. Julien et al., “Blend: practical continuous neighbor discovery for
bluetooth low energy,” in Proc. of IPSN, 2017, pp. 105-116.

P. H. Kindt et al., “Optimizing ble-like neighbor discovery,” IEEE
Transactions on Mobile Computing, 2020.

M. J. McGlynn and S. A. Borbash, “Birthday protocols for low en-
ergy deployment and flexible neighbor discovery in ad hoc wireless
networks,” in Proc. of MobiCom, 2001, pp. 137-145.

Y. Qiu et al., “Talk more listen less: Energy-efficient neighbor discovery
in wireless sensor networks,” in Proc. of INFOCOM, 2016, pp. 1-9.
A. Kandhalu, K. Lakshmanan, and R. Rajkumar, “U-connect: a low-
latency energy-efficient asynchronous neighbor discovery protocol,” in
Proc. of IPSN, 2010, pp. 350-361.

P. H. Kindt et al., “Griassdi: Mutually assisted slotless neighbor discov-
ery,” in Proc. of IPSN, 2017, pp. 93-104.

C. Drula et al., “Adaptive energy conserving algorithms for neighbor dis-
covery in opportunistic bluetooth networks,” IEEE Journal on Selected
Areas in Communications, vol. 25, no. 1, pp. 96-107, 2007.

A. Hess, E. Hyytid, and J. Ott, “Efficient neighbor discovery in mobile
opportunistic networking using mobility awareness,” in Proc. of COM-
SNETS. 1EEE, 2014, pp. 1-8.

S. Firdose et al., “CRAWDAD dataset copelabs/usense,” Downloaded
from https://crawdad.org/copelabs/usense/20170127, Jan. 2017.

1. Rhee et al., “On the levy-walk nature of human mobility,” IEEE/ACM
Transactions on Networking, vol. 19, no. 3, pp. 630-643, 2011.

Z. Cheng et al., “Exploring millions of footprints in location sharing
services,” in Proc. of ICWSM, vol. 5, no. 1, 2011, pp. 81-88.

[2]

Authorized licensed use limited to: University of Texas at Austin. Downloaded on January 18,2024 at 14:37:42 UTC from IEEE Xplore. Restrictions apply.

