
CANDor: Continuous Adaptive Neighbor Discovery

Evan King and Christine Julien
Department of Electrical and Computer Engineering, University of Texas at Austin

{e.king, c.julien}@utexas.edu

Abstract—Many applications require continuous awareness of
the set of surrounding devices. A user entering a smart space
benefits from the ability to quickly discover which devices they
can control nearby. This ability to know “who is around” is
commonly provided by continuous neighbor discovery protocols,
which entail a schedule on which devices alternate between
beaconing to advertise their presence and listening to detect
the presence of neighbors. In existing protocols, these schedules
are carefully configured to achieve application-level objectives—a
target discovery latency, discovery probability, and energy con-
sumption. These configurations are determined statically based
on assumptions about network conditions (e.g., the number of
expected neighboring devices, or nodes). However, the conditions
that a given node typically experiences are dynamic. To handle
these dynamics, existing protocols tend to be configured for the
worst case, which results in schedules that waste energy. In this
paper, we identify a signal for adaptation of continuous neighbor
discovery and show how existing protocols can incorporate this
signal to adapt their behavior to achieve consistent discovery
probability and latency. The signal we adapt to is changing
node density, and our novel insight is that we can extract this
signal directly from the performance of neighbor discovery itself.
We show that our approach effectively senses and adapts even
when using initially suboptimal schedules in dynamic mobile
environments, allowing neighbor discovery protocols to maintain
their performance guarantees without added sensing overhead.

Index Terms—continuous neighbor discovery, mobile comput-
ing, adaptive networking

I. INTRODUCTION

Many mobile computing technologies rely on continuous

discovery and awareness of surrounding devices. These tech-

nologies run the gamut, from user interfaces that provide

control of nearby smart devices [1], to contact tracing during a

pandemic [2]. This is enabled by continuous neighbor discov-
ery, which relies on a schedule of when devices advertise their

presence and listen for the presence of neighbors. The schedule

determines how likely it is for devices to discover each other

within a window after initial contact, as well as how much

energy is consumed doing so. Suboptimal schedules result in

slow discovery or consume excess energy.

As the number of deployed devices grows, an increasingly

important factor in neighbor discovery performance are bea-
con collisions that occur when devices advertise at the same

time. This effect is particularly significant in areas with a high

density. Crowded spaces, for instance, where digital contact

tracing applications might be expected to provide an accurate

assessment of disease risk are ironically the places where

neighbor discovery is least effective due to collisions [3].

Reducing collisions by configuring schedules to account for

dynamics of node density can provide increased confidence

that a target discovery probability and latency can be met

with minimal energy consumption. Prior work has shown

that such schedules can be determined using analytical mod-

els [4] [5] [6], but with a notable limitation: these methods
assume the number of surrounding devices is static. This

is far from realistic, especially in mobile applications: users

often divide time between diverse environments throughout the

day—from home, to busy urban spaces, to the office, to nature

retreats. In spite of this, application developers must choose a

fixed estimate of the number of neighbors at pre-deployment

time. Over-estimates and under-estimates both negatively im-

pact performance. Overestimation can shave meaningful time

off a device’s battery life due to missed opportunities for

energy conservation; in the case of underestimation, lofty

expectations about discovery probability and latency fail to be

met—discovery and control of nearby smart devices therefore

becomes frustrating for users due to lag, and applications that

rely on accurate discovery fail to perform as expected.

We address these challenges with CANDor, a method for

Continuous Adaptive Neighbor DiscOveRy that uses an an-

alytical model to continuously adapt devices’ schedules to a

sensed estimate of the true node density. CANDor centers on

the intuition that the performance of neighbor discovery is a
signal that can be analyzed to glean information about the

state of the dynamic network. By assessing and adapting to

the real state of the network environment, mobile applications

can make use of neighbor discovery capabilities with higher

assurance that pre-deployment promises about energy use,

discovery probability, and discovery latency will be kept.

Our contributions are summarized as follows:

• We formalize an adaptive approach that does not require
additional sensing hardware or contextual information to

adapt neighbor discovery to the number of neighbors.

• We apply our approach to two exemplars, showing that

it generalizes to existing neighbor discovery protocols.

• We show that CANDor is capable of sensing surrounding

node density and adapting a protocol, even in unstable
and dynamic mobile environments.

II. BACKGROUND & RELATED WORK

Slotted protocols model fixed-length “slots” during which

a device is either advertising, listening, or sleeping (e.g.,

Nihao [7], U-Connect [8], and Birthday [6]). Our approach

draws inspiration from Birthday in particular since it is one

of the earliest works to investigate partial adaptation (nodes

switch between schedule modes depending on discovery state)

and because it explicitly models collisions. Slotless approaches

336

2023 IEEE 20th International Conference on Mobile Ad Hoc and Smart Systems (MASS)

2155-6814/23/$31.00 ©2023 IEEE
DOI 10.1109/MASS58611.2023.00048

20
23

 IE
EE

 2
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 M
ob

ile
 A

d
H

oc
 a

nd
 S

m
ar

t S
ys

te
m

s (
M

A
SS

) |
 9

79
-8

-3
50

3-
24

33
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

M
A

SS
58

61
1.

20
23

.0
00

48

Authorized licensed use limited to: University of Texas at Austin. Downloaded on January 18,2024 at 14:37:42 UTC from IEEE Xplore. Restrictions apply.

place fewer constraints on the respective lengths of advertis-

ing, listening, and sleeping (e.g., SingleInt and MultiInt [5],

BLEnd [4], and Griassdi [9]). Griassdi is an interesting ex-

ample of partial adaptation, where nodes perform “assisted

two-way discovery” that adapts advertising and scanning to

minimize latency; similarly BLEnd adaptively transmits bea-

cons to enable two-way discovery based on beacons received.

Adaptive approaches improve neighbor discovery perfor-

mance often using additional sensing capabilities to choose

schedules that are sensitive to context, e.g., based on patterns

at a location or based on past encounters [10]. Such approaches

assume that devices have positioning hardware (e.g., GPS)

and additional storage to log the location of previous contacts.

Renzler et al. use information about encounters—specifically,

trends in user interaction with an immobile smart device—

to choose schedules that are more optimal for different times

of day [1]. Hess et al. use mobility as input to adaptation,

choosing to beacon only at periods with low movement (and

thus a higher probability of prolonged encounters) [11]. Both

approaches are similar to ours in that they exploit informa-

tion already available to adapt. Both cases leverage context

for narrowly-focused applications: either an immobile smart

device with no consideration of mobility, or requiring devices

to be mobile to provide adaptation. Our approach differs from

existing ones in that it generalizes to a variety of application

scenarios—mobile or immobile—by relying only on contex-

tual signals in the behavior of neighbor discovery itself. We do

not rely on additional hardware, providing adaptation for free.

While we focus on the tradeoffs in employing a particular

discovery signal for adaptation, these approaches could be

combined in applications where multiple signals are available.

III. BEST GUESSES & STATIC SCHEDULES

Continuous neighbor discovery protocols switch between

advertising to announce one’s presence and listening to hear

neighbors advertising their presence. A protocol’s schedule

Ω determines when to advertise, listen, and sleep. Practical

applications typically require that the protocol operate within

an energy budget while providing a bound on discovery
probability P and discovery latency Λ. P is the probability

of a node discovering all of its neighbors with the latency

given by Λ. The protocol’s ability to achieve the target P and

Λ within an energy budget is a function of the schedule Ω
and the estimated number of neighbors within communication

range, Ne. In existing protocols, schedules are established

statically. However, in real world deployments, the number

of neighboring devices can vary dramatically over time [12],

making static schedules perform sub-optimally.

We motivate adaptive neighbor discovery using an exemplar

protocol [4] to empirically show two things: (1) when a

protocol over-estimates node density, energy resources are

wasted and (2) when a protocol under-estimates node density,

it fails to achieve target performance guarantees.

Schedules that achieve P within Λ while considering colli-

sions tend to listen more and advertise less as Ne grows [4],

[6]. More frequent (continuous) listening, however, comes at

Fig. 1: Battery lifetime comparison (Ne = 50).

Fig. 2: Performance of a static schedule set for Ne = 20. As

Na exceeds Ne, discovery rate and latency miss the target.

a cost. Ideally, less talkative schedules are used only when the

actual node density (which we term Na) is high so that energy

is not needlessly consumed by frequent listening. Using a

statically-configured schedule in different-than-expected node

densities, however, results in missed opportunities for energy

savings, as we illustrate in Fig. 1.

Small differences between schedules compound. For exam-

ple, if a schedule on a low-power sensing device (e.g., a TI

SensorTag) with a 320 mAh battery is configured for Ne = 50,

yet has Na = 20 for its entire lifetime, its battery is expended

about 12 days sooner than if the schedule reflected the actual

number of neighbors.

If the potential for wasted energy is a concern, applica-

tions can underestimate Ne for a target P and Λ. However,

schedules that assume a lower Ne than reality will harm P
and Λ due to an increase in beacon collisions caused by

more talkative schedules. The top of Fig. 2 depicts the actual

discovery rate relative to the promised P as Na grows past

an underestimated value Ne. The bottom portrays the inverse

effect on discovery latency—as Na grows past Ne, the time

it takes for devices to discover one another grows. The conse-

quences of broken discovery probability and latency promises

are degraded application performance: this can frustrate users

attempting to control nearby devices, or make it difficult to

provide an honest assessment of disease risk [3].

Application developers tasked with configuring discovery

schedules must choose between two evils: overestimate Ne at

the expense of battery life, or underestimate it at the cost of

broken promises about performance. There is thus a strong

justification for adaptive neighbor discovery.

337

Authorized licensed use limited to: University of Texas at Austin. Downloaded on January 18,2024 at 14:37:42 UTC from IEEE Xplore. Restrictions apply.

IV. APPROACH

We first formalize discovery performance as a signal then

describe how we use this to adapt protocol schedules.

A. Neighbor Discovery as a Signal

Our framing principle is that observing the real-time per-

formance of neighbor discovery provides insight into the true

state of the surrounding network—even when that state is

sampled using a suboptimal schedule. We sense the actual
surrounding node density, Na, by analyzing the observed

performance of a schedule Ω optimized for an estimate of

node density, Ne. This estimate enables us to adapt Ω such

that Ne better approximates Na. To estimate Na, we compare

the actual performance of Ω to its expected performance, as

captured by an analytical model of the protocol. In short, we

compare the number of nodes we expect to discover with the

number of nodes the protocol actually discovers.

We formalize our approach under a few assumptions:

• all Na nodes have the same schedule

• for a window in which we explore adapting, Na is stable

• the underlying neighbor discovery protocol models the

fraction of N neighbors expected to be discovered given

a schedule Ω over a given window of time

The first of these simplifies our formalization—it allows us

to model a single value for the schedule parameters across

all nodes. Clearly, it is impossible for all nodes to adapt

independently and achieve this goal; our evaluation shows
that this assumption is unnecessary in practice. We also later

demonstrate that the second assumption can be relaxed.

Consider a function Fd(Ω, N,w) that computes for any

schedule Ω and node density N what fraction of N are

expected to be discovered during a window w. The units and

value of w vary based on the protocol—for slotted protocols,

it is typically a number of slots, while for slotless protocols it

is a number of full periods of listening and advertising.

We extend Fd to define the expected number of nodes

discovered in w, D(Ω, N,w) = Fd(Ω, N,w) × N . Choosing

the hypothetical value of N input to D provides insight into

how Ω is expected to perform in different contexts. If we input

Ne, the estimated number of neighbors, we get the number of

neighbors we expect to discover when our estimate is correct.

Consider Ne = 10 and we know from a model of the protocol

that some specific schedule Ω̂ is expected to discover 90%
of those nodes in the window of time ŵ. In other words,

Fd(Ω̂, 10, ŵ) = 90%, meaning D(Ω̂, 10, ŵ) = 0.9 × 10 = 9
nodes. If the protocol discovers 9 neighbors using the schedule

Ω̂ during ŵ, the actual number of neighbors Na may be equal

to our estimate Ne. There are indeed situations where this is

not the case, which we address in the following.

To compare these expectations with reality, we define an

observed quantity Nda, the number of neighbors actually
discovered in the window w. We can compute D(Ω, Ne, w)
a priori since we know Ω and Ne. We must measure Nda at

run time. However, a single sample of Nda over one window

w does not reveal what fraction of Na has been discovered in

Fig. 3: Empirical distributions of Ndiff a
for Ne = 20.

w. Consider a situation where Ne = 10 but Na = 100, i.e., Ω̂
is constructed with parameters that exceedingly underestimate
the true number of nearby devices. This will result in talkative

schedules that produce a large number of collisions and thus

degrade performance. It is possible, then, that D(Ω̂, 10, ŵ) = 9
nodes and Nda also equals 9, not because there are actually

Na = Ne = 10 neighbors, but because performance is so
degraded by collisions that Ω̂ severely underperforms.

We gain more information by measuring the difference in
the number of unique neighbors discovered between unequal
time windows. We define this as Ndiff a

, a sample of the

difference in actual neighbors discovered between a window

w and a larger w′ (Ndiff a
= N ′

da − Nda). The chosen

windows w and w′ must share the same start time, ensuring

that N ′
da ≥ Nda. While values of w′ �= 2w may be worth

consideration, we choose 2w for simplicity.

Samples of Ndiff a
obey a probability distribution with mean

and variance based on Ω and Na (Fig. 3). When Na = 10 and

Ne = 20, the schedule is parameterized to work for more

neighbors than it needs to, and neighbor discovery is likely

to discover almost all neighbors in the first window, at the

expense of extra energy (e.g., consider the line Na = 10 in

Fig. 3,with mean and variance close to zero). Alternatively,

e.g., when Na = 100, higher node density increases the mean

of the samples since extending the window from w to w′

results in novel discoveries. Furthermore, many collisions are

unaccounted for, leading to less stable discovery performance

and a dramatic increase in the variance of Ndiff a
.

Sampling Ndiff a
provides valuable information about the

surrounding node density because different schedules met

with different surrounding node densities result in uniquely-

identifiable distributions of samples in Ndiff a
. Since multiple

such samples are required to characterize the distribution, we

capture a sequence s of n samples of Ndiff a
:

(si)
n
i=0 = (Ndiff a0

, Ndiff a1
, ..., Ndiff an

) (1)

We are concerned primarily with the mean μ and variance

σ2 of (si), which indicate whether or not a schedule Ω is

accurately estimated, overestimated, or underestimated in situ.

The last step in deriving a numerical estimate of Na is to

compare the observed distribution to an analytical model that

338

Authorized licensed use limited to: University of Texas at Austin. Downloaded on January 18,2024 at 14:37:42 UTC from IEEE Xplore. Restrictions apply.

tells us which values of Na result in which distributions for a

given schedule. If the model suggests that, given the current

schedule Ω̂, some value N̂ produces a distribution that matches

the observed distribution of (si), it is likely that N̂ = Na.

With minor modification, we use D to define an empirical

value Ndiff , the computed difference in number of neighbors

discovered between time windows w and w′:

Ndiff = D(Ω, N,w′)−D(Ω, N,w) (2)

Since D is derived from a closed-form equation given by

the protocol, Ndiff tells us what the difference in neighbors

discovered between windows will be for any schedule Ω
(optimal or not) surrounded by any hypothetical node density

N . In essence, we can compare the observed difference in (si)
with the computed difference given by Ndiff for the current

schedule across a range of N to determine what Na is.

Ndiff is a powerful analytical tool that connects the ob-

served performance in (si) of any schedule Ω surrounded

by any true node density N . We introduce a “schedule

topography” which relates Ω, Na, and Ndiff , allowing us to

derive a numerical estimate for Na using the current perfor-

mance of the schedule. The schedule topography reduces the

computational complexity of estimating actual node density

when implemented on resource-constrained devices since it

can be pre-computed and stored in a small table rather than

calculated at runtime. It provides a map of the landscape given

any combination of schedule Ω and node density Na.

Detecting Accurate Estimates. Once a node collects a

sequence of Ndiff a
samples in (si), we compute the mean μ

of (si), which represents Ndiff a
overall. If μ ≈ Ndiff then

Ne ≈ Na and our schedule is accurately parameterized.

Detecting Overestimates. Next we consider the case when

Ne >> Na. The schedule quickly discovers a large fraction

of the neighbors, overshooting the target discovery probability

(and wasting energy). The variance of (si), σ
2, will be low

since it is unlikely that additional neighbors will be discovered

in w′. We introduce a threshold, τ , which varies based on the

schedule’s Ne. τ can be determined empirically by analyzing

the distribution of Ndiff a
when Ne = Na. We use a threshold

τσ2 for the variance and a separate threshold τμ for the mean.

When τμ > μ ≥ 0 and τσ2 > σ2 ≥ 0, we assume that the

actual number of neighbors N ′
da discovered in w′ is equal to

Na and our new estimate is Ne = N ′
da = Na.

Detecting Underestimates. Values of μ and σ2 beyond

their thresholds signal that Ω is underestimating the number

of neighbors. Higher μ implies the protocol is discovering a

larger number of neighbors than expected. Higher σ2 suggests

an increase in collisions that makes discovery intermittent. We

use Ndiff to analytically determine a new estimate by inputting

Ω into Ndiff for different N using the w and w′ used to collect

the samples in (si) and note the value N̂ that results in a value

Ndiff ≈ μ. We use N̂ as our new estimate, Ne = N̂ ≈ Na.

B. Adapting Schedules to Node Density in Existing Protocols

Any neighbor discovery protocol that models collisions

can compute a new set of parameters given the application’s

requirements (e.g., P , Λ, energy budget) and the node density

estimated by CANDor. To examine how to adapt a protocol’s

behavior, we use two exemplar protocols: a slotted protocol,

Birthday [6] and a slotless protocol, BLEnd [4]. These choices

are partially of convenience, as both analytical models directly

reference the surrounding node density.

Birthday. In the slotted Birthday protocol, each node

chooses in each slot whether to listen, transmit, or sleep

with probabilities pl, pt, and ps, respectively, i.e., ΩBday =
[pl, pt, ps]. The schedule depends on which “mode” the proto-

col is in; for simplicity, we use the probabilistic round robin

(PRR) mode since its schedule is derived using an estimated

node density. The three parameters of a PRR schedule are:

pt =
1

Ne
, pl = 1− 1

Ne
, ps = 0 (3)

The fraction of N nodes discovered over n slots is given as a

Poisson distribution dependent on the schedule:

FdBday
(ΩBday , N, n) = 1− e−nptp

N−1
l

pt, pl ∈ ΩBday (4)

We can define DBday using FdBday
. Since Birthday is slotted,

we express w in terms of slots;we set w to n slotsSsince FdBday

expresses P in terms of n, Ne, and ΩBday , we solve for n to

determine the number of slots required to achieve P :

n ≥
⌊
−log(1− P)

ptp
(Ne−1)
l

⌋

pl, pl ∈ ΩBday (5)

Adapting Birthday to sensed node density is now straightfor-

ward. Using a sequence of samples in (si) gathered over n and

n′ = 2n slots, we sense a new estimate of Na and compute

new schedule parameters using Eqn. 3.

BLEnd. BLEnd uses a slotless scheme in which schedules

are parameterized using an epoch length E (the total duration

of one period of advertising and listening) and an advertis-

ing interval A (the time between beacons). The probability

Pd(ΩBLEnd , N, k) of discovering N neighbors with a schedule

ΩBLEnd = [E,A] over k epochs is given in [4]. Since Pd

is intuitively an expression of the fraction of neighbors we

expect to discover, we treat it as directly interchangeable with

FdBLEnd
. Pd is expressed in terms of a number of epochs k,

so we define k in terms of E and w to derive our window:

k =
⌊w
E

⌋
(6)

We substitute FdBLEnd
into D to derive the expected number of

neighbors discovered. We sample Ndiff a
using w = k epochs

and k′ = 2k. Using DBLEnd , we can also compute Ndiff .

BLEnd uses a brute-force optimization that derives a

ΩBLEnd with minimal energy consumption given a target P ,

Λ, and Ne. By creating such a brute force implementation

of the optimization approach in [4], we can simply input the

new estimate of Na sensed by our approach, along with the

application’s required P and Λ to derive an optimal ΩBLEnd .

339

Authorized licensed use limited to: University of Texas at Austin. Downloaded on January 18,2024 at 14:37:42 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Sensed node density N ′
e versus actual node density Na

using schedules configured for different Ne.

V. EVALUATION

We evaluate our approach using a simulator implemented in

Python using SimPy1. Each node has a position in 2D space

and implements a neighbor discovery protocol that issues

“beacon”, “scan”, or “sleep” events according to its schedule—

discoveries occur if exactly one beacon overlaps with at least

one scan, and a collision (i.e., failed discovery) occurs if

multiple beacon events overlap. Each node maintains a set

of discovery events that include the time and the neighbor

discovered. We leverage protocol-specific models to aggregate

samples of Ndiff a
, analyze them, and periodically update the

estimate of surrounding node density. CANDor then invokes

a protocol-specific function to derive a new schedule.

A. Sensing Node Density

We first evaluate how well CANDor estimates N ′
e using

schedules parameterized for different Ne. For each (Ne, Na),
we use the protocol’s analytical model to determine the

optimal schedule. We execute that schedule in a context where

the actual number of nodes is Na and measure a new estimate

N ′
e. In Fig. 4, we plot Na vs. Ne. We wait until the sensed

estimate N ′
e stabilizes and report the average across all nodes.

In Birthday, CANDor can estimate Na with high accuracy

given schedules that overestimate or slightly underestimate Ne

(Fig. 4). Exceedingly underestimated schedules, however, are

less capable of providing accurate estimates because schedules

in Birthday never sleep, which produces a catastrophically

high number of collisions when Na grows far beyond Ne.

This could likely be addressed by occasionally switching

nodes out of PRR and into birthday-listen mode [6], which

would reduce collisions. In BLEnd, CANDor can estimate

Na with good accuracy given any schedule, overestimated

or underestimated. Even for a very low initial estimate of

Ne = 2, however, we arrive at accurate N ′
e across the full

range of Na. Since CANDor’s ability to sense node density

incurs no additional overhead, sensing and adapting to any
estimate improves performance over a static schedule.

1https://github.com/UT-MPC/dulcet

Fig. 5: Static vs. adaptive with initially underestimated sched-

ules and stable surrounding node density (Na > Ne)

B. Adaptive Schedules

We next compare static BLEnd and Birthday to adaptive

versions, measuring the average discovery rate of all nodes.

Both runs start with schedules optimized for highly-inaccurate

underestimates (Ne = 2 for BLEnd and Ne = 30 for Birthday,

selected based on Fig. 4 to test the limits of each protocol

to adapt from a suboptimal initial schedule) and a target

discovery probability of 90%, with an actual node density

of Na = 80. Fig. 5 shows that even with suboptimal initial
schedules, CANDor enables both protocols to adapt to the true

node density and achieve superior discovery probability. In

Birthday, adaptive performance plateaus at about 70% relative

to 40% for the static schedule. Adaptive BLEnd also outper-

forms its static counterpart, ultimately converging on the target

discovery probability of 90% while the static schedule plateaus

at around 60%. Note that each node senses the surrounding

node density and changes its schedule independently; even
when nodes no longer have the same schedule, all of them
still converge on higher-performing configurations.

C. Dynamic Node Density

We next evaluate CANDor in the presence of node densities

that change over time. We first model a scenario where

additional nodes are gradually introduced to the collision

domain, as may be true in a sensor network or smart space. We

start with two schedules—static and adaptive—both perfectly-

estimated to the actual initial number of nodes (i.e., Ne =
Na = 20) with a target discovery probability of 90%. Every

minute, we introduce 10 additional nodes until the final

number of nodes is Na = 100. From Fig. 6, we can see that

the discovery rate of the static schedule for both protocols

suffers a drop every time new nodes enter. In Birthday, the

adaptive schedule maintains significantly superior performance

relative to the static schedule, which quickly degrades. For

BLEnd, the adaptive schedule’s performance tracks with that

of the static schedule until about the 3 minute mark, at which

point it pulls away. The difference in responsiveness between

protocols is due to the window of time required to gather

340

Authorized licensed use limited to: University of Texas at Austin. Downloaded on January 18,2024 at 14:37:42 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Static vs. adaptive with accurate initial schedules (Ne =
Na = 20) as nodes are added to collision domain

Fig. 7: Static vs. adaptive with accurate initial schedules (Ne =
Na = 20) as nodes are removed from collision domain

samples—hundreds of milliseconds for Birthday versus several

seconds for BLEnd—in conjunction with the time required for

all nodes to independently adapt their schedules.

Our next evaluation demonstrates the effect of node density

decrease over time, as we iteratively remove nodes rather than

adding them. Fig. 7 shows the results. For Birthday, as the

node density decreases, the adaptive schedule reconfigures to

provide performance above the target. In BLEnd, the static

schedule performance stays constant while the discovery rate

with adaptation decreases slightly to approach the target.

Perhaps counter-intuitively, this is desirable: over-estimated

schedules waste energy; CANDor adapts to conserve energy.

D. Node Mobility

We next evaluate CANDor’s performance in the presence

of realistic node mobility using a scenario based on Levy

walk mobility [13], which models the dynamics of real human

mobility [14]. Each of Na = 100 nodes in our scenario moves

for 30 minutes according to this model, resulting in a highly

variable number of neighbors over time. We first analyze the

results of this scenario from the perspective of a single node

before providing a view of aggregate performance.

Fig. 8: Static vs. adaptive BLEnd, one node. Top: discovery

performance. Bottom: actual neighbors vs. sensed estimate.

Fig. 9: Static vs. adaptive Birthday and BLEnd with underes-

timated initial schedules (Ne = 2 and Ne = 30, respectively)

Adaptation is resilient to small changes in node density.

In Fig. 8, for the first 10 minutes, adaptive BLEnd maintains

superior performance as the number of neighbors gradually—

but noisily—declines from around 50 to 20. Recall that while

all nodes begin with the same default schedule, their schedules

gradually diverge as they independently move in different

contexts. Even when nodes have dissimilar schedules, adapta-

tion successfully maintains performance. While we formalized

CANDor under the assumption that all nodes have the same

schedule, it is resilient in practice to less-ideal circumstances.
Adaptation stabilizes after unpredictable leaps in the

number of neighbors, as may be the case when an individual

in a new location is surrounded by a new “neighborhood” of

devices. Around the 12 minute mark in Fig. 8, the adaptive

version of BLEnd converges on a better-performing schedule

than its static counterpart. A user could expect performance

consistent with a designated target within only a few minutes

of arriving at a new destination. The Birthday protocol shows

a similar performance (figure omitted for brevity).

Adaptation behavior varies with the underlying protocol.
CANDor adapts more frequently to node density in Birthday

than in BLEnd due to a shorter sensing window. While this

341

Authorized licensed use limited to: University of Texas at Austin. Downloaded on January 18,2024 at 14:37:42 UTC from IEEE Xplore. Restrictions apply.

Fig. 10: Battery lifetime and performance of adaptive and op-

timal schedules, normalized to the values for a static schedule.

Fig. 11: Battery lifetime and performance of adaptive and

optimal schedules, normalized to static during mobility.

may appear ideal for a single node, it causes instability in the

broader neighborhood since devices update schedules more

frequently. However, across all nodes, adaptation consistently

outperforms static schedules for both protocols (Fig. 9).

E. Cost and Benefit Tradeoffs

The application benefits of adaptation come at a cost—

schedules able to handle a higher number of collisions also

require more energy to ensure a high rate of discovery.

Conversely, when the number of neighbors is lower, there is

an opportunity to adapt to conserve energy.

We assign an energy cost E, in mAh of instantaneous

current draw of a schedule period. We use empirical measure-

ments from a reference device [4] to set the current draw I of

transmitting t, listening l, and sleeping s. We find EBLEnd by

integrating over samples of I for the radio state at each time

step in a schedule period. We define EBday by weighting the

current draw of each radio state by the probability that a slot

is spent in that state, EBday = Itpt+Ilpl+Isps.We log every

node’s actual number of neighbors and the number estimated

by CANDor, allowing us to compare the overall energy

consumption of the adaptive schedule to an “optimal” one that

always perfectly estimates the number of neighbors. We report

the normalized difference in battery lifetime between a static

schedule and the adaptive and “optimal” ones.

Fig. 10 depicts the results of both the density increase

and decrease evaluations from Section V-C. When density

increases, the improved performance of adaptation comes at

the cost of increased energy (i.e., shorter lifetime). Lifetime

is improved over the static schedule with negligible impact

on performance when density decreases. If we consider these

results in aggregate, they suggest that adaptation in mobile

contexts (where node density varies from high to low over

time) can make smarter use of available energy, taxing the

battery only when necessary to provide the target performance,

and opportunistically conserving energy when possible.

Fig. 11 depicts the energy cost and performance benefit

comparison for the mobility scenario in Section V-D, relative

to static schedules for different Ne. While CANDor does
successfully exploit opportunities for energy savings, these

savings do not fully offset the added cost of adaptation in

more dense environments. On the whole, CANDor provides

consistently superior discovery performance in dynamic con-

texts, with a small net increase in energy cost.

VI. CONCLUSION

We presented CANDor, an approach to continuous adaptive

neighbor discovery that leverages signals within a neighbor

discovery protocol to adapt schedules to sensed estimates of

the surrounding number of devices. Our approach enables

neighbor discovery to provide more reliable performance

through adaptation without a need for additional sensing over-
head. We formalized our approach, applied it to two exemplar

protocols—slotted Birthday and slotless BLEnd—then showed

that CANDor is capable of estimating and adapting to sensed

node densities in dynamic operating environments.

ACKNOWLEDGEMENTS

This work was funded in part by the National Science

Foundation under grant CNS-1909221. Any opinions, findings,

conclusions, or recommendations expressed are those of the

authors and do not necessarily reflect the views of the NSF.

REFERENCES

[1] T. Renzler et al., “Improving the efficiency and responsiveness of smart
objects using adaptive ble device discovery,” in Proc. of SmartObjects,
2018, pp. 1–10.

[2] A. Trivedi and D. Vasisht, “Digital contact tracing: technologies, short-
comings, and the path forward,” ACM SIGCOMM Computer Communi-
cation Review, vol. 50, no. 4, pp. 75–81, 2020.

[3] P. H. Kindt, T. Chakraborty, and S. Chakraborty, “How reliable is
smartphone-based electronic contact tracing for covid-19?” Communi-
cations of the ACM, vol. 65, no. 1, pp. 56–67, 2021.

[4] C. Julien et al., “Blend: practical continuous neighbor discovery for
bluetooth low energy,” in Proc. of IPSN, 2017, pp. 105–116.

[5] P. H. Kindt et al., “Optimizing ble-like neighbor discovery,” IEEE
Transactions on Mobile Computing, 2020.

[6] M. J. McGlynn and S. A. Borbash, “Birthday protocols for low en-
ergy deployment and flexible neighbor discovery in ad hoc wireless
networks,” in Proc. of MobiCom, 2001, pp. 137–145.

[7] Y. Qiu et al., “Talk more listen less: Energy-efficient neighbor discovery
in wireless sensor networks,” in Proc. of INFOCOM, 2016, pp. 1–9.

[8] A. Kandhalu, K. Lakshmanan, and R. Rajkumar, “U-connect: a low-
latency energy-efficient asynchronous neighbor discovery protocol,” in
Proc. of IPSN, 2010, pp. 350–361.

[9] P. H. Kindt et al., “Griassdi: Mutually assisted slotless neighbor discov-
ery,” in Proc. of IPSN, 2017, pp. 93–104.

[10] C. Drula et al., “Adaptive energy conserving algorithms for neighbor dis-
covery in opportunistic bluetooth networks,” IEEE Journal on Selected
Areas in Communications, vol. 25, no. 1, pp. 96–107, 2007.

[11] A. Hess, E. Hyytiä, and J. Ott, “Efficient neighbor discovery in mobile
opportunistic networking using mobility awareness,” in Proc. of COM-
SNETS. IEEE, 2014, pp. 1–8.

[12] S. Firdose et al., “CRAWDAD dataset copelabs/usense,” Downloaded
from https://crawdad.org/copelabs/usense/20170127, Jan. 2017.

[13] I. Rhee et al., “On the levy-walk nature of human mobility,” IEEE/ACM
Transactions on Networking, vol. 19, no. 3, pp. 630–643, 2011.

[14] Z. Cheng et al., “Exploring millions of footprints in location sharing
services,” in Proc. of ICWSM, vol. 5, no. 1, 2011, pp. 81–88.

342

Authorized licensed use limited to: University of Texas at Austin. Downloaded on January 18,2024 at 14:37:42 UTC from IEEE Xplore. Restrictions apply.

