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A novel meroterpenoid cabagranin D was isolated with related neolignans

cabagranins A–C from the leaves of Piper cabagranum (Costa Rica).

Cabagranins A–C represent the first examples of 3,3′-neolignans isolated from

the plant genus Piper, and the meroterpenoid cabagranin D displays an

unprecedented Diels–Alder conjugate of an unsubstituted phenylpropenone

and α-phellandrene. Details of the full structural elucidation of these

compounds and a discussion of their potential biosynthetic relationships

are presented.
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1 Introduction

The Piper genus of plants (Piperaceae) is the source of a diversity of compounds

isolated from over 2,600 accepted species distributed across the tropics (Parmar et al.,

1997; Gutierrez et al., 2013; Mgbeahuruike et al., 2017; Gomez-Calvario and Rios, 2019;

Salehi et al., 2019; Fan et al., 2023). Numerous studies have characterized the role of

these compounds in various ecological interactions and uncovered novel compounds

with a wide diversity of biological activities, including antimicrobial and anti-herbivore

activities (Xu and Li, 2011).

In a phytochemical survey of Piper species within the Radula clade, we identified Piper

cabagranum as having a unique chemistry based on GC-MS and 1H NMR analysis of crude

extracts (Uckele et al., 2021). We observed that general categories of natural products like

lignans, sesquiterpenes, and flavonoids were shared among closely related species; however,
1H NMR analysis of crude leaf extracts revealed that specific structural motifs varied widely

(Richards et al., 2018; Uckele et al., 2021). This divergence in functional motifs likely stems

from the distinct evolutionary paths of these plant species, creating fertile ground for the

discovery of new natural products. The unique spectral features encountered in the crude

methanolic extract of P. cabagranum (Costa Rica) distinguished it from the other 70 species

in our study and motivated the phytochemical characterization of this species, with the goal

of understanding the role of specialized metabolites in mediating ecological interactions. Our

work led to the discovery of an unprecedented meroterpene Diels–Alder conjugate

cabagranin D, 5 (Figure 1). Furthermore, this work identified a new series of

dehydrodieugenol-derived 3,3′-neolignans (cabagranins A–C; 1–3) which involve novel

biosynthetic connections between cabagranin D (5) and the co-isolated neolignans

(Figure 1). We here report the isolation, structural, and stereochemical characterization
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of new meroterpenoid 5 and neolignans 1–3—natural products

from P. cabagranum (Costa Rica).

2 Materials and methods

2.1 Plant material

Leaf samples of P. cabagranum were collected from La Selva

Biological Station and the Tirimbina Biological Reserve and verified

(voucher # EJT3531) in March 2012. The leaves were oven-dried

(35°C–40°C) and ground to a fine powder.

2.2 Extraction and isolation

The ground leaf material (1 g) was twice extracted with 400 mL

of HPLC-grade hexanes for 2 h under mechanical agitation. The

supernatants were pooled and evaporated under reduced pressure.

The spent plant material was then twice extracted with HPLC-grade

(Fisher Scientific, Hampton, NH) acetone under the same

conditions, and the supernatants were combined and evaporated

under reduced pressure, resulting in 200 mg of crude acetone extract

and 100 mg of hexane extract. The crude acetone extract (180 mg)

was dissolved in methanol (3 mL) and then purified via RP-HPLC

(Poroshell C18, 21.2 mm× 150 mm, Agilent, Santa Clara, California,

United States) using a 20 min gradient of 30%–100% acetonitrile:

water (Optima grade: Fisher Scientific, Hampton, NH) and held for

7 min at 100% acetonitrile using an Agilent 1260/1290 Infinity II

equipped with an Agilent 6140 Quadrupole LC/MS (Santa Clara,

California, United States). This separation yielded compounds 1

(63 mg, elution time = 8.1 min), 2 (3 mg, elution time = 9.4 min), 3

(4 mg, elution time = 10.4 min), 4 (2 mg, elution time = 13.6 min),

and 5 (2 mg, elution time = 18.9 min). The hexane extract (100 mg)

was further purified through solid phase extraction (C-18 Sep-

Pak) using a 10% step gradient of acetone:water from 50% to

FIGURE 1

Structures of neolignans 1–4 and the meroterpenoid 5 isolated from P. cabagranum.
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100% acetone, yielding a 70% acetone:water fraction that was

enriched in compound 5. Further purification using the

preparatory HPLC methods described above yielded an

additional 3 mg of compound 5.

2.3 Spectroscopic acquisition methods

High-resolution mass spectrometry data were collected using

an Agilent TOF LC/MS (model G6230B, Santa Clara, California,

United States). NMR spectra were gathered using a two-channel

400 MHz Varian VNMRS spectrometer (399.78 MHz 1H and

100.53 MHz 13C) equipped with an ATB automation probe

(400 ATB PFG) (Agilent, Santa Clara, California,

United States). Circular dichroism experiments were

performed on a Jasco J-1500 CD-spectrometer (model J-1500-

150, Jasco Corporation, Tokyo, Japan). Polarimetry experiments

were conducted on a Jasco P-2000 polarimeter (Jasco

Corporation, Tokyo, Japan).

2.3.1 High-resolution mass spectrometry
measurements

High-resolution mass spectrometry (HRMS) analysis was

performed using an Agilent TOF LC/MS (Santa Clara, California,

United States) fitted with an electrospray ionization source (ESI).

The isolated compound was taken up into methanol (1 μg/mL) and

injected directly into the ionization source. Instrument parameters

were: gas temperature, 325°C; gas flow, 5 L/min; nebulizer, 20 psig;

and ion polarity, positive.

2.3.2 Nuclear magnetic resonance measurements
Reported chemical shifts were recorded in parts per million (δ)

using CD3OD as a standard for 1H and 13C (δH 3.31; δC 49.0).

Coupling constants (J) are reported in Hz. Nuclear magnetic

resonance (NMR) assignments were made based on 1H and 13C

spectra, as well as various 2D experimental spectra (COSY, HMBC,

HSQC, and NOESY). For individual compounds, 1H spectra were

acquired using the parameters set automatically by the instrument

with the number of transients (nt = 128), 13C spectra with the

TABLE 1 1H and 13C NMR assignments for the isolated compounds 1–3 in CD3OD.

Position Cabagranin A (1) Cabagranin B (2) Cabagranin C (3)

1H (J in Hz) 13C 1H (J in Hz) 13C 1H (J in Hz) 13C

1 135.2 129.5 129.4

2 6.74 (1H, dd, 2.1, 0.6) 122.6 7.36 (1H, d, 1.9) 129.9 7.52 (1H, d, 2.1) 127.4

3 133.9 132.5 132.9

4 144.3 152.2 151.1

5 149.1 149.5 149.3

5-OMe 3.90 (3H, s) 56.5 3.98 (3H, s) 56.7 3.98 (3H, s) 56.6

6 6.96 (1H, d, 2.0) 109.9 7.46 (1H, d, 1.9) 109.5 7.59 (1H, d, 2.1) 110.9

7 5.07 (1H, d, 5.6) 76.0 9.76 (1H, s) 193.0 191.1

8 6.05 (1H, ddd, 17.1, 10.3, 5.9) 142.3 7.33 (1H, dd, 17.0, 10.6) 133.4

9-cis 5.16–5.09 (1H, m) 114.5 5.87 (1H, dd, 10.6, 2.0) 129.6

9-trans 5.28 (1H, dt, 17.1, 1.6) 6.37 (1H, dd, 17.0, 2.0)

1′ 136.9 137.0 137.2

2′ 6.65 (1H, d, 2.2) 124.4 6.68 (1H, dd, 2.1, 0.6) 124.0 6.68 (1H, dt, 2.0, 0.6) 124.2

3′ 126.7 127.1 126.7

4′ 146.2 146.2 146.4

4′-OMe 3.58 (3H, s) 61.1 3.60 (3H, s) 60.9 3.60 (3H, s) 61.1

5′ 153.9 153.8 154.0

5′-OMe 3.86 (3H, s) 56.3 3.88 (3H, s) 56.3 3.88 (3H, s) 56.4

6′ 6.83 (1H, d, 2.1) 113.1 6.87 (1H, d, 2.1) 113.6 6.87 (1H, d, 2.0) 113.7

7′ 3.35 (2H, br d, 6.7) 40.8 3.38 (2H, br d, 6.7) 41.0 3.38 (2H, dt, 6.7, 0.8) 41.0

8′ 5.98 (1H, ddt, 16.8, 10.0, 6.7) 138.9 5.99 (1H, ddt, 16.9, 9.9, 6.7) 138.8 5.99 (1H, ddt, 16.9, 10.0, 6.7) 138.9

9′-cis 5.04 (1H, ddt, 10.0, 2.2, 1.3) 116.0 5.05 (1H, ddt, 10.0, 2.0, 1.3) 115.9 5.05 (1H, ddt, 10.1, 2.0, 1.3) 116.1

9′-trans 5.16–5.04 (1H, m) 5.18–5.07 (1H, m) 5.11 (1H, ddt, 17.0, 2.0, 1.6)
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number of transients (nt = 15,000), 1H–
1H gCOSY (nt = 4 × 128),

1H–
13C gHMBCAD (nt = 8 × 512), 1H–

13C gHSQCAD (nt = 4 ×

256), and 1H–
1H NOESY (nt = 32 × 256).

2.3.3 Polarimetry measurements
Polarimetry measurements were taken on a Jasco P-2000

polarimeter. Each compound was dissolved in 10 mL of

dichloromethane and placed into a 10-cm polarimeter cell

along with a dichloromethane blank. The samples were

placed in the polarimeter to obtain the optical rotation

in degrees.

2.3.4 Electronic circular dichroism measurements
Electronic circular dichroism (ECD) measurements were

obtained on a Jasco J-1500 CD spectrometer. The isolated

compound was dissolved in methanol (0.5 mM) and placed

into the CD spectrometer along with a methanol blank. The

acquisition parameters were as follows: photometric mode, CD,

HT; measure range, 400–200 nm; data pitch, 0.5 nm; CD scale,

200 mdeg/0.1 dOD; FL scale, 200 mdeg/0.1 dOD; D.I.T., 1 s;

bandwidth, 1.00 nm; accumulations, 1; and scanning speed,

10 nm/min.

3 Results and discussion

Cabagranin A (1) was purified from the 50% acetone:water

eluent as a colorless oil, which was found to have the formula

C21H24O5 from HRESIMS m/z = 379.1551 [M + Na]+,

corresponding to an oxygenated dehydrodieugenol derivative. 1H

NMR analysis revealed the clear presence of a bis-phenylpropanoid

with differing propenyl units (Table 1). One of these units was

hydroxylated at C-7, indicated by the resonance δH 5.07 (d, J =

5.6 Hz)/δC 76.0, which was coupled to the C-8 vinylic methine δH

FIGURE 2

2D NMR correlations establishing the proposed structures and relative configurations of cabagranins A–D.

FIGURE 3

Proposed rearrangement of alcohol 1 to the cinnamyl alcohol derivative through a p-quinone methide intermediate.
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6.05 (ddd, J = 17.1, 10.3, 5.9 Hz)/δC 142.3 based on COSY and

HMBC analyses. HMBC correlations to quaternary oxygenated

aromatic carbons led to the assignment of the three different

methoxy singlets as aryl methyl ethers (Figure 2).

Proton resonances in the aromatic region indicate the

presence of two pairs of meta-coupled protons (δH 6.96/

6.74 and δH 6.83/6.65, J ~ 2 Hz), each pair displaying HMBC

correlations with each set of the two aromatic O-substituted

carbons (δC 144–154) and one of the benzylic carbons (δC
76.0 and 40.8, respectively). NOESY correlations between the

most shielded protons in each ring supported the proximity of

the two rings through direct linkage. Lastly, NOESY correlations

were used to assign the location of three methoxy groups across

the aromatic rings, which supported the lone phenol being para

to the modified propenyl moiety.

Attempts to evaluate the enantiopurity of cabagranin A (1) and

assign the absolute configuration of the alcohol were unsuccessful

due to decomposition of the material under a variety of

derivatization conditions. ECD analysis demonstrated no Cotton

effects and a low optical rotation value {[∝ ]20
D

= +4.1 (c 0.38,

CH2Cl2)}, leaving the optical purity of this compound in question.

We found that the labile hydroxyl group of cabagranin A (1)

rearranged into a cinnamyl alcohol derivative when it remained

dissolved for months at room temperature or when treated with

aqueous acid (Figure 3).

Further purification of the 50% acetone:water fractions resulted

in four minor components that retained most of the structural

features in 1, including 4, which is presumed to be the biosynthetic

precursor to 1, and a coumarin (Scheme 1, see SI). Two new

compounds were isolated from this fraction which bore the

identical bis-aryl phenol moiety of 1 but differed in their

modified propenyl moieties. These compounds were assigned as

cabagranin B (2), which contains an aldehyde substituent, and

cabagranin C (3), which contains a 1-propenone substituent

(Figure 1). It is important to note that neolignans containing the

vinyl ketone substituent of 3 have only been isolated in a few cases

and that most reports suggest that this product is the result of

lignin pyrolysis.

Cabagranin D (5) was isolated as the predominant

component of the 70% acetone:water fractions and found to

have the formula C31H38O5 from HRESIMS m/z = 513.2653 [M

+ Na]+. NMR spectral analysis indicated the presence of the

3,3′-biaryl structure analogous to 1–4 in addition to an iso-

propyl group (δH 0.85), an allylic methyl (δH 1.76 and δC 20.0),

and a vinylic proton [δH 5.49 (dt, J = 6.5 and 2.0 Hz), δC 121.9]

(Table 2). 1H–
1H COSY correlations were consistent with a

[2.2.2] bicyclic structure, which was supported by key HMBC

correlations between H-2 and H-6 aryl methines and the H-8

methine with the carbonyl carbon at δC 202. Relative

configuration of C-8 and C-5″ were assigned from NOESY

correlations between H-8 to H-5″ and H-8″ to H-3’’. Further

2-D NMR correlations were consistent with the structural

assignment of 5, which is postulated to be the endo product

of a Diels–Alder cycloaddition between the enone of 3 and

the monoterpene α-phellandrene (6, Figure 1). This new

molecule seems to represent a novel late-stage merger

between a terpene and a neolignan, presumably through a

Diels–Alder reaction.

Compound 5 was found to be optically active and have an

optical rotation of [∝ ]20
D

= −56.3 (c 0.03, CH2Cl2). The ECD

spectrum of 5 showed strong Cotton effects at 250, 290, and

330 nm (Figure 4). Simulation of the ECD spectra using time-

dependent density functional theory (TDDFT) calculations

(M06/6- 31G+*) of energy-minimized structures of both

TABLE 2 1H and13C NMR data for cabagranin D (5) in CD3OD.

Position Cabagranin D (5)

1H (J in Hz) 13C

1 128.8

2 7.44 (1H, d, 2.0) 126.5

3 133.1

4 150.2

5 149.1

5-OMe 3.95 (3H, s) 56.6

6 7.48 (1H, d, 2.0) 110.8

7 202.4

8 3.50 (1H, ddd, 9.4, 5.8, 1.9) 48.4

9 1.77–1.70 (2H, m) 29.5

1′ 137.2

2′ 6.67 (1H, d, 2.0) 124.2

3′ 126.5

4′ 146.4

4′-OMe 3.60 (3H, s) 61.0

5′ 113.6

5′-OMe 3.88 (3H, s) 56.3

6′ 6.87 (1H, d, 2.0) 154.0

7′ 3.37 (2H, br d, 6.8) 41.0

8′ 5.99 (1H, ddt, 16.9, 10.0, 6.7) 138.9

9′-cis 5.05 (1H, dq, 10.0, 2.0) 116.0

9′-trans 5.11 (1H, dq, 17.0, 2.0)

1″ 2.40 (1H, m) 37.5

2″ 144.6

3″ 5.49 (1H, dt, 6.2, 1.7) 121.9

4″ 2.93 dt (1H, 6.5, 2.0) 38.7

5″ 1.48 (1H, m) 48.5

6″-α 1.80 (1H, m) 32.7

6″-β 0.97 (1H, m)

7″ 1.76 (3H, d, 1.7) 20.0

8″ 1.08 (1H, m) 34.5

9″ 0.88 (3H, d, 6.5) 21.7

10″ 0.82 (3H, d, 6.6) 20.9
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enantiomers of cabagranin D in an implicit solvent model (PCM)

for methanol strongly aligned with the UV absorbances and sign

corresponding to an endo cycloaddition of R-(-)-α-phellandrene

(6) with cabagranin C from the face opposite the iso-propyl

substituent, thus confirming the assignment of the absolute

configuration of 5.

4 Conclusion

The co-isolation of the series of neolignans 1–4 supports the

proposed biosynthetic pathway shown in Scheme 1. This

hypothesis suggests that eugenol undergoes oxidative

dimerization followed by monomethylation to yield

compound 4. The major constituent of the crude extract is

formed through the selective oxidation of the allyl group of the

phenolic ring. A variety of neolignans have been isolated from

other Piper species, but this represents the first example that

contains a hydroxylated propenyl side chain (Macedo et al.,

2017). While the conversion of the alcohol to ketone 3 is

anticipated to be facile, compound 3 was not always present

in detectable concentrations in the crude extracts of the leaves.

The high electrophilic reactivity of 3, its rare occurrence (Chen

et al., 2012; de Sousa et al., 2017; de Sousa et al., 2020), and the

presumed toxicity of the vinyl ketone suggest that this

compound could be an artifact of isolation and is not present

in high concentrations in vivo (Chen et al., 2012; de Sousa et al.,

2017; de Sousa et al., 2020).

The discovery of meroterpenoid 5 effectively represents a

Diels–Alder cycloaddition reaction between ketone 3 and α-

phellandrene (6). Although some similar examples exist, the

isolation of 5 provides the first example of a Diels–Alder product

between an unsubstituted phenylpropenone and a terpene

(Pasfield et al., 2013; Alves et al., 2017; Qiu et al., 2018;

Tortora et al., 2022; Zhou et al., 2023). Given the instability

of 3, we hypothesize that the ketone precursor could be formed

in situ and simultaneously trapped by α-phellandrene in a single

enzymatic step. In this scenario, the Diels–Alder product could

emerge from the activity of an oxidase enzyme acting on the

hydroxyl group of compound 1. This oxidation of 1 would lead

to the formation of a vinyl p-quinone methide intermediate,

representing the protonated enone, which would produce 5

(Scheme 1) from the reaction with α-phellandrene. Recent

research highlights the role of redox-active enzymes that have

likely diverged from their ancestral functions to act as

Diels–Alderases in the biosynthesis of prenylated phenol and

alkaloid natural products (Oikawa and Tokiwano, 2004; Gao

et al., 2020; Gao et al., 2022; Liu et al., 2023). Other investigations

have shown that phenols and their ethers can act as redox tags in

electrocatalytic Diels–Alder reactions and that silver

FIGURE 4

Comparison of the calculated ECD spectra of both enantiomers of cabagranin D using time-dependent density functional theory (TDDFT)

calculations and experimental ECD spectra.
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nanoparticles can catalyze related Diels–Alder reactions

involving phenolic chalcones and terpenoid dienes (Cong

et al., 2008; Cong et al., 2010). When comparing biomimetic

Diels–Alder reactions involving a chalcone and a 2,4-

disubstituted diene, it was found that the desired reactions

with moderate yield require high pressures or temperatures,

or strong Lewis acids (ONeill et al., 2006; Tee et al., 2016; Chai

et al., 2020; Tangdenpaisal et al., 2022). However, when using

enzymatic (Gao et al., 2020) or redox-active catalysts (Cong

et al., 2010; Ohmura et al., 2023), nearly identical reactants can

undergo the Diels–Alder reaction at room temperature or even

below, demonstrating a more efficient and milder process. While

these reports support our hypothesis, we cannot distinguish the

role of Lewis-acid or single-electron processes in catalyzing the

proposed Diels–Alder reaction. Ongoing experimental and

computational investigations are evaluating our biosynthetic

hypothesis surrounding the formation of 5.

The compounds isolated in this study establish P. cabagranum

as a chemically distinct species within its genus, primarily due to the

presence of oxidized 3,3′-neolignans and a distinctive neolignan

meroterpenoid, cabagranin D, marking the first occurrence of a

Diels–Alder between a vinyl ketone dienophile and a terpene diene.

It inspires future studies on the biosynthetic origins of this

unique compound.
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