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abstract: Geographic variation in low temperatures at poleward range
margins of terrestrial species often mirrors population variation in cold
resistance, suggesting that range boundaries may be set by evolution-
ary constraints on cold physiology. The northeastern woodland ant
Aphaenogaster picea occurs up to approximately 457N in central Maine.
We combined presence/absence surveys with classification tree analysis
to characterize its northern range limit and assayed two measures of cold
resistance operating on different timescales to determine whether and
how marginal populations adapt to environmental extremes. The range
boundary of A. picea was predicted primarily by temperature, but low
winter temperatures did not emerge as the primary correlate of species
occurrence. Low summer temperatures and high seasonal variability
predicted absence above the boundary, whereas high mean annual tem-
perature (MAT) predicted presence in southernMaine. In contrast, assays
of cold resistance acrossmultiple sites were consistent with the hypothesis
of local cold adaptation at the range edge: among populations, there was
a 4-min reduction in chill coma recovery time across a 27 reduction in
MAT. Baseline resistance and capacity for additional plastic cold harden-
ing shifted in opposite directions, with hardening capacity approaching
zero at the coldest sites. This trade-off between baseline resistance and
cold-hardening capacity suggests that populations at range edges may
adapt to colder temperatures through genetic assimilation of plastic re-
sponses, potentially constraining further adaptation and range expansion.
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Introduction

The geographic range of a species encompasses the suitable
abiotic and biotic environment for populations to persist (Sex-
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ton et al. 2009; Geber 2011). For ectotherms, environmental
temperature is a primary determinant of growth, metabolic
rate, and activity (Stevenson 1985; Angiletta 2009), and it is
expected to be an important determinant of species’ range
boundaries (Sunday et al. 2011). The thermal physiology of
ectotherms generally reflects their latitudinal ranges (Addo-
Bediako 2000; Calosi 2010; Lancaster 2016). Temperatures
at the warm-edge boundaries of a geographic range tend
to be less extreme than predicted by organismal physiologi-
cal limits, suggesting that biotic interactions and other factors
constrain warm-edge boundaries (Sunday et al. 2012). In
contrast, temperatures at the cold-edge boundaries of ecto-
therm geographic ranges tend tomatch their physiological re-
sistance of cold, consistent with a range limit that is set abi-
otically by cold temperatures (Sunday et al. 2012; Andersen
et al. 2015).
Extreme thermal environments impose selective pressures

on marginal populations distinct from those experienced in
the center of the geographic range (Bridle and Vines 2007).
Over evolutionary time, adaptive changes in thermal physiol-
ogy at range boundaries can permit further expansion (Kirk-
patrick and Barton 1997; Chevin and Lande 2011; Lancaster
2016; Szűcs et al. 2017). Whether edge populations can adapt
to local conditions depends on dispersal ability, strength, and
direction of selection as well as the underlying genetic archi-
tecture (Lande and Arnold 1983; Bridle and Vines 2007;
Kawecki 2008; Wood and Brodie 2016). Asymmetric gene
flow intomarginal populationsmay swamp countervailing se-
lective forces, which may constrain local adaptation (Kirk-
patrick and Barton 1997; Bridle et al. 2009; Paul et al. 2011).
Conversely, population fragmentation and limited dispersal
from the center of the range may lead to either constrained
or enhanced potential for local adaptation, depending on
the extent of genetic and phenotypic diversity present within
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marginal populations (Brown 1984; Eckert et al. 2008; Hardie
and Hutchings 2010; Vergeer and Kunin 2013).

Patterns of covariation among traits may also influence
adaptive potential in response to environmental extremes.
Organisms in poleward environments must cope with both
cooler average temperatures and greater thermal fluctuation
across diurnal and seasonal timescales (Marshall and Sinclair
2012). In ectotherms, these patterns of temperature fluctua-
tion are associated with distinct physiological response mech-
anisms (Terblanche 2006; Hadamová and Gvoždík 2011;
Elkinton et al. 2017; Noh et al. 2017). Constitutive cold resis-
tance provides increased protection from continuous or un-
predictable cold stress (Teets et al. 2011) but is energetically
expensive and can depress individual growth rates (Marshall
and Sinclair 2012). In contrast, induced resistance enhances
performance when cold exposure is predictable (e.g., seasonal
acclimation; Kośtál et al. 2011) or encountered repeatedly over
hourly or daily timescales (cold hardening; Lee et al. 1987;
Kelty and Lee 2001; Findsen et al. 2013), but it may lead to re-
duced fecundity (Marshall and Sinclair 2010). The extent and
direction of genetic dependence among thesemechanismswill
dictate the ability of the population to adapt to correlated se-
lective pressures: positive genetic covariation would promote
both baseline and inducible cold resistance, whereas negative
genetic covariation would inhibit simultaneous adaptation to
both environmental components and potentially limit range
expansion. Our understanding of the genetic architecture of
cold resistance mechanisms—and therefore the potential for
simultaneous adaptation to poleward extremes—is still lim-
ited (Hoffmann et al. 2013; Gerken et al. 2015).

In eastern North America, the ant genus Aphaenogaster
includes a complex of approximately 23 species (Demarco
and Cognato 2016) that are mostly ground dwelling and in-
habit deciduous forests from Florida to Maine. This species
complex is a useful model system for understanding how
the genetic architecture of thermal resistance mechanisms in-
fluences physiological performance and range limits. The
northernmost of these species, Aphaenogaster picea, has di-
verged from its southern sister taxa and expanded into north-
ern postglacial regions in the eastern United States (Demarco
and Cognato 2016). Physiological resistance to cold tempera-
tures varies across the species’ geographic range (L. Chick, in
preparation), suggesting that populations have responded
adaptively to local conditions and are sensitive to cold tem-
peratures. From museum records (Ellison and Gotelli 2009;
Ellison 2012) and field observations (A. M. Ellison, personal
observation), the northern range boundary of A. picea in
New England occurs in central Maine at a latitude of approx-
imately 457N, even though there is ample suitable nesting hab-
itat (mixed hardwood-deciduous forest) much farther north
in Maine and Canada.

In this study, we combined evidence from ecological niche
modeling and physiological resistance assays to characterize
This content downloaded from 128.10
All use subject to University of Chicago Press Term
the location and habitat characteristics of the northern range
boundary ofA. picea.We identifiedwhich climate factorsmay
act as selective agents and whether marginal populations
can respond adaptively to multivariate climatic conditions
present at the range boundary. We conducted extensive pres-
ence/absence surveys across central Maine and identified
key climatic variables associated with its occurrence using
decision tree modeling (De’ath 2002). We used a short-term
common-garden experiment to quantify intrinsic cold resis-
tance and capacity for rapid cold hardening of colonies col-
lected from sites at varying distances from the northward
range boundary. To determine the degree of genetic correla-
tion between baseline and hardening of cold performance,
we estimated the broad-sense variance-covariance (G) matrix
(Kingsolver et al. 2001, 2004, 2015) of cold performance and
further decomposed G using principal component analysis
(PCA) at the population level.
Methods

Field Surveys and Niche Modeling

Aphaenogaster picea is a common forest ant species that
ranges from the high elevations of Virginia to northern
Minnesota and Maine. Its northern range boundary—esti-
mated from georeferenced museum specimens—occurs in
Maine near 457N (Ellison and Gotelli 2009; Ellison 2012;
fig. 1D). To further characterize the northern range bound-
ary of A. picea, we combined presence/absence data from
previous field surveys at 27 sites (1991–2015; Ellison and
Gotelli 2009) with new data collected for this study in July
and August 2015 from 75 additional sites. These 75 sites
were sampled randomly along a 65-km east-west belt tran-
sect centered on 457N latitude and running across all of
central Maine. For the July 2015 survey of 32 sites, two
researchers searched each site haphazardly for A. picea col-
onies for 20 min in deciduous and mixed hardwood for-
ests. For the August 2015 survey of 43 additional sites,
two researchers established 50#50-m plots and searched
them for colonies for 20 min each (40 person-minutes per
plot).
We used classification and regression tree (CART) anal-

ysis, implemented in the rpart package (ver. 4.1-10) in R ver-
sion 3.4.2 (RDevelopment Team2017), to determinewhich of
the 19 bioclimatic variables (at 2.5-m resolution) downloaded
fromWorldClim (http://www.worldclim.org/bioclim) best pre-
dicted the occurrence of A. picea. To obtain the optimal re-
gression tree and to avoid overfitting the data, we pruned the
tree so that it had the lowest complexity parameter and small-
est cross-validated error. For each cross validation, CART
models were fitted to a training set and then used to predict
presence or absence in the testing set. In total, we analyzed
10 independent cross validations.
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Figure 1: Overlay of classification tree model predictions on empirical surveys of presence/absence. Gray background color represents cumulative
regions where the model predicts absences, pink background color represents cumulative regions where the model predicts presences, and un-
shaded regions are unspecified for a given predictor variable. Points indicate empirical absences (black) or presences (red). Tmax (maximal temper-
ature of the warmest month), temperature seasonality (standard deviation of the range of annual temperatures#100), mean annual temperature
(MAT), and precipitation at warmest quarter (PwarmQ) represented four out of 19 bioclimatic variables (http://www.worldclim.org/bioclim) that
predicted presence/absence with 86% accuracy. Sites with Tmax of !257C predict absences (A), and sites with Tmax of 1257C and temperature sea-
sonality of 110.05 predict absences (B). Sites with a MAT of 16.5 predict presences (C), and sites with a MAT of !6.5 and a PwarnQ of !261 and
1270 mm predict presences (D). Ant colonies were collected and measured for chill coma recovery time from sites outlined in cyan (D).
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Field Collecting and Rearing Conditions
in a Common Garden

To test for local adaptation in cold performance, we col-
lected 16 colonies from 16 unique sites along the range
boundary in July 2015 (table A1; fig. 1D; tables A1, A2 are
available online). At each site, we collected whole colonies, in-
cluding workers, larvae, pupae, and queens (when possible).
Collected colonies were housed in 22# 16-cm plastic con-
tainers and maintained under a 12L∶12D photoperiod at
≈50% humidity and 257C (i.e., within the range of optimal de-
velopment; Penick et al. 2017). To minimize the contribution
of the source environment, colonies were laboratory accli-
mated under these conditions for at least 1 month before
any physiological measurements were taken. Ant workers
typically live from a few weeks to several months. Colonies
readily nested within glass test tubes that were plugged with
water-saturated cotton to maintain humidity. Each colony
was fed 100 mL of 20% honey in water and one bisected meal
worm three times each week.
Constructing Cold-Performance Curves

We exposed ants to a series of cold pretreatments, recovery
treatments, and subsequent temperature treatments to con-
struct cold-performance curves for adult workers from each
laboratory-acclimated colony (figs. 1D,2). Cold resistance
This content downloaded from 128.10
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was measured as the chill coma recovery time (CCRT) in
seconds (Terblanche et al. 2011; Andersen et al. 2015; Sinclair
et al. 2015): the time in seconds needed for an individual ant
worker to orient itself in an upright position and take one step
after a 1-h exposure to 257C. We focused on CCRT rather
than other commonly used measures of cold resistance (such
as critical thermal minimum [CTmin] or survival) because
CCRT is both straightforward to measure and likely to be
ecologically relevant under low-temperature extremes. Both
CCRT and CTmin have been shown to vary latitudinally with
temperature in aquatic (e.g., Wallace et al. 2014) and terres-
trial ectotherms (e.g., Karl et al. 2008; Sisodia and Singh
2010; Ransberry et al. 2011; Gaitán-Espitia et al. 2013). How-
ever, the onset of chill coma at CTmin occurs at relatively mild
low temperatures, whereas CCRT is measured following more
severe low-temperature conditions, when irreversible dam-
age is a higher risk and additional physiological mechanisms
are likely to be involved (Macdonald et al. 2004). In two tem-
perate ant species, only CCRT displayed significant latitudi-
nal variation, whereas CTmin was invariant across 177 in lat-
itude (Maysov 2014).
To assess basal cold recovery and cold-hardening ability, we

measured the CCRT of ants that were pretreated for 1 h at one
of four temperature treatments: 257, 57, 07, or 257C (fig. 2).
The 257Cpretreatment is the control that represents basal cold
resistance, and the 257, 07, and 57C pretreatments represent
cold hardening at different temperature levels. All ants were
Time (hours)
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Figure 2: Experimental design for measuring cold-performance curves for four pretreatment temperatures (257, 07, 57, and 257C). Basal cold
resistance was defined as performance at 257C pretreatment temperature and was used as a baseline for measuring cold-hardening responses
(257, 07, and 57C pretreatment temperatures).
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temperature treated in a circulating water bath (Polyscience)
that contained a 50% ethylene glycol solution to prevent freez-
ing. For each colony, four ants per pretreatment were placed
in a sealed 15#160-mm glass test tube for 1 h at the pretreat-
ment temperature. After 1 h, the ants were removed and
placed into a test tube and allowed to recover at 257C for
1 h (fig. 2), then placed in the 257C treatment for another
hour. After this second hour, ants were placed in glass tubes
with water-soaked cotton plugs. CCRT was measured by an
observer without prior knowledge of pretreatment groups.
We excluded 24 of 272 ants tested thatwere lost or did not sur-
vive handling.

Evaluating Trade-Offs in Cold Performance

We adapted multivariate methods from quantitative genetics
(Kingsolver et al. 2001, 2004, 2015) to estimate the correlation
structure between basal cold resistance and cold hardening in
A. picea. In Kingsolver’s original analyses, the data consisted
of performance traits that were measured for replicated geno-
types. For n measured traits, the resulting n#n G matrix
measures the additive genetic variance in the traits along the
diagonal and the additive covariances between pairs of traits
in the off-diagonal elements. In our analyses of whole-colony
variation, the G matrix reflects among-colony variances
and covariances in the responses to different pretreatment
temperatures. The trait data consisted of CCRT that wasmea-
sured at four different pretreatment temperatures for four
replicate workers from each of the 16 colonies. Performance
at each pretreatment temperature was considered a “trait,”
where baseline performance corresponded to the 257C treat-
ment and 57, 07, and257C traits measured the combined ef-
fects of baseline resistance and hardening on performance at
progressively lower temperatures. We estimated the colony-
level 4#4 variance-covariance matrix by first fitting a mixed
effects model and then extracting variance and covariance
components using the lme4 package in R (Paccard et al. 2016):

Yijk p m1 Cjk 1 ϵijk,

where Yijk represents the value of CCRT for ant worker i of
colony j measured for each pretreatment temperature k, m is
the fixed effect of the intercept, Cjk is the random effect of col-
ony j at pretreatment temperature k, and ϵijk represents the re-
sidual error. Colony-level and residual within-colony effects
were treated as random effects with an unconstrained covari-
ance structure (Paccard et al. 2016). We extracted variance
and covariance components that make up the 4#4 matrix
with the VarCorr() function from the mixed effects model.

Estimates of the variance-covariance matrix were calcu-
lated from untransformed data because each trait (CCRT
under each pretreatment temperature) has the same units.
We then decomposed G using PCA to produce orthogonal
eigenvectors, which represent independent axes of genetic
This content downloaded from 128.10
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correlations between traits (Kingsolver et al. 2001, 2004,
2015). The first principal component, gmax, is the eigenvector
that explains most of the variation in the G matrix. The
pattern of loadings for gmax can be biologically interpreted
as falling within one of three broad scenarios (Kingsolver
et al. 2001, 2015). In the first scenario, if colonies with higher
baseline performance were also able to mount equivalent
or greater cold-hardening responses, resulting in consistent
differences in performance across all pretreatment tempera-
tures (additive variation), then the gmax loadings would be all
negative or all positive (fig. 3A, 3B). In the second scenario,
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Figure 3: Predictions for three biological patterns of performance curves
using multivariate quantitative genetic methods, adapted from figures 4
and 5 in Kingsolver et al. (2001). Colonies are expected to differ in three
different ways with respect to pretreatment temperature (A, C, E). For
each, the loadings of the dominant eigenvector from the principal com-
ponent analysis decomposition of their variance-covariance (G) matrix
provides estimates of the correlation between basal cold resistance
and levels of hardening ability on a continuous scale (B, D, F). Colonies
exhibiting overall additive responses across pretreatment temperatures
(A) will also have constant loading patterns across pretreatment tem-
peratures (B). Colonies whose peak performance differs from cooler to
warmer pretreatment temperatures (C) will have either a negative or a
positive relationship between loadings and pretreatment temperatures
(D). Last, colonies exhibiting generalist-specialist differences (E) will have
will have positive loadings at intermediate temperatures and negative
loadings at extreme cold or warm pretreatment temperatures (F).
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if baseline recovery and hardening ability were negatively cor-
related, resulting in shifts in relative cold performance between
low and high pretreatment temperatures (cooler-warmer var-
iation), then the gmax loadings would shift in sign from low to
high pretreatment temperatures (fig. 3C, 3D). In the third sce-
nario, if increased hardening responsiveness to cold shock
manifested as heightened performance at intermediate pre-
treatment temperatures (generalist-specialist variation), then
the gmax loadings would shift in sign between intermediate
and both extreme pretreatment temperatures (fig. 3E, 3F).
Determining the Relationship between
Cold Resistance and Climate

To explore how variation in cold resistance traits was related to
the local thermal environment at the range margin, we tested
for an effect of localmean annual temperature (MAT) on base-
line cold resistance and cold-hardening capacity. To calculate
baseline cold resistance, we transformed CCRT so that higher
values indicated greater cold resistance. Specifically, the max-
imumCCRT value in the entire data set (CCRTmax) was treated
as a reference level, and each CCRT measurement (CCRTobs)
was subtracted fromCCRTmax (CCRTmax 2 CCRTobs) tomea-
sure relative cold resistance. To calculate cold-hardening ca-
pacity, we used the same data transformation and for each
colony subtracted the averageCCRTat eachpretreatment tem-
perature (257, 07, 57C) from the average CCRT at the 257C
pretreatment temperature (257, 07, and 57C; CCRT257C 2
CCRTpretreatment temperature). To detect simple linear and nonlinear
relationships between local temperature and cold resistance
or cold hardening, we fit a regression model with cold resis-
tance or cold hardening as the response variable and a linear
and a quadratic term for temperature as the predictor vari-
able. We used Akaike information criterion model selection
to determine whether the quadratic term should be retained
or dropped from the final model.
Results

Climatic Predictors of the Distribution
of Aphaenogaster picea

The geographic distribution data included 102 georeferenced
localities inMaine, consisting of 52 presences and 50 absences
(table A1). CART successfully predicted the distribution of
A. piceawith 86% accuracy (fig. A1, available online) with bal-
anced error rates, correctly identifying 42 absences out of 50
(88% specificity) and 46 presences out of 52 (84% sensitivity;
fig. A1). Measures of environmental temperature were most
strongly associatedwithA. picea’s distribution: CART sequen-
tially identified the maximal temperature of the warmest
month (Tmax), annual temperature seasonality (SD), annual
mean temperature (MAT), and precipitation in the warmest
This content downloaded from 128.10
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quarter (PwarmQ) as the best set of predictors of the distribu-
tion of A. picea (fig. 1). Aphaenogaster picea was not found at
sites below aTmax of 257C,which coincides with areas inMaine
along the east coast and along a southeast to northwest inland
axis (fig. 1A, gray shaded area). In locations where Tmax was
1257C, A. picea was not found where SD was greater than
or equal to 10.05, corresponding to areas of central and north-
ern Maine (fig. 1B, gray shading). If SD was below 10.05,
A. picea was predicted to occur when MAT was ≥6.57C,
a combination of conditions present in southern Maine
(fig. 1C, pink). The remaining area, characterized by suffi-
ciently low SD but MAT below 6.57C, formed an east-west
band along the northern range edge within which presence
was dependent on precipitation in the warmest quarter. Pres-
ence was predicted when PwarmQ was 1270 or !261 mm
(fig. 1D).
Cold Performance in Marginal Populations

Colonies collected from 16 sites within the range-edge re-
gion andmaintained under common-garden conditions exhib-
ited substantial variation in their CCRT performance curves
(fig. 4A). Overall, cold resistance was significantly affected by
pretreatment temperature (ANOVA: F1, 3 p 18:95, P ! :001;
fig. 4B). Significant cold hardening occurred when individuals
were pretreated at 07C (Tukey’s HSD pairwise comparisons:
all comparisons vs. 07C, P ! :01), with negligible enhance-
ments that did not differ significantly from room-temperature
controls when exposed to 257C and 157C (fig. 4B). When
we decomposed the colony-level variance-covariance Gma-
trix (table A2) with a PCA, the first principal component,
gmax, accounted for 92% of the variation in G. In support of
a baseline-hardening trade-off (fig. 3C, 3D), gmax had oppo-
site loading patterns between the 07 and 257C pretreatment
temperatures (fig. 4C); ants from colonies with high cold re-
sistance at the 07C pretreatment temperature had lower cold
resistance at the 257Cpretreatment temperature (fig. 4C) and
vice versa. Hardening in the most basally cold-resistant col-
onies improved CCRT by ≈5% (33 s), whereas the least ba-
sally cold-resistant colonies improved CCRT through hard-
ening by up to ≈160% (504 s).
Patterns of Local Adaptation in Cold Performance

Across the 16 range-edge sites, MAT varied by 27C, with cor-
related changes in both winter low temperature extremes
(Tmax, R2 p 0:91) and short-term temperature variability
(MDR, R2 p 2 0:31), which increased as MAT and Tmax de-
clined (fig. 5). Local environmental temperatures differentially
affected baseline and inducible components of cold perfor-
mance. There was a significant negative linear effect of MAT
on baseline cold resistance (F1, 15 p 8:21, P ! :02; fig. 6A).
In contrast, cold-hardening ability (CCRT257C 2 CCRT07C)
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displayed a nonlinear response toMAT,with no clear relation-
ship at higher MAT values but an increasingly steep negative
relationship at colder temperatures that intersected with zero
at the coldest sites (MAT2, F2,14 p 5:28, P ! :02; fig. 6B).
There was a negative relationship between baseline and hard-
ening cold resistance (R2 p 0:87, P ! :001; fig. 6C).
Discussion

We paired two approaches to investigate the northern range
limit of Aphaenogaster picea. Occupancy modeling of pres-
ence/absence data suggests that abiotic factors are likely to
be important drivers of species occupancy but that low winter
temperatures may not be the sole or primary factor determin-
ing the range limit. Nevertheless, populations sampled from
different distances to the range edge exhibited variation in
physiological cold resistance that matched the local thermal
regime. Collectively, these results suggest that poleward range
edge environments present a multifaceted set of selective
pressures that together shape the characteristics and ecological
limits of marginal populations.
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Consistent with the results of many studies across a wide
range of taxa (Sunday et al. 2012; Lancaster et al. 2015;
Angert et al. 2017), species occupancy at the northern range
limit ofA. piceawas strongly associated with abiotic factors,
with an overall prediction accuracy of 84% (fig. 1). Despite
the expectation that low temperatures would be a major
driver of the range limit, the minimum monthly tempera-
ture did not emerge as the most significant predictor of oc-
cupancy. Two variables, Tmax and precipitation during the
warmest quarter, significantly predicted the northwest range
boundary as well as occurrence within the range edge region
(fig. 1B), suggesting that conditions during the summer grow-
ing season are critical for overall colony performance. Be-
cause poleward populations have fewer total degree-days
available for growth, ectotherms potentially face a minimal
threshold for the amount of time required to successfully
rear a cohort of offspring to adulthood or a winter-tolerant
juvenile stage (Yamahira and Conover 2002). In populations
more distant from this northwest boundary, both highermean
and lower variance in annual temperatures were stronger
predictors of occurrence than summer conditions, suggesting
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that the duration or intensity of low temperatures may act as a
secondary environmental filter once minimal growth temper-
atures are achieved (fig. 1B, 1C). Low or variable temperature
regimes can limit the foraging season in early spring and au-
tumn, while brief cold snaps and extended low temperatures
can induce chill injury and reduce survival during overwin-
This content downloaded from 128.10
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tering (Teets et al. 2011). These results are consistent with
other studies demonstrating that simple cold resistance is
not the only factor limiting poleward range boundaries (e.g.,
Cunningham et al. 2016). It is important to note, however, that
niche models are correlative and should ideally be confirmed
by the results of transplant experiments and independent
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measures of physiological resistance (Parmesan et al. 2005).
Even abiotic variables that strongly predict field occurrences
may not be causally related to persistence, and they may not
accurately represent the abiotic conditions experienced by
individuals at small spatial scales (Spicer et al. 2017; Baudier
et al. 2018).

In contrast to the niche-modeling results, direct measure-
ment of cold resistance traits suggested amore compelling role
for temperature extremes in driving ecological and evolution-
ary outcomes at the range edge (fig. 6). In A. picea, marginal
populations did not appear to be constrained in their ability
to adapt to local conditions either by swamping effects from
the core of the geographic range or by depletion of genetic var-
iation at the range margin. Baseline cold resistance improved
linearly withMAT, with an overall reduction in CCRT of over
4 min across an environmental gradient of 27C (fig. 6A).

Thermal resistance limits can be adjusted via local adapta-
tion or plasticity; positive selection is expected for bothmech-
anisms of response as species approach their poleward range
boundary (Karl et al. 2008; Hardie and Hutchings 2010). Al-
though range-edge sites were progressively both colder and
more variable in temperature (fig. 5), baseline CCRT in A.
picea was negatively correlated with the magnitude of cold
hardening, with little to no hardening ability evident at the
coldest locations (fig. 6B). Developmental and seasonal accli-
mation, which were not measured here, may also influence
the expression of thermal traits (Bowler and Terblanche
2008); however, CTmin for A. picea does not appear to be im-
pacted by acclimation temperature (L. Chick, in preparation),
and the magnitude of their effects in other taxa are mixed
(Ransberry et al. 2011; Hadamová and Gvoždík 2011; Baciga-
lupe et al. 2018; de Jong and Saastamoinen 2018).

Two alternative scenarios may explain the contrasting
patterns of baseline and induced cold resistance. First, plastic-
ity may be less physiologically relevant under harsher temper-
atures, particularly if overwintering colonies are insulated by
significant snowpack that dampens temperature variability.
As a consequence, thermal limits may evolve toward constitu-
tive protection and away from unused and potentially costly
hardening capacity. Alternatively, plasticity may decline as
an indirect consequence of selection on baseline resistance if
the two traits are negatively genetically correlated. Genetic
correlations between traits can either facilitate or impede
adaptation along the optimal multivariate vector favored by
selection (Barton and Partridge 2000; Barton and Keightley
2002; Agrawal and Stinchcombe 2009). This relationship can
be captured by a G matrix analysis (Kingsolver et al. 2015),
in which factor loadings can reveal both positive correlations
(additive variation: fig. 3A, 3B) and various forms of trade-
offs between traits (specialist-generalist: fig. 3C, 3D; cooler-
warmer: fig. 3E, 3F). Across range-edge sites, A. picea dis-
played opposite loading patterns of baseline CCRT and cold
hardening, consistent with a cooler-warmer trade-off. Nota-
This content downloaded from 128.10
All use subject to University of Chicago Press Term
bly, there was a stronger negative relationship between traits
(fig. 6C) than between hardening capacity and MAT, which
was curvilinear in shape and declined only at the lowest
temperatures (fig. 6B).
Ultimately, the genetic correlation between baseline resis-

tance and the increase in resistance conferred by hardening
should be determined by the extent to which they share com-
mon molecular pathways and physiological modes of action
(Williams et al. 2014; Saltz et al. 2017). Investigations into the
degree of association between thermal resistance and harden-
ing ability more generally have produced inconsistent results.
InDrosophilamelanogaster, artificial selection on baseline cold
resistance had no indirect impact on induction capacity and
yielded mixed results for other thermal performance traits
(Andersen et al. 2015; Gerken et al. 2016). Similarly, quantita-
tive genetic analysis of standing variation in basal and induced
cold resistances revealed aweaklynegative correlation,whereas
quantitative trait locus analysis identified distinct genetic loci
underlying each trait (Gerken et al. 2015). In contrast, an anal-
ysis of natural variation in cold resistance across the clade,
which includes a wider range of environmental temperatures
and multiple evolutionary transitions in thermal niches,
revealed a pervasive negative association between baseline
and inducible mechanisms (Nyamukondiwa et al. 2011).
The solution to this paradox may lie in whether and how

genetic correlations respond to selective regimes at range
margins (Wilson et al. 2006; Lande 2009). As the increasing
strength of selection experienced in poleward populations
depletes independent genetic variance, correlated variance
may remain as the primary means of adaptive response that
forces environmental compromise and trade-offs not evident
in the core of the range (Berger et al. 2013). If so, the complete
loss of cold hardening at the coolest sites may indicate a hard
limit on evolutionary response to selection at the northern
range boundary ofA. picea. Genetic assimilation (Waddington
1953) of the hardening response may be a particularly costly
form of adaptation to low temperatures because the cellular
processes involved in hardening can have negative impacts
on survival, growth, and reproduction, potentially cancelling
the fitness benefits of enhanced cold resistance (Pigliucci 2006;
Basson et al. 2012; Hoffmann et al. 2013; Everman et al. 2018).
Further work investigating within-population genetic architec-
ture of cold resistance traits may help to resolve how ecological
conditions interact with genetic architecture to determine spe-
cies range boundaries.
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Data and Code Availability

Raw data files with metadata and scripts are located on the
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.fas.harvard.edu:8080/exist/apps/datasets/showData.html
?idpHF323).
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