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Abstract: In ordinary gravitational theories, any local bulk operator in an entanglement

wedge is accompanied by a long-range gravitational dressing that extends to the asymptotic

part of the wedge. Islands are the only known examples of entanglement wedges that are

disconnected from the asymptotic region of spacetime. In this paper, we show that the lack of

an asymptotic region in islands creates a potential puzzle that involves the gravitational Gauss

law, independently of whether or not there is a non-gravitational bath. In a theory with long-

range gravity, the energy of an excitation localized to the island can be detected from outside

the island, in contradiction with the principle that operators in an entanglement wedge should

commute with operators from its complement. In several known examples, we show that this

tension is resolved because islands appear in conjunction with a massive graviton. We also

derive some additional consistency conditions that must be obeyed by islands in decoupled

systems. Our arguments suggest that islands might not constitute consistent entanglement

wedges in standard theories of massless gravity where the Gauss law applies.
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1 Introduction

Recent literature [1–6] has presented significant progress in understanding the evaporation of

AdS black holes coupled to an auxiliary non-gravitational bath. In these settings, the fine-

grained entropy of a part of the bath, called the radiation region, can be computed through

an elegant “island rule.” It is further believed that operators that are localized within the

island can be reconstructed from operators in the radiation region in the same sense that, in

standard AdS/CFT, operators from part of a boundary of AdS can be used to reconstruct

operators in the corresponding entanglement wedge. Using these techniques, the entropy of

the radiation region has been found to follow a Page curve.

In spacetime dimensions larger than two, precise computations of the Page curve have

been performed using a doubly-holographic setup where the AdS black hole and non-gravitational

bath are realized through a Karch-Randall brane [7,8] embedded in a higher-dimensional AdS

spacetime [3]. (See [9] for recent related work.) In this setting, it was pointed out in [10]

that the lower-dimensional graviton is always massive.1 This is a manifestation of a more

general phenomenon: when a gravitational theory in AdS is coupled to a non-gravitational

bath, the graviton in AdS picks up a mass. Nevertheless, it is sometimes believed that the

non-gravitational bath and the massive graviton that appear in such models are merely techni-

calities, and that the general lessons regarding islands and the Page curve should be applicable

to other physical systems including realistic black holes in asymptotically flat space [11, 12].

However, in previous work [13], we pointed out that the non-gravitational bath is not

just a spectator but an important participant in the physics. When gravity is dynamical in

1Specifically, there is a tower of gravitational KK modes whose lightest graviton is massive.
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the bath, as it should be in realistic models of black holes, it was found that the fine-grained

entropy of radiation was constant, consistent with the previously obtained results [14] that

the Page curve of radiation is trivial for black holes in asymptotically flat spaces.2

In this paper, we return to the system with a non-gravitational bath and present an

argument that suggests the mass of the graviton plays a significant physical role in allowing

islands to constitute an entanglement wedge.

The crux of our argument is very simple. In ordinary gravitational theories, there are no

local gauge-invariant operators. We note that if one is studying a non-gravitational observable

where gravity would be a small perturbation, it is possible to define approximately local

observables by choosing gauge that would suffice for such a measurement. However, when

studying processes where both gravitational and quantum effects are important, there is no

procedure for defining a local observable, perturbatively or otherwise.

We now restrict our attention to theories with gravity. As we review below, in standard

gravitational theories with massless gravitons, every “localized” operator must be dressed in

some way to the asymptotic boundary. This dressing is sometimes referred to as a gravita-

tional Wilson line, which terminates at the asymptotic boundary. In ordinary examples of

entanglement wedges in AdS/CFT [17], as we review in section 2, the connected components

of the wedge contain a piece of the asymptotic boundary. So one can meaningfully localize

operators from such a wedge by dressing them to this part of the boundary. These operators

commute with operators from the complement of the wedge when the latter are dressed to

the complementary asymptotic region.

However, an island represents a unique type of entanglement wedge that is entirely sur-

rounded by its complement and where the wedge itself does not extend to the asymptotic

boundary. When a region is surrounded by its complement, and it is the complement that

extends to the asymptotic boundary, it was argued in [14, 18] based on a careful analysis

of the gravitational constraints that the state of the region could be completely determined

through observations in its complement. A review of this result, termed the “principle of

holography of information,” can be found in [19]. It is apparent that the picture of islands is

already in tension with this principle. Nevertheless, in this paper, we will not need to invoke

the full power of the principle of holography of information. We will demonstrate that simple

physical principles suffice to generate the following puzzle for islands.

Consider a simple unitary operator that adds a localized excitation to the island. Since

the excitation is confined to the island, which has finite extent, it must have some nonzero

energy by the Heisenberg uncertainty principle. In theories with massless gravitons, the

energy can be measured from the falloff of the asymptotic metric using the Gauss law. This

would imply that any unitary operator that creates an excitation in the island must fail to

commute with the metric in the complement of the island. This is inconsistent with the idea

2Even in the presence of dynamical gravity, the Page curve may be the answer to appropriate non-

gravitational questions [13]. Also see [15,16] and section 4.2 of [14] for a discussion of whether coarse-graining

the entropy of the radiation in the presence of dynamical gravity may lead to a nontrivial Page curve.
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that the algebra of an entanglement wedge should be closed and commute with the algebra

of its complement.

This puzzle becomes even more acute if the island under consideration is described by

operators from a radiation region in a non-gravitational system, the bath, and its comple-

ment is described by operators from the complement of the radiation region. In this setting,

operators that act on the island must commute with operators that act on its complement

since, in the non-gravitational theory, operators in the radiation region and its complement

are spacelike to each other and so commute by microcausality.

In this paper, we argue that one way to address this puzzle is with massive gravity. In

fact, the mass of the graviton appears naturally when gravity in AdS is coupled to an external

bath [20]. The reason is simply that, since the stress-tensor on the boundary of AdS is no

longer conserved, it picks up an anomalous dimension. This corresponds to a nonzero mass

for the graviton in AdS.

This can be studied in the Karch-Randall scenario that is commonly used to study islands

in d > 2 dimensions. Here, as mentioned above, an AdSd brane is embedded in an AdSd+1

black hole spacetime. The radiation region R is just a part of the non-gravitational boundary

of this AdSd+1. The entropy of R can be computed using the standard RT/HRT prescription

[21] and is given by the area of a bulk minimal surface. In some cases, this surface may end

on the brane as shown in Figure 1.

Figure 1: A cartoon of a constant-time slice of a black hole with a brane embedded. R is

the union of regions on two asymptotic boundaries and R is its complementary region. The

horizons in the bulk are marked by H. The separation between horizons is meant to convey

that the Cauchy slice under examination is a late-time slice on which the wormhole is of a

finite length. The dominant RT surface for the region R is shown in purple. The region on

the brane marked I becomes the “island” in the lower-dimensional picture of Figure 2. In this

figure, both the horizontal and the vertical directions are spatial.
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The entanglement wedge of the radiation region R in Figure 1 is a conventional entan-

glement wedge. This entanglement wedge takes on the form of an island if one uses the

dual d-dimensional description to obtain a black hole in AdSd coupled to a non-gravitational

bath as shown in Figure 2. A striking aspect of this d dimensional description with a non-

gravitational bath is that although there is a localized graviton that “locally” generates a

lower-dimensional gravitational theory, this lower-dimensional graviton is massive [7,22]. The

constraints in massive gravity are significantly weaker than in massless gravity and do not

disallow localized excitations, thereby resolving the puzzle presented above.

Figure 2: A spacetime diagram of the same system of branes in a black hole in the d di-

mensional description. The entanglement wedge for the region R is now an “island”. In this

figure, the horizontal direction is spatial and time runs along the vertical direction.

This is why both pictures of Figure 1 and Figure 2 are consistent. There is no puzzle in

Figure 1 because the entanglement wedge extends to the asymptotic region and there is no

“island” in the entanglement wedge, i.e. the entanglement wedge has no connected component

that is separated from the boundary. There is an “island” in Figure 2, but the graviton is

massive.

This discussion suggests that the paradigm of islands is inapplicable to standard theories

of gravity with massless gravitons.

1.1 Definitions and clarifications

In this paper we will use the phrase “island” strictly in accordance with the following defini-

tion.

Definition. An island is an entanglement wedge in the gravitating spacetime that does not

extend to the asymptotic boundary of the gravitating spacetime.
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Accordingly, when “islands” are studied by embedding a brane in a higher-dimensional

theory, we use the term “island” only in the lower dimensional dual description. We do not

use the term “island” to describe the full higher-dimensional entanglement wedge since that

does extend to the boundary of the higher-dimensional spacetime. We urge the reader to

keep this definition in mind for the rest of this paper, particularly since the term “island” is

used more loosely in other parts of the literature.

We also clarify that we use the phrase “entanglement wedge” according to its original

definition [23] so that it is a region of the gravitating spacetime that can be reconstructed

from some part of the non-gravitational spacetime. Some papers in the literature use the

phrase “entanglement wedge” to include a part of the non-gravitational spacetime as well,

but we will not use this convention.

Gauss law. When we refer to the Gauss law in this paper, we are referring to the re-

lationship between the total energy on a Cauchy slice and the integral of an appropriate

component of the asymptotic metric. This relationship follows from the Hamiltonian con-

straint in standard theories of gravity. We emphasize that we will use the Gauss law not just

as a relationship between expectation values but also inside quantum correlation functions.

For clarity, we will always refer to the Hamiltonian constraint as a constraint equation to

distinguish it from the Gauss law, as defined above. Note that even in massive gravity, states

must obey local constraint equations, which we review below. However these constraints do

not lead to a Gauss law.

Bulk reconstruction

In this paper, we adopt the perspective that a consistent entanglement wedge is one where

it is possible to reconstruct approximately local bulk operators that, in the limit `pl → 0,

reduce to standard quantum-field operators. From its beginning [24] the bulk reconstruc-

tion program has sought to reconstruct such operators. So, our perspective aligns with the

standard perspective on subregion duality [25].

We note that unless one can understand local physics in the bulk from the boundary,

it does not make sense to state that a boundary subregion is dual to a bulk subregion.

Moreover, the idea that an entanglement wedge can be demarcated by a precisely defined

quantum extremal surface presupposes that one can localize bulk operators in the wedge to

sub-AdS scales. Finally we note that our perspective is consistent with every known example

of subregion duality that has been studied in the literature.

In appendix A we relax the criterion of strict locality. For the reasons outlined above, we

do not consider proposals where the only operators that can be reconstructed in the island

are infinitely delocalized or spread out over a parametrically large spacetime region. We do

however examine (subject to the above restriction) the reconstruction of multi-local operators

in the island and show that the proposals suggested so far are also subject to our puzzle.

Localization of quantum information in quantum gravity

The arguments in this paper do not contradict the idea that quantum information is local-
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ized very differently in theories of gravity than it is in quantum field theories. The conclusion

of [14], which is consistent with the results of this paper, can be interpreted as the claim that

information about a black hole microstate is always available outside for sufficiently detailed

measurements in a standard theory of long-range gravity. This could not possibly be true in

a local quantum field theory, where spacelike-separated operators commute.

However, islands that lead to a Page curve involve a “halfway” description. The island

picture suggests that while operators in what is called the “radiation region” can be used

to reconstruct the island, they cannot be used to reconstruct the complement of the island

which is described by a commuting set of operators. In this halfway description, the unusual

localization of information in gravity is important because the radiation region describes

degrees of freedom that are in a region that is spacelike separated from it. Nevertheless,

the Hilbert space still effectively factorizes as in a local quantum field theory. The puzzles

that we present below suggest that this halfway description can be valid only under certain

conditions.

Our focus in this paper is on higher-dimensional theories of gravity in which the notion of

a “graviton” makes sense. We briefly comment on two-dimensional models in section 6. We

caution the reader that additional subtleties might arise in two-dimensional theories, and the

analysis of section 3 and 4 is not directly applicable to models of islands in two dimensions.

This paper is organized as follows. In section 2, we review conventional entanglement

wedges in AdS/CFT and emphasize the importance of the asymptotic region. In section

3, we explore the puzzle sketched above, which involves the tension between the Gauss law

and the appearance of entanglement wedges that are disconnected from the boundary of the

gravitating space time. In section 4, we examine the form of the constraints in massive gravity

and show how the puzzle is avoided in this setting. We also study islands in doubly holographic

settings and show how a dimensional reduction of the higher-dimensional constraints leads to

the constraints of a lower-dimensional massive theory. In section 5, we discuss some additional

constraints that are important when islands emerge in decoupled pairs of systems.

2 Asymptotic regions in entanglement wedges

In this section, we recount some simple properties of entanglement wedges and the algebra

of operators associated with them. Here, we focus on conventional entanglement wedges

in AdS/CFT; we will turn to islands in later sections. Our objective is to emphasize the

significance of the fact that conventional entanglement wedges always have an asymptotic

region.

In a holographic theory, the entropy of a boundary region R (see, for instance, Figure 3)

is given by [21, 26],

S(R) = min

[
ext

(
A(X)

4G
+ Sbulk(E)

)]
. (2.1)

Here X is a surface that is homologous to R, E is the region bounded by X and R

and Sbulk(E) is the bulk entropy of the region E computed while ignoring gravitational
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interactions. The homology constraint [23, 27] on X states that E should have no other

boundaries except for X and R. The bulk causal diamond constructed on the region E

is called the entanglement wedge of R. Since we will be interested in bulk and boundary

regions on a single Cauchy slice, we simply refer to E as the entanglement wedge and to its

complement by E.

The “subregion duality” proposal [28] states that boundary operators in R are dual to

bulk operators in E. This can be made precise as follows. The boundary theory is non-

gravitational and so one can associate an algebra of operators A(R) with the region R. This

algebra comprises all boundary operators that are localized within R and so, by construction,

it is closed under products, linear combinations, and Hermitian conjugation [29]. One can

similarly associate an algebra with the complementary region, R, and we denote this algebra

by A(R).3 Operators in A(R) and A(R) commute,

[A1, A2] = 0, ∀A1 ∈ A(R), A2 ∈ A(R), (2.2)

since every point in R is separated by a spacelike interval from every point in R. So equation

(2.2) follows from microcausality in the boundary theory. The subregion duality proposal is

then that it is possible to find a representation of bulk operators associated with E within

A(R) and a representation of bulk operators associated with E within A(R).

The subregion duality proposal involves a subtle point that is sometimes glossed over.

This aspect of the proposal can be illustrated by considering the case where the bulk theory

has a gauge symmetry and charged matter. We caution the reader in advance that there

are also important differences between gauge theories and gravitational theories that we will

mention below, and so the gauge-theory discussion is provided only as a simplified warm-up.

When there is a gauge symmetry in the bulk, we expect to have a corresponding global

symmetry in the boundary theory. We denote the generator of this global symmetry by Q

and we expect that it is given by the integral of a local boundary current J .

Q =

∫
R
J +

∫
R
J. (2.3)

Consider a point in the entanglement wedge which we denote by P , and consider the

operator that probes the charged matter field at the point P which we denote by φ(P ). By

itself, φ(P ) is clearly not gauge-invariant. One way to make it gauge-invariant is to attach

a Wilson line W (P, PB) to this operator that extends from P in the bulk to another point

PB on the asymptotic boundary. We now have a gauge-invariant operator that, nevertheless,

transforms nontrivially under the global charge.

[Q,W (P, PB)φ(P )] = W (P, PB)φ(P ), (2.4)

where we have normalized the charge to unity for simplicity. Note that although the operator

transforms under the global charge, it is an allowed operator in the theory because it is

invariant under “small” gauge transformations that die off at the asymptotic boundary.

3When the boundary theory is a gauge theory, these algebras have a center [30]. However, this issue will

be unimportant for the discussion in this paper.
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There is no unique choice of the path P to PB and not even of the boundary point PB
itself. But if we want to represent the operator W (P, PB)φ(P ) as an element of A(R), then

the subregion duality proposal (2.2) implies that it is necessary to choose PB ∈ R and also

ensure that the path between P to PB lies entirely within E. With this choice we have,[∫
R
J, W (P, PB)φ(P )

]
= W (P, PB)φ(P );

[∫
R
J, W (P, PB)φ(P )

]
= 0, (2.5)

in accordance with (2.2).

There are other options for making the operator φ(P ) gauge-invariant. For example, one

can simply fix the gauge. But the gauge-fixed operator must still obey (2.5) for it to be an

element of A(R). This leads to the following simple but robust conclusion.

Observation. A charged operator in an entanglement wedge can be represented as an operator

in the dual boundary region only when it is dressed to that boundary region.

We now turn to the analogous phenomenon in gravity. The difference between gauge

theories and gravity is as follows. Gauge theories contain both positive and negative charges.

Consequently, gauge theories contain an infinite number of exactly local gauge-invariant op-

erators. An example of such an operator is a small Wilson loop that is entirely localized

within a region. Similarly, in the example above, it is possible to construct a gauge-invariant

localized operator entirely within an entanglement wedge by considering another operator of

the opposite charge φ∗(P̃ ) and connecting the two with a Wilson line: φ(P )W (P, P̃ )φ∗(P̃ ).

But in gravity, there are no “negative charges,” so the gravitational dressing must extend to

infinity and cannot terminate in the bulk.

A second way to understand the same physical fact is as follows. If an operator could be

localized to a finite region, it would have nonzero energy just by the Heisenberg uncertainty

principle. But since the energy can be measured near infinity in ordinary theories of gravity

by the Gauss law, this operator cannot commute with the metric near infinity. This is a

sign of the fact that even what may appear to be a “local operator” in gravity is secretly

delocalized and must extend to the asymptotic boundary [31–33].

In the context of subregion duality, if we want bulk operators in E to be dual to operators

in R then they must be dressed to R. At leading order, this dressing can be described as

follows. To make the operator φ(P ) invariant under the gauge transformations of the theory,

which comprise small diffeomorphisms—those that vanish near the asymptotic boundary—

the position of the point P is specified by relating it to a part of the asymptotic boundary.

In the semiclassical approximation this can be done by specifying the point P to be the

endpoint of a geodesic that starts at some point in the region R and has a certain renormalized

proper length. This picture is not very precise when fluctuations of the metric are themselves

important. But, at an intuitive level, this relational prescription can be thought of as the

analogue of a Wilson line that must be attached to charged local operators in gauge theories.

Say that the operator φ(P ) has been specified in a diffeomorphism-invariant manner

as described above. Then the analogue of (2.4) in gravity is that this operator transforms
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nontrivially under the boundary Hamiltonian.

[H,φ(P )] = −i∂φ(P )

∂t
. (2.6)

In this equation, the coordinate t involves an extension of the boundary time coordinate

into the bulk. By dressing the operator φ(P ) in different ways, it is possible to choose different

t coordinates in the bulk and so the commutator of the boundary Hamiltonian with the bulk

operator depends on the dressing. Note that the reason this is analogous to (2.4) is that if

we Fourier transform,

φ(P ) =

∫ ∞
−∞

φωe
iωtdω, (2.7)

then (2.6) tells us that the boundary Hamiltonian measures the energy of the Fourier com-

ponents of φ(P ),

[H,φω] = ωφω. (2.8)

The boundary Hamiltonian can also be written as the integral of a local current density

that is the sum of a term in R and another in R.

H =

∫
R
T00 +

∫
R
T00. (2.9)

Thus if we want the operator in the entanglement wedge E to have a representation in the

boundary region R, then the gravitational dressing must be chosen so that,[∫
R
T00, φ(P )

]
= −i∂φ(P )

∂t
;

[∫
R
T00, φ(P )

]
= 0. (2.10)

The extrapolate dictionary [34] tells us that the boundary Hamiltonian is itself obtained

as the limit of the bulk metric fluctuation in a certain gauge. Let gAdS
µν denote the background

AdS metric with radial coordinate r. If the bulk metric is expanded as gAdS
µν +hµν , where hµν

is the deviation from AdS, then upon choosing Fefferman-Graham gauge near the boundary

r →∞, i.e. hrµ = 0, the extrapolate dictionary reads [35],

T00 =
d

16πG
lim
r→∞

rd−2h00. (2.11)

We will provide a covariant version of this formula below. For now, we just note that

the integral of equation (2.11) on the boundary of AdS provides the definition of the energy

of the bulk state in a theory of gravity. Therefore (2.11) is just a manifestation of the Gauss

law in the bulk since it tells us that the integral of the boundary metric fluctuation measures

the energy of the state in the bulk.

The choice of dressing that ensures that equation (2.10) holds also ensures that the

operator φ(P ) commutes with the metric fluctuation near the boundary in the region E.

This is consistent with the idea that operators in an entanglement wedge should commute

with operators in its complement.

We can summarize this discussion in terms of the following observation.
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Observation. Any bulk operator in an ordinary gravitational theory must be dressed to

asymptotic infinity to make it invariant under small diffeomorphisms. The asymptotic part

of an entanglement wedge provides a base that can be used to define relational observables in

the bulk of the wedge.

We should clarify that, for the purpose of this discussion, we need only the relationship

(2.11) and the commutator (2.6) to hold within low-point correlators, or the “code subspace”

[36]. The gravitational dressing is unimportant if we consider the limit where G→ 0, but it

is already significant at leading nontrivial order in the gravitational constant. In fact, this

nonzero commutator of bulk operators with the boundary Hamiltonian was emphasized when

the concept of a code subspace was first introduced in the literature by considering small

fluctuations about black hole microstates and termed the “little Hilbert space” in [37]. In

particular, even if (2.11) and (2.6) receive corrections at higher orders in the gravitational

constant or nonperturbative corrections, such corrections are not relevant for the discussion

in this paper.

Second, this discussion has interesting consequences when we consider points that belong

to two different entanglement wedges. In Figure 3 we show a point P that belongs to the

entanglement wedge of the region R1 and also to the entanglement wedge of the region R2.

When one implements the subregion duality proposal for region R1, one picks an operator

φ1(P ) that satisfies,[∫
R1

T00, φ1(P )

]
= −i∂φ1(P )

∂t
;

[∫
R1

T00, φ1(P )

]
= 0. (2.12)

When one implements the subregion duality proposal for region R2 one must pick an

operator, φ2(P ), that satisfies[∫
R2

T00, φ2(P )

]
= −i∂φ2(P )

∂t
;

[∫
R2

T00, φ2(P )

]
= 0. (2.13)

Note that some operators may satisfy both equations (2.12) and (2.13) but the point P

belongs to an infinite number of entanglement wedges and it is not possible to find a single

operator that can serve as the bulk dual in all entanglement wedges. So it is important that

one has some freedom in how to dress the bulk operator, and this freedom can be used to “move

around” the commutator of the bulk operator with the asymptotic metric and the boundary

stress tensor in order to ensure consistency with the subregion duality proposal. Nevertheless,

whatever choice one makes for the dressing, there is always a nonzero commutator with the

boundary Hamiltonian that is the integral of a component of the asymptotic metric on the

entire boundary. In the example above this can be seen from the fact that both equations

(2.12) and (2.13) lead to equation (2.6).

3 A puzzle with islands

We now turn to islands and describe our puzzle. Islands can be understood as follows. We

consider a CFTd̃+1 propagating in a gravitating AdSd̃+1 geometry. We couple this gravi-
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(a) (b)

Figure 3: A point P that is part of multiple entanglement wedges. The quasilocal bulk

operator must be dressed to R1 on the left and to R2 on the right. The figure shows a time

slice of global AdS.

tational system to another system where the CFTd̃+1 is supported in a non-gravitational

spacetime. The coupling is designed to lead to “transparent boundary conditions” so that

excitations in the CFT can propagate freely from the gravitating to the non-gravitational

system.4 The island rule [1,38] then provides a method of deriving the entanglement entropy

of a region, R, in the non-gravitational system. The island rule is that this entropy is obtained

by extremizing,

S(R) = min

[
ext

(
A(∂I)

4G
+ Sbulk(I ∪R)

)]
, (3.1)

where I is a part of the gravitating system. The natural extension of the subregion duality

proposal suggests that operators in R can describe the physics of I.

The formula (3.1) has been carefully derived in JT gravity using a replica trick [4]. In

other settings, the formula has been justified but again when R is in the non-gravitational

region [39]. In some parts of the literature (3.1) is directly applied even when R is in a region

with dynamical gravity. It has already been pointed out in [13,14] that since the entanglement

entropy is a fine-grained quantity, even the presence of weak gravity can alter its magnitude.

Therefore (3.1) is not directly applicable to settings where gravity is dynamical everywhere.

The puzzle that we describe below adds additional evidence for this claim.

The puzzle arises from the following simple observation.

Observation. Islands are the only known example of entanglement wedges that do not extend

to the asymptotic boundary of the gravitating spacetime. They are disconnected from the region

4We use d̃ in this section since in section 4 we will study islands that are realized on an AdSd brane

embedded in AdSd+1, in which case d̃ = d− 1.
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R in the sense that not even a spatial geodesic from I can reach R without passing through

the complement I of the island.

Here we are using I to denote the complement of the island in the gravitating system to

be consistent with the notation used above.

In light of the discussion of section 2, this leads to a puzzle because in an ordinary theory

of gravity, there is no way to dress operators in I without making reference to operators in

I. This is an obstacle to making operators in I invariant under diffeomorphisms. This puzzle

can be made sharp as follows.

Let φ(P ) be a Hermitian scalar field operator that probes physics at a point P ∈ I.

Consider the unitary operator U = eiλφ(P ) where λ is a small parameter introduced for

convenience below. Then since φ(P ) is described by an operator in R, the unitary operator

U should leave the expectation value of all operators in the algebra A(R) unchanged. This

can be seen as follows. Let |Ψ〉 denote the state of the entire system, including the bath. Let

AR̄ ∈ A(R). We then expect to have,

〈Ψ|U †AR̄U |Ψ〉 = 〈Ψ|AR̄U †U |Ψ〉 = 〈Ψ|AR̄|Ψ〉, (3.2)

where we have used the commutator (2.2) and the unitarity of U . Since operators in I are

dual to operators in R, this means that the action of U should also leave the expectation

value of all operators in I unchanged.

But, in an ordinary theory of gravity, the Gauss law tells us that the asymptotic metric

near the boundary of AdS (which is in I) measures the energy of the bulk, which includes I.

Let AĪ be another simple operator that acts on the complement of the island. Then, using

equation (2.11) and the Gauss law we find that,

lim
r→∞

rd̃−2

∫
(∂AdS)

∂

∂λ
〈Ψ|UAĪh00U

†|Ψ〉
∣∣∣
λ=0

= lim
r→∞

rd̃−2

∫
∂(AdS)

∂

∂λ
〈Ψ|AĪUh00U

†|Ψ〉
∣∣∣
λ=0

= lim
r→∞

rd̃−2i

∫
∂(AdS)

〈Ψ|AĪ [φ(P ), h00]|Ψ〉

=
−16πG

d̃
〈Ψ|AĪ

∂φ(P )

∂t
|Ψ〉,

(3.3)

which is different from (3.2).

Physically, equation (3.3) has a simple interpretation. The unitary U inserts a small

excitation in the region I. The metric at infinity should be able to measure the energy of

this excitation. Note that (3.3) involves an insertion of the gravitational constant and so this

commutator appears at leading nontrivial order in perturbation theory.

Observe that if one takes the nongravitational limit, the right hand side of (3.3) vanishes.

This is why it is possible to discuss local measurements when gravity can be neglected.
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Figure 4: An excitation at the point P inside the island (pink shaded disk) can be detected

using a two-point correlator outside the island. The two-point correlator involves an integral of

the asymptotic metric (indicated by the dashed line) and another operator obtained by taking

the limit of point P ′ to PB on the boundary of the gravitational region. The bath is not shown

in this figure, which shows a time slice of AdS.

Black holes. We would like to make a few important comments about islands in the pres-

ence of black holes. First note that (3.3) is not just about the expectation value of the energy.

When there is a black hole in the bulk, one might attempt to consider operators that somehow

“extract” energy from inside the black hole and “insert” it in some part of the island that is

outside the black hole. However, even such an operator would have to change the distribution

of energy in the island, so it would not commute with the metric near infinity. This nonzero

commutator can be detected by the insertion of an appropriate operator AĪ in the correlator

(3.3).

Let us consider a more explicit example. Let the state |Ψ〉 correspond to a black hole

that has equilibriated with a bath at the same temperature. Assume that the field φ describes

a scalar excitation of mass µ and let ∆ = d̃
2 +

√
µ2 + d̃2

4 . Then an explicit choice of AĪ that

leads to a nonzero value for the correlator in equation (3.3) is simply,

AĪ = lim
P ′→PB

r∆∂φ(P ′)

∂t
, (3.4)

where P ′ is a point in I with radial coordinate r that is taken to a point on the boundary of

the gravitational region PB and scaled up to yield a finite operator. (See Figure 4.) In the

absence of the unitary operator in equation (3.3) we find that,

lim
r→∞

rd̃−2

∫
∂AdS
〈Ψ|AĪh00|Ψ〉 = 0. (3.5)
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This equation follows because in an equilibrium state, there is no preferred direction of

time and so correlators of the Hamiltonian and a time-derivative of a bulk scalar field vanish;

even the fluctuations of such a correlator are exponentially small. On the other hand, in

the presence of the unitary operator we see that the final result in equation (3.3) becomes

a two-point Wightman function of the time-derivative of the field—with one insertion inside

the island and another insertion near the boundary. This Wightman function does not vanish

even when one point is inside the horizon and the other is outside the horizon.

We emphasize that our objective here is not to completely reconstruct the state |Ψ〉,
which would require exponential precision. It is only to show that some simple excitations,

including those produced by unitary operators involving bulk fields, can be detected from

outside the island. These simple excitations should be in the “little Hilbert space” or “code

subspace” built about the state |Ψ〉.
Moreover, since we are considering only simple excitations it is safe to evaluate the cor-

relator in (3.3) in the black-hole background. The simple correlators that appear in (3.3)

do not receive significant contributions from nonperturbatively suppressed branches of the

wavefunction, which might be important for the computation of very high-point correlators.

In particular, the perturbative calculation leading to (3.3) cannot be invalidated by consid-

ering exotic configurations where φ(P ) can be dressed to the non-gravitational bath using

wormholes that bypass the complement of the island.5

All of the comments above hold if |Ψ〉 corresponds to a state of an eternal black hole

coupled to a bath at the same temperature. The only subtlety is that since the gravitational

part of the geometry has two asymptotic regions the boundary of AdS in (3.3) should be

interpreted as the union of the two asymptotic boundaries.

One might wonder if the integrated asymptotic metric is the only operator that causes a

problem in interpreting the island as an entanglement wedge. This is not the case. Even if

one attempts to “discard” the asymptotic metric from the algebra of operators in I at leading

order, it will reappear in the algebra at subleading order [40]. This is simply due to the fact

that the OPE of boundary operators produces the boundary stress tensor. In the bulk, this

means that the algebra of other asymptotic operators produces the asymptotic metric. So,

for consistency with (3.3), the operator U must fail to commute with other operators in I

although such commutators may appear only at subleading orders in perturbation theory.

For the reader who would like additional details, we note that the detection of simple

excitations about black holes has been studied previously in the literature. In [37] (see section

5) a class of excitations of black holes leading to “near-equilibrium” states was studied and

it was shown how they could be detected. Excitations of the island in the region outside the

black hole horizon correspond to the “near-equilibrium” states of [37]. In [41] (see section

8.1) and also [42], a more general class of excitations of the black-hole interior was studied

5In the next section, we will see that when the island and the bath are realized in a higher-dimensional

doubly-holographic setting, φ(P ) can be dressed to the non-gravitational bath through the higher dimension.

But, in this setting, the AdSd̃+1 theory of gravity is massive.
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and it was shown how correlators of the Hamiltonian and other operators could be used to

detect them as well.

We have therefore arrived at the following puzzle.

Puzzle. The Gauss law suggests that the action of any operator in the island must be ac-

companied by a disturbance in the metric outside the island. This is in contradiction with the

idea that operators in the island are described by operators in R and commute with operators

in the complement of the island that are described by operators in R.

We remind the reader that we use the phrases “island” and “Gauss law” in the precise

sense described in section 1.1.

Note that our puzzle pertains to whether the islands can constitute consistent entangle-

ment wedges. If the island rule (3.1) is used merely as a trick to compute the entropy without

a concomitant claim that the island is the entanglement wedge of the radiation region, then

our puzzle would not apply. However, we do not consider this possibility further since the

proof of subregion duality follows directly from the entropy formula [28], and so the compu-

tation of the entropy and the determination of the entanglement wedge cannot usually be

separated.

We also note that the mere existence of solutions to (3.1) in standard theories of long-

range gravity [11, 15, 43] cannot be used to conclude that such theories must exhibit a Page

curve or have islands as entanglement wedges. The physical interpretation of such solutions

is unclear since the island rule has not been justified in standard theories of gravity. In

particular, the Gauss-law puzzle above implies that even if an island is obtained as a geometric

solution to a minimization problem in a theory of long-range gravity, it does not constitute a

consistent entanglement wedge.

We have formulated a puzzle above using the gravitational Gauss law. A similar puzzle

can be formulated using the Gauss law in gauge theories. The action of a charged operator in

the island must be accompanied by a change in the gauge field outside the island. The puzzle

is gauge theories is less acute than it is in gravity since gauge theories contain local gauge-

invariant operators and there is no obstacle to localizing such operators in the island. In

standard theories of gravity, as we have already explained, there are no local gauge-invariant

operators.

4 A resolution using massive gravity

In this section we describe how the puzzle of section 3 can be resolved in the setting of massive

gravity. We will argue that the puzzle of section 3 does not appear in this scenario.

Because there are few well-understood examples of massive gravity and because it has

naturally occurred in the context of entropy calculations in higher dimensions, our starting

point is the Karch-Randall setup that has been used to study islands in higher dimensions that

we reviewed earlier. Here one embeds a d-dimensional AdS brane in a (d+1)-dimensional AdS

bulk. The boundary dual to this geometry is believed to be a BCFTd, a CFTd on a space with
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a boundary and with conformal boundary conditions for CFT fields as one approaches this

boundary [44]. In addition, the boundary of this half-space can support additional degrees of

freedom and is sometimes referred to as a “defect” [45]. One can consider a thermofield double

state of two such BCFTs which is then dual to an eternal black hole with two asymptotic

boundaries and a brane that runs from one boundary to the other. (See Figure 5.)

It is believed that the correct bulk generalization [38] of the holographic entanglement

entropy prescription is obtained through the following generalization of the homology con-

straint: the entropy of a region R on the boundary is given by formula (2.1), where one is

allowed to consider all those surfaces X so that E has no boundaries except for R, X, and

a possible portion of the brane. In particular, if one takes R to be the union of a region on

one asymptotic boundary with a similar region on the other asymptotic boundary, then at

late enough times, one finds a phase transition for the surface X between what is called a

Hartman-Maldacena surface [46], which runs from ∂R on one boundary to ∂R on the other

boundary, and a second surface that runs from ∂R to the brane as shown in Figure 5.6

For this entanglement wedge, it is clear that the puzzle of section 3 does not arise. If we

consider an operator that acts near the brane as shown in Figure 5, then this operator can be

dressed to the asymptotic boundary in region R entirely within the entanglement wedge E(R)

without ever entering its complement. We can ensure that the operator commutes with all

operators on R but not that it commutes with operators in R. On the other hand, as Figure 5

shows, the entanglement wedge does not contain an “island” (in the sense of subsection 1.1).

This entanglement wedge is just a conventional entanglement wedge of the kind described in

section 2 comprising only regions that extend to the asymptotic boundary. So there is no

puzzle involving the Gauss law, just as there is no puzzle with conventional entanglement

wedges in AdS/CFT.

An apparent puzzle appears because the configuration under discussion admits yet an-

other description, obtained by dualizing the gravitational theory on AdSd+1 to a gravitational

theory in AdSd coupled to a non-gravitational bath with transparent boundary conditions.

In this description, the entanglement wedge that we have discussed above is shown in Figure

6. The origin of the term “island” is now clear since the part of the entanglement wedge

that terminated on the brane in the higher-dimensional description of Figure 5 now appears

be disconnected from the asymptotic region in this lower-dimensional picture. But if one

considers the action of a unitary operator at the point P in the lower-dimensional picture,

one might wonder how this avoids the puzzle of section 3.

Since the higher-dimensional picture does not involve any violation of the Gauss law, the

lower-dimensional picture must also be consistent. A resolution to the apparent Gauss-law

puzzle must therefore lie in the details of the dimensional reduction.

A notable aspect of the dimensionally-reduced picture is that the lower-dimensional the-

ory of gravity is always massive. This can be understood from the perspective of the gravi-

6There are technically two copies of this second surface, with each residing in a respective exterior patch

of the black hole.
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Figure 5: In the higher-dimensional setup, an operator at point P can be dressed to the

boundary through the higher-dimension. The setup is the same as that of Figure 1 and this

Figure illustrates how an operator at P can be dressed to the boundary while bypassing the

entanglement wedge of R. In this figure both the horizontal and vertical directions are spatial.

tational theory on the brane [22].

But another simple way to understand the origin of the mass is from the boundary. In

the absence of the bath, the theory of gravity on the AdS brane is dual to a conformal field

theory with a conserved stress tensor. The coupling to the bath leads to the nonconservation

of the stress tensor on the boundary. This allows the stress tensor to pick up an anomalous

dimension [47] which, in the bulk, corresponds to a massive graviton. This interpretation

is important because it would generalize to any such theory coupled to a bath such as the

one analyzed in [1]. The coupling should always generate a mass for a propagating graviton.

We will show that this mass will always be present in consistent scenarios that include an

island. Note that even if, as is sometimes suggested, the coupling to the bath is turned off

after evaporation, islands always appear concomitantly with a mass for the graviton.

As we further elaborate below, the mass of the graviton resolves the apparent Gauss-law

puzzle for the simple reason that the constraints of massive gravity cannot be integrated to

obtain a Gauss law of the form that exists in the massless theory. Consequently, in a theory of

massive gravity, even when a region is surrounded by its complement, it is possible to modify

the state of the region without modifying the state of its complement. This is an example of

how massive gravity can have qualitatively different properties from massless gravity.

In flat space, the gravitational force law changes discontinuously as the mass of the

graviton goes to zero, and this is known as the vDVZ discontinuity [48]. In AdS, there is

no such discontinuity in the gravitational force law. However, there is still a qualitative
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Figure 6: A lower-dimensional picture of the setup of Figure 5. This is a spacetime diagram

like Figure 2. In the lower-dimensional description, an operator at point P in the island

cannot be dressed to the boundary without affecting the region outside the island. So the

island cannot constitute a consistent entanglement wedge in a theory where the Gauss law

applies. The lower-dimensional description of Figure 5 involves massive gravity where the

Gauss law does not hold. In this figure, the horizontal direction is spatial and time runs along

the vertical direction.

difference in the way massless and massive theories of gravity store quantum information. It

is this difference that allows islands to exist in theories of massive gravity but not in theories

of massless gravity where the Gauss law applies.

The rest of this section is divided into two parts. First, we provide a simple explanation of

our main idea in subsection 4.1, which illustrates the difference between massive and massless

gravity in flat space. This discussion avoids technical details but is sufficient to understand

the point which we wish to emphasize.

Then, in subsection 4.2, we explore the form of the gravitational constraints in the higher-

dimensional AdSd+1 theory, focusing on the so-called Hamiltonian constraint. We linearize

the Hamiltonian constraint and perform a Kaluza-Klein reduction of the constraint in a

braneworld geometry. We show that these constraints of the (d+ 1)-dimensional bulk theory

go over to the constraints of d-dimensional massive gravity in subsection 4.3. We show in

subsection 4.3 that the mass spectrum obtained in this manner is precisely the known mass

spectrum of Karch-Randall braneworlds.

4.1 Massless vs. massive constraints in flat-space linearized gravity

In this section, we illustrate the difference between massless and massive gravity in a simple

setting: linearized gravity in flat space.
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Consider a theory of gravity coupled to matter in flat space. We are interested in a

state that is close to the vacuum with some matter energy density ρ. Since we would like

to examine the constraints of the theory, we focus on a spatial slice at a specific instant of

time. We take the spatial components of the metric on this slice to be δij + hij . Note that

i, j do not run over the time coordinate. Then this metric fluctuation and the energy density

are not entirely uncorrelated. In standard massless gravity, at the linearized level, they must

obey the constraint,

− ∂j∂jhii + ∂j∂ihij = 16πGρ, (4.1)

This constraint follows from the linearized TT component of the Einstein equation, but

it can also be derived from a standard canonical analysis in the Hamiltonian formalism.

Integrating this constraint over a volume V leads to,

1

16πG

∫
B
dd−1x nj(∂ihij − ∂jhii) =

∫
V
ddx ρ. (4.2)

Here the left integral is performed over the boundary B of the region V , and nj is the

unit normal vector of the boundary. On the right hand side, we have a bulk integral over the

entire region V . This is just the standard Gauss law, used in the sense of section 1.1, which

relates the total energy to the asymptotic metric.

We note an aspect of equation (4.1) that will be relevant below. It is convenient to decom-

pose the metric perturbation, following ADM [49, 50], into a “longitudinal” (L) component,

a “transverse traceless” (TT) component and what we call a “T” component,

hij = hL
ij + hTT

ij + hT
ij , (4.3)

where,

hL
ij = ∂(iεj), (4.4)

for some vector field εj and,

∂ih
T
ij = ∂ih

TT
ij = 0; hTT

ii = 0. (4.5)

For an explicit decomposition of any metric perturbation into (4.3) see the nice discussion

in [32].

Both hL
ij—which corresponds to spatial diffeomorphisms of the slice—and hTT

ij —which

parameterizes the dynamical graviton—drop out of equation (4.1). Thus, equation (4.1)

constrains only the T component of the metric perturbation. We will return to the relevance

of this observation when we study the constraints in massive gravity.

We would like to make a few comments.

1. The equation above was derived in the linearized approximation. However, when V is

taken to be an entire Cauchy slice, the term on the left hand side of equation (4.2) turns

into the famous ADM Hamiltonian [49]. So when B is the large-r region of the Cauchy

slice, the left hand side of equation (4.2) is the definition of the energy, even in the full

theory of general relativity.
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2. Upon the insertion of an excitation in the bulk, which changes the integral of ρ, the

constraint forces a concomitant change in the metric at infinity. So even if the excitation

appears to insert energy only in a bounded region, the metric around that region all

the way up to infinity must be changed.

3. In the classical theory, it is possible to “move” energy from one spot to another in

the bulk while keeping the metric unchanged outside a large ball. This is guaranteed

in the classical theory by the Birkhoff theorem and its generalization by Corvino and

Schoen [51]. Such a possibility does not exist in the quantum theory. In the quantum

theory, the boundary Hamiltonian not only knows about the expectation value of the

energy but also about moments of the energy and of correlators of the energy with

other observables. This information is enough to ensure that it is impossible to change

even the distribution of the energy in the bulk region without affecting at least some

correlator of the boundary metric with other boundary degrees of freedom. This was

termed the principle of “holography of information” in [19].

4. The constraints of the theory hold on a single Cauchy slice, and so they hold even if the

spacetime has a horizon, since the horizon arises from the global causal properties of

the spacetime. In particular, the constraints are important even in the presence of black

holes. The insertion of an excitation in the interior of the black hole still changes the

asymptotic Hamiltonian. As mentioned above, it can be shown that simple excitations

in the interior can be detected by correlators of the asymptotic Hamiltonian and other

operators as described in [42]. (See also section 8 of [41].)

We now turn to massive gravity. Even in massive gravity, we find that if one studies a state

close to the Minkowski vacuum then the matter energy-density and the metric perturbation

are related by the following constraint [52]:

− ∂j∂jhii + ∂j∂ihij +m2hii = 16πGρ. (4.6)

We note an important difference between equation (4.6) and (4.1). The left hand side of

(4.6) is not a gradient. Consequently the integral of the energy-density over a volume cannot

be expressed in terms of the integral of the boundary metric and its derivatives. This is why

the energy of the state is not just given by a boundary term and there is no analogue of the

Gauss law (as defined in subsection 1.1) in theories of massive gravity.

We emphasize that equation (4.6) should not be thought of simply as a “screened” version

of equation (4.1). This is because equation (4.6) now involves hL
ij from the decomposition

(4.3) and is not just a constraint on hT
ij . The constraint relates the longitudinal mode, which

is now an additional degree of freedom, to the other modes of the graviton.

Therefore, at least at this linearized level and when the graviton has a mass, it is possible

to insert energy at a location while keeping the metric far away unchanged. We simply use

the m2hii term to compensate for the change in ρ. So, it is possible for energy to “appear”

in the middle of a bounded region, i.e. for ρ to change, without an alteration of the metric
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at the boundary of that region. Some more discussion of this effect from a phenomenological

perspective can be found in [53].

We are not aware of any detailed analysis of quantum wavefunctionals that satisfy the

constraint (4.6) or any analysis that carefully accounts for the effects of possible nonlinearities.

However, since the Hamiltonian is not a boundary term in massive gravity we do not see any

a priori obstruction to preparing “split states” in massive gravity: states that differ within a

bounded region but are identical outside that region.

This suggests that the puzzle of section 3 is removed when the bulk graviton has a mass.

The island is surrounded by its complement. But if the bulk theory of gravity is massive,

it is possible for degrees of freedom in the island to correspond to degrees of freedom in a

disconnected “radiation” region. An insertion of energy, performed via the action of a unitary

operator in the radiation region, does not need to modify the metric in the complement of

the island.

We now turn to a more detailed investigation of the constraints when the massive graviton

is realized through dimensional reduction of a higher-dimensional gravitational theory.

4.2 Gravitational constraints for AdS spacetimes with branes

The diffeomorphism-invariance of gravity leads to a set of constraints that must be obeyed

by valid wavefunctionals even when we go beyond the linearized approximation. These con-

straints are commonly divided into what are called the “momentum constraints” and the

“Hamiltonian constraint” [54]. We review these constraints below in the context of asymptot-

ically AdS spacetimes that support a brane, and we explain how they directly lead to a Gauss

law in the higher-dimensional spacetime. We then dimensionally reduce these constraints

on the brane and show how the mass of the graviton appears in the dimensionally-reduced

constraint. This supports the idea introduced above that the mass is key to the consistency

of islands on the brane. The analysis in this section has some overlap with the analysis of [55]

where the reader will find further details.

The analysis of gravitational constraints is commonly performed after a d+ 1 split of the

metric, so that the line element takes the form,

ds2 = −N2dt2 + γij(dx
i +N idt)(dxj +N jdt). (4.7)

Here, N is called the “lapse function,” N i is called the “shift vector,” and γij is the metric

on spatial d-dimensional slices. In addition, the theory might contain matter fields that we

simply denote by φmatter since they will play a limited role in the analysis.

The nontrivial constraint equation in gravity is the so-called Hamiltonian constraint which

tells us that any valid state of the theory must satisfy

H =
1

2
√
γ

(
γikγjl + γilγjk −

2

d− 1
γijγkl

)
ΠijΠkl − √γR+ 2

√
γΛ + 16πGHmatter = 0. (4.8)

Here Hmatter is the Hamiltonian density of the matter sector. R is the d-dimensional Ricci

scalar and we have included a possible cosmological constant Λ. Πij is the momentum conju-

gate to the metric. In the quantum theory, Πij is represented as −i ∂
∂γij

, but in the classical
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limit the conjugate momentum is related to the extrinsic curvature of the spatial d-dimensional

slices Kij via,

Πij = −√γ
(
Kij − γijγklKkl

)
. (4.9)

The constraint (4.8) must be obeyed by any valid state and in a standard theory of long-

range gravity it implies a Gauss law. To illustrate the physics, we show how this Gauss law

emerges when the constraint is linearized for a family of simple states. We assume that we

are considering a vacuum background solution to (4.8) with,

γij = gij ; Πij = 0; Hmatter = 0; N i = 0. [Background solution] (4.10)

We will use N to denote the value of the lapse in this background. Although equation (4.10)

describes a simple background, the final expression we will obtain for the energy, as measured

from the boundary, will be more general.

We are interested in a nearby solution with a nonzero matter energy-density δρ. To

see how the metric must respond to this energy density, we expand the metric about this

background as,

γij = gij + hij , (4.11)

where gij is the background metric and hij is the metric fluctuation. After some algebra we

find that the linear term in hij is of the form

√
γ(R− 2Λ) =

√
g

[
−hijR(g)

ij +
1

2
hiiR

(g) − hiiΛ +∇i∇jhij −∇j∇jhii
]

+ . . . (4.12)

where . . . indicates higher-order terms, ∇i is the covariant derivative with respect to gij , R
(g)
ij

and R(g) are the background Ricci tensor and scalar, and all indices are raised using gij .

This may not immediately seem like a total derivative. However, for the background

solution (4.10), we have the identity,

G
(g)
ij = R

(g)
ij −

1

2
gijR

(g) − 1

N

(
∇i∇j − gij∇2

)
N. (4.13)

The vacuum Einstein equations are,

G
(g)
ij + Λgij = 0, (4.14)

so therefore we can write (4.12) as,

√
γ(R− 2Λ) =

−√g
N

(
∇i∇jN − gij∇2N

)
hij +

√
g
(
∇i∇jhij −∇j∇jhii

)
=

√
g

N

[
∇i
(
N∇jhij

)
−∇i

(
hij∇jN

)
−∇i

(
N∇ihjj

)
+∇i

(
hjj∇

iN
)]
.

(4.15)

In the last line above we have also relabeled some dummy indices. The constraint can

now be written as,
1

16πG

√
g∇iJ i = N

√
gδρ, (4.16)
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Here we have defined

J i ≡ N∇jhij − hij∇jN −N∇ihjj + hjj∇
iN. (4.17)

We now integrate both sides of (4.16) on the entire Cauchy slice. We denote the boundary

of the slice by S∞ and the unit normal vector to the boundary by ni. The left hand side of

(4.16) then integrates to a quantity that we denote by E,

E ≡ 1

16πG

∫
S∞

dd−1x
√
g niJ

i, (4.18)

and (4.16) reduces to,

E =

∫
ddxN

√
gδρ. (4.19)

This is the generalization of the Gauss law (4.2) to curved space, which tells us that an

insertion of energy density at a point in the bulk must be accompanied by a change of the

boundary metric in order to satisfy the constraints.

The expression above was derived in the presence of some approximations. In the full

theory, we need to account for higher-order terms in the expression (4.8) and also account

for the energy of transverse-traceless gravitons themselves. Nevertheless, even in the full

theory of general relativity, the boundary integral (4.18) provides the correct definition of

the energy. It can be seen that this coincides with the expression of [56] and [57] for energy

in asymptotically anti-de Sitter spacetimes and can also be shown to be equivalent to the

expression that follows (2.11). We refer the reader to [55] for details.

Equation (4.18) also provides the correct expression for the energy in the quantum theory.

In the quantum theory, denoting the matter fields collectively by φmatter, states are represented

by wavefunctionals Ψ[γij , φmatter]. Valid states must satisfy (4.8) in the sense that,

HΨ[γij , φmatter] = 0. (4.20)

where Πij = −i ∂
∂γij

. The value of the energy for any valid state is then again given by the

expression (4.18).

4.3 Dimensional reduction of constraints in warped geometries

We now specialize the constraints above to the geometry with branes. We would like to show

that the local constraint (4.16) goes over, after dimensional reduction, to the local constraint

of a theory of massive gravity. The mass spectrum of the lower-dimensional graviton has been

studied in geometries without black holes and so, for simplicity, we consider such geometries

here. The results that we derive below will have a clear generalization.

We consider a family of “warped geometries” in d+ 1 dimensions that can be written in

the form,

ds2 = d%2 + e2A(%)
(
−N̄2dt2 + γ̄īj̄dx

īdxj̄
)
. (4.21)
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Figure 7: An AdSd brane (thick red line) in AdSd+1. The conformal boundary is the thick

black line. Lines of constant % are red dashed lines and coordinates transverse to % are constant

along the blue dashed circles.

Our notation for the coordinates is as follows. We consider a brane placed at % = 0. Our

objective is to dimensionally reduce along the %-direction. We use ī, j̄ to run over the spatial

directions excluding %. We use ā, b̄ to run over the spacetime directions excluding %. Here we

are adopting the notation of [20] and % here should be equated with r in [20]. (See Figure 7.)

We will focus on warped geometries where N̄ is independent of % and consider a back-

ground solution of the vacuum Einstein equations where γ̄īj̄ = ḡīj̄ . We then look for nearby

solutions where,

γ̄īj̄ = ḡīj̄ + h̄īj̄ . (4.22)

Note that the perturbation displayed in (4.22) is not the most general perturbation of

the warped geometry. In general the higher-dimensional graviton reduces, upon dimensional

reduction in the %-coordinate, to a scalar, a vector and a lower-dimensional graviton. We

focus only on the lower-dimensional graviton and neglect the scalar and vector modes.

In terms of the perturbation defined in (4.11) we have,

hīj̄ = e2A(%)h̄īj̄ . (4.23)

We denote the trace of this perturbation by h̄ ≡ hii = ḡīj̄ h̄īj̄ , where ḡīj̄ is the inverse of

ḡīj̄ . Note that the warp factor drops out of this trace.

Some algebra leads to the following metric-compatible connection coefficients:

Γ%
āb̄

= −e2A(%)A′(%)ḡāb̄,

Γā%b̄ = Γāb̄% = A′(%)δāb̄ ,

Γāb̄c̄ = Γ̄āb̄c̄.

(4.24)
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where Γ̄ refers to the connection coefficients of the metric ḡāb̄. Therefore, for any spatial

vector field J i we have,

∇iJ i = ∂%J
% +A′(%)(d− 1)J% + ∇̄īJ ī, (4.25)

where ∇̄ā is the ḡāb̄-compatible covariant derivative. Then from the definition (4.17), a

straightforward calculation shows that,

J% = −N̄eA(%)∂%h̄, (4.26)

where we have used the fact that N̄ is independent of %. Hence we have,

∇iJ i = −e−(d−1)A(%)N̄∂%

(
edA(%)∂%h̄

)
+ ∇̄īJ ī. (4.27)

The natural modes φn in the %-direction are those that satisfy

− e−(d−1)A(%)∂%

(
edA(%)∂%φn

)
= e−A(%)m2

nφn, (4.28)

where mn gives the spectrum of the masses of the KK descendants of the graviton. This is

the same eigenvalue equation that was found to govern the spectrum of massive transverse

traceless graviton fluctuations in this system and it is well known that the eigenvalues m2
n are

all nonzero [7]. Here we use these same eigenvalues in the constraint equations for the “T”

component of the metric fluctuation.

It is natural to expand,

h̄ =
∑

h̄nφn. (4.29)

In the equation above, it is understood that hn varies only along the brane directions and

the %-dependence is completely captured by φn. We will use the same convention for other

decompositions below.

It is natural to also define a lower-dimensional current,

J̄ ī = eA(%)J ī, (4.30)

and lower-dimensional energy density,

ρ̄ = e2A(%)ρ. (4.31)

The powers of the warp-factor that appear above can be obtained by carefully keeping

track of the relative factors that appear if one uses the lower-dimensional metric ḡīj̄ to define

a lower-dimensional Hamiltonian density and the lower-dimensional perturbation h̄īj̄ in (4.17)

to define a lower-dimensional current.

By also expanding the divergence of this lower-dimensional current and energy-density

in terms of the modes (4.28),

J̄ ī =
∑

J̄ īnφn; ρ̄ =
∑

ρ̄nφn, (4.32)
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we find from (4.16) the constraint equation,

m2
nN̄ h̄n + ∇̄īJ̄ īn = 16πGN̄ρ̄n. (4.33)

We again see that this equation allows for a nonzero matter stress-energy that cannot

necessarily be measured at the boundary of the brane because of the m2
n term. Using this

term, it is possible to find a solution to the constraint (4.33) where the value of ρ̄n is not

equal to the divergence of J̄ īn and the difference is made up by the m2
n term.

The underlying physics can be understood as follows. In the higher-dimensional set-

ting, it is clear that the constraint equation can be satisfied by shooting the gravitational

field lines “off of” the brane and allowing them to end at the asymptotic boundary. In the

lower-dimensional theory, this effect is captured by m2
n term. This is because the m2

n term

arises directly from the variation of the metric in the directions that point “off” the brane.

Therefore, the nonzero m2
n term is a signal in the lower-dimensional effective field theory that

the gravitational field lines can escape off the brane in the higher-dimensional description.

As we have already mentioned, it is known through direct calculation that m2
n is nonzero

for AdS branes embedded in AdS spaces. But even if this had not been known, our analysis

above could have been used to deduce this fact.

We would like to make a few comments.

1. In a previous paper [13], we studied the system with two branes, where a specific

linear combination of the localized gravitons is massless. One of the results of [13]

was that if one studies minimal surfaces with endpoints on both branes then the only

such surface is the horizon. In the higher-dimensional description, this implies that the

entanglement wedge of the defect, where the branes meet, is the entire exterior of the

black hole. Therefore, even in the dimensionally-reduced description, this entanglement

wedge extends up to the asymptotic boundary and is not an island. In [13], we also

studied islands on a single brane that are relevant for the entanglement between internal

degrees of freedom on the defect. But if one studies islands on one brane then the

effective description in terms of the localized-gravity theory on that brane has access

only to a linear combination of a massive and massless graviton. Correspondingly, the

asymptotic form of the metric on a single brane does not give us access to the total

energy on that brane. Therefore the results of [13] are entirely consistent with the

reasoning advanced in this paper.

2. It is sometimes proposed that an island with a massless graviton can be studied by

starting with an AdS black hole that partially evaporates into a non-gravitational bath

allowing for a massive graviton, after which one “switches off” the coupling between

the bath and the AdS space. However, a closer analysis of the causal structure of this

process reveals that the graviton is always massive in the island. This is explained in

appendix A.5.

3. It is also not possible to obtain operators that commute with the asymptotic Hamilto-

nian by dressing them to an “end-of-the-world” brane, since such a brane must interact
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with the ambient metric. Therefore, in theories with long-range gravity, the brane must

itself be dressed to the asymptotic boundary. The asymptotic boundary Hamiltonian

then measures the energy of the brane and that of additional excitations. So even if one

dresses an excitation to the brane, the excitation still transforms under time-translations

generated by the asymptotic Hamiltonian.

5 Islands in decoupled systems

In the sections above, we described a puzzle and then showed how the puzzle could be resolved

if the gravitational theory that supports islands is massive. When a standard theory of gravity

in AdS is coupled to a bath, the mass of the graviton arises as a consequence of the coupling.

Islands have also been studied when a gravitating system and another system are entan-

gled but not coupled [6, 58–60]. In higher dimensions, islands in decoupled systems are also

subject to the puzzle described in section 3. In the absence of a coupling, the graviton does

not pick up a dynamically generated mass, and so the resolution outlined in section 4 does

not apply to decoupled systems. Therefore, in higher dimensions, unless the theory of gravity

is massive to start with, our analysis above implies that islands in decoupled systems would

suffer from an inconsistency with the Gauss law.

However, most of the studies of decoupled islands have been performed only in 1 + 1-

dimensions and so the analysis of section 3 and section 4 does not directly apply to these

studies. Although it will be of interest to see if the considerations above apply to this lower-

dimensional case, in this section, we focus on another elementary consistency condition that

must be obeyed by all islands in decoupled systems, including islands in 1 + 1-dimensional

theories. We will explain how this simple separate consistency condition–though not neces-

sarily ruling out islands–is sufficient to indicate that islands in decoupled systems cannot be

used to model realistic evaporating black holes.

5.1 Consistency condition

Consider two decoupled systems described by Hilbert spaces, H1 and H2 respectively. The

joint system is described by the Hilbert space,

H = H1 ⊗H2. (5.1)

That the systems are decoupled means, by definition, that the Hamiltonian in the joint

Hilbert space H is just a sum of the Hamiltonians H1 and H2,

H = H1 ⊗ 1 + 1⊗H2, (decoupled systems) (5.2)

We now derive a few consequences of the elementary equations (5.2) and (5.1). First note

that given any density matrix ρ that describes the state of the joint system, we can obtain a

density matrix for system 1 using

ρ1 = Tr2(ρ). (5.3)
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Now consider the action of an arbitrary unitary operator U2 that acts on H2, i.e. it acts

as the identity on H1. This modifies the joint density matrix as

ρ→ U2ρU
†
2 . (5.4)

But under such a transformation of state, the density matrix of the first system is un-

changed,

Tr2(U2ρU
†
2) = Tr2(ρ) = ρ1. (5.5)

Consequently, the expectation value of all observables in system 1 are unchanged by the

action of a unitary in system 2.

Equation (5.5) holds whenever the Hilbert space factorizes. But in the case of decoupled

systems, as a consequence of (5.2), even the time-evolution operator in system 2 commutes

with all operators in system 1. Therefore (5.5) must hold even if we evolve U2 forward or

backward by an arbitrary amount of time t.

Tr2

[
e−i(1⊗H2)tU2e

i(1⊗H2)tρe−i(1⊗H2)tU †2e
i(1⊗H2)t

]
= Tr2(ρ) = ρ1. (5.6)

Now consider a setup where we have two decoupled systems, and where a region R in

the second system is believed to also describe the degrees of freedom in an island I. The

argument above tells us that no possible unitary operator acting on R, at any point in time,

should have the ability to affect any degrees of freedom from the first system. Conversely no

possible unitary acting on the first system at any point of time should affect the island. This

leads us to the following elementary consistency condition.

Observation. When islands are redundant with degrees of freedom from one part of a decou-

pled pair of systems, it should be impossible for the islands to either send signals to or receive

signals from the degrees of freedom described by the other part of the decoupled pair of system.

5.2 Implications of the consistency condition

We now explain how the consistency condition derived above rules out the possibility of

modeling the interior of physical black holes using islands in decoupled systems.

An example of a geometry that obeys the consistency condition above is provided by

Figure 8, which was obtained in [59].7 Note that in Figure 8 it is insufficient for the island

to be behind the future horizon to satisfy the consistency condition. Starting from the left

asymptotic boundary, one has to cross two horizons to reach the island region, and the same

is true if one starts from the right asymptotic boundary.

Referring to Figure 8, the two asymptotic boundaries completely describe the physics in

region L and region R. The island is dual to a decoupled system that completely describes the

7The setup of [58] also satisfies our consistency condition although this is more subtle to see from the Penrose

diagrams of [58]. In Figure 13 of [58] for instance, the independent degrees of freedom of the gravitational

system should be associated only with the “tip” of the Penrose diagram at spatial infinity, and one can neither

send nor receive signals from spatial infinity. We thank Tom Hartman for explaining this point to us.
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Figure 8: One possibility for an island in a decoupled pair of systems. The island cannot

affect the degrees of freedom beyond either the left horizon or the right horizon. The solid black

lines are the left and right asymptotic AdS boundaries. The broken blue lines are singularities

and the dashed lines are horizons. The dashed lines also demarcate the boundaries between

regions marked, L, R, I, J . In this figure, the horizontal direction is spatial and time runs

along the vertical direction.

physics in region I. The regions marked J are described by a combination of the decoupled

system and the system that lives on the asymptotic boundaries. This Penrose diagram meets

our consistency condition since every point in region L and region R is separated by a spacelike

interval from every point in region I. Note that signals sent from region L (or region R) and

region I can meet in the regions marked J . This does not contradict the consistency condition

but reflects the familiar feature, also present in the duality between an eternal black hole and

the thermofield doubled state [61], that signals from decoupled systems can meet inside a

wormhole.

This example illustrates that any spacetime geometry that meets the above consistency

condition must have a qualitatively different causal structure from that of a black hole formed

from collapse. For contrast, a Penrose diagram of a single-sided AdS black hole is shown in

Figure 9. It is clear that, even classically, it is possible to send signals to every point in the

interior of the black hole from the exterior, provided the signal is sent early enough. If any

part of the interior had been part of an island from a decoupled system, this would not have

been possible by our consistency condition. Therefore no part of the interior of such a black

hole can constitute an island that is described by degrees of freedom from a decoupled system.

Figure 9 shows a large single-sided black hole, but the same conclusion holds for an

evaporating black hole.

For completeness, we mention that the Penrose diagram in Figure 8 is also qualitatively
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Figure 9: A single sided black hole formed from the collapse of some matter (shown in

brown). The dashed line on the left is the origin of polar coordinates and the solid black line

on the right is the asymptotic AdS boundary. The Figure shows a signal S1 that originates

on the boundary and reaches deep inside the interior. In this figure, the horizontal direction

is spatial and time runs along the vertical direction.

different from that of the standard eternal black hole, which is shown in Figure 10. Here,

it is always possible to send a signal to any point in the interior from either the left or the

right asymptotic boundary. The consistency condition above then implies that no part of

the interior of the eternal black hole of Figure 10 can constitute an island corresponding to

degrees of freedom from a system that is decoupled from both asymptotic boundaries.

We emphasize that although the Penrose diagram in Figure 8 satisfies the consistency

condition described in this section, this picture of an island is not exempt from the analysis

described in section 3. In higher dimensions, Figure 8 would be consistent for massive gravity

but would violate the Gauss law in ordinary massless gravity since the energy of excitations

in the island could be measured by combining observations in the left and right asymptotic

regions. The study in [59], where this diagram was obtained, was performed in the 1 + 1

dimensional context of JT gravity, where we have yet to determine if some analogue of our

puzzle exists.

Islands in the presence of a decoupled bath were also studied in [6]. The theory used

in [6] is defined via a precise rule for Euclidean path integrals. We are unable to determine

if the Euclidean saddle points corresponding to islands found in [6] satisfy the consistency
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Figure 10: In the eternal black hole, it is always possible to send signals to any point in the

interior, even classically, provided these signals originate at an early enough time. The Figure

shows a signal S1 that originates on the left boundary and another signal S2 that originates

on the right boundary. Therefore, no part of the interior of a standard eternal black hole can

constitute an island that is redundant with degrees of freedom from a decoupled system. In

this figure, the horizontal direction is spatial and time runs along the vertical direction.

condition outlined here, since the Lorentzian action that gives rise to the rules for the Eu-

clidean path integral above is not known. It would be interesting to obtain the Lorentzian

theory corresponding to the Euclidean rules of [6]. This would allow us to check if the con-

sistency condition outlined in this section holds for this theory and would more readily allow

an extension of the puzzle of section 3 to this model.

6 Discussion

In this paper, we have described how models of black hole evaporation that involve “islands”

lead to puzzles in theories with long-range gravity where the Gauss law applies. In quantum

mechanics, the Gauss law is stronger than it is in classical mechanics. A localized operator

in the bulk must have nonzero energy, and so it must fail to commute with the Hamiltonian

which, in a theory of gravity, is a boundary term. This nonzero commutator can be thought

of as arising because any localized operator must be “dressed” to the asymptotic boundary.

Such a dressing is sometimes called a gravitational Wilson line. (See [62] and references

there.)

Since there are no negative charges in gravity, gravitational Wilson lines end only on
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asymptotic boundaries. In conventional island-free entanglement wedges in AdS/CFT, such

asymptotic regions are always part of the wedge. Therefore operators in the wedge can form

a self-contained algebra, since the entire operator, including its dressing, can be localized

within the wedge.

Islands would be entanglement wedges that do not extend to the asymptotic boundary

and are surrounded by their complements. Consequently, in an ordinary theory of gravity

in which the Gauss law applies, it is not possible to localize an operator and its dressing

entirely to an island. This means that, in an ordinary gravitational theory, an island cannot

constitute an entanglement wedge.

We showed how this puzzle was resolved in a concrete setting. When islands are realized

by embedding a brane in a higher-dimensional anti-de Sitter spacetime, the lower-dimensional

theory of gravity obtained on the brane has a massive graviton. Such theories do not have a

Gauss law, and so the puzzle does not arise at all.

An extension of our analysis to 1 + 1 dimensional theories of gravity would allow contact

with the significant literature where islands have been studied using JT gravity [4, 6] and

other 1 + 1 dimensional models [63]. One obstacle to extending our analysis is purely tech-

nical: the analysis of gravitational constraints reviewed in [19] which suggests that gravity

stores information differently from local quantum field theories is valid only for spacetime di-

mension larger than two. Moreover, the mechanism whereby imposing transparent boundary

conditions on a theory of gravity coupled to matter in AdS leads to a mass for the graviton

is understood only for higher-dimensional theories [22].

Nevertheless, we would like to mention some results in the existing literature that suggest

that it might be possible to generalize our puzzle. Even in 1 + 1 dimensional dilaton-gravity

models with a negative cosmological constant and appropriate boundary conditions, it is

possible to define conserved charges [64] that are related to the constraints of the theory.

Moreover [65], extending the techniques of [66], analyzed the significance of the bulk con-

straints in pure JT gravity without matter and showed that these constraints prevent the

factorization of the Hilbert space on the boundary, which is a puzzle that is somewhat similar

in flavor to the puzzle that we have described in this paper. Some further discussion of these

issues can be found in [67]. One aspect of the higher-dimensional analysis that clearly does

carry over even to 1 + 1 dimensions is the fact that coupling to an external bath will allow

energy to leak out of the system and thereby ruin any conservation laws that were present

before the coupling to the bath. It is an interesting open problem to build on these papers

and see whether and how our puzzle extends to 1 + 1 dimensions.

Similarly, we also point out that we have addressed only the theories of massive gravity

that emerge when AdS branes are embedded in AdS spaces. Our analysis does not necessarily

indicate whether other theories of massive gravity can support islands.

Finally we contrast the picture of how quantum information is localized in theories of

gravity that support islands with the corresponding picture in theories of long-range gravity.

Even in theories with long-range gravity, degrees of freedom that appear to be localized to

a region may be equated with a scrambled version of degrees of freedom in another region.
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This physical effect follows from a careful analysis of gravitational constraints as reviewed

in [19]. It is also important for black hole evaporation and for understanding the interior

of black holes in AdS/CFT as emphasized in [37, 68]. However, in theories with long-range

gravity, degrees of freedom near the asymptotic boundary capture all the degrees of freedom

on a bulk Cauchy slice and not only the degrees of freedom in an island. Therefore, in the

presence of long-range gravity, information about the black hole is always available outside,

regardless of the stage of black-hole evaporation [14].

On the other hand, in models of black hole evaporation that involve islands, information

emerges gradually during black hole evaporation according to the Page curve. This agrees

with intuition obtained from non-gravitational systems, where such a Page curve is expected

on very general grounds. They key reason that the entropy of the radiation first increases and

then decreases in such models is that the radiation region describes the island but does not

describe its complement. But not only do such models necessarily involve non-gravitational

baths; they seem to be consistent only in theories without a Gauss law.

We emphasize that our puzzle is not simply a question of the examples presented in

the literature. Theories with long-range gravity allow the energy to be measured at the

asymptotic boundary, which is in contradiction with the notion of an island as a connected

component of an entanglement wedge, disconnected from the boundary. This is why all con-

sistent constructions of islands so far in gravitational theories with more than two dimensions

involve massive gravity.
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Appendix

A Loopholes in possible counterarguments

In the main text we have shown that islands cannot support approximately local operators

that commute with operators in its complement.

In this appendix, we will examine some proposals that attempt to sidestep our puzzle. We

will conclude, as the puzzle in this paper would lead us to expect, that none of these proposals

lead to operators that are viable for entanglement wedge reconstruction in a standard theory

of gravity.

A.1 Products of modes in frequency space

It is not difficult to construct operators that commute with the Hamiltonian to an excellent

approximation. As explained in the text, the difficulty is in localizing such operators. This

follows from the uncertainty principle; an operator that is localized to a finite region must

have nonzero energy and an operator that has zero energy must extend to infinity.

This can be illustrated using the following example.8 As in section 3, consider a scalar

field φ propagating in a spherically symmetric black hole in an asymptotically global AdSd̃+1

spacetime. In this subsection, we write the field as φ(t, r,Ω), thereby explicitly specifying its

position in time, the radial coordinate and the Sd̃−1. To leading order in G, outside the black

hole horizon, the field can be expanded in terms of modes,

φ(t, r,Ω) =
∑
`

∫
dω aω,`e

−iωtψω,`(r)Y`(Ω) + h.c, (A.1)

where Y`(Ω) is a spherical harmonic corresponding to the angular momentum quantum num-

bers ` and ψω,` are radial mode functions that are discussed in greater detail in [68]. With

respect to the boundary Hamiltonian H that appeared in section 3 as the integral of the

boundary metric we have,

[H, aω,`] = −ωaω,`; [H, a†ω,`] = ωa†ω,`; [aω,`, a
†
ω′,`′ ] = δ(ω − ω′)δ``′ . (A.2)

Now consider the following operator,

X = a†ω1,0
aω2,0aω3,0, (A.3)

where ω1 = ω2 + ω3 and where the 0 in the subscript indicates that we are focusing on the

s-wave sector. It is easy to see from (A.2) that

[H,X] = 0. (A.4)

The trilinear operator X above is just an example and the discussion below easily generalizes

to any polynomial in the modes that commutes with the Hamiltonian.

8We thank an anonymous referee for drawing our attention to this proposal.
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However, the creation and annihilation operators that enter inside X are not local op-

erators. As a result, whereas X commutes with the Hamiltonian it does not commute with

other operators outside the island. We will now show, through an explicit computation, that

the nonzero commutator between X and operators outside the island can be seen at O (1)

and does not require us to even keep track of gravitational effects.

Consider the limit of the field operator near the boundary at a time t1. We can take t1
to be sufficiently small so that the boundary point is spacelike to every point in the island.

Note that such points always exist since, by our definition in section 1.1, the island does not

extend to the boundary. Using the mode expansion and commutation relations above we find

that (to O
(
G0
)
),

lim
r→∞

r∆[X,φ(r, t1,Ω)] = −Cω1e
−iω1t1aω2,0aω3,0 + Cω2e

iω2t1a†ω1,0
aω3,0 + Cω3e

iω3t1a†ω1,0
aω2,0,

(A.5)

where we have normalized the spherical harmonics through Y0(Ω) = 1 and Cω is a real number

defined by

Cω = lim
r→∞

r∆ψω,0(r). (A.6)

The precise value of Cω must be computed numerically in general d̃ but will not be required

below.

The nonzero commutator (A.5) can be easily detected inside a correlation function by

inserting two more field operators, at points (r, t2,Ω2) and (r, t3,Ω3) that we again choose to

be spacelike to the island, and using the correlators

〈Ψ|aω,`a†ω′,`′ |Ψ〉 = G+
ω δ(ω − ω′)δ`,`′ ; 〈Ψ|a†ω,`aω′,`′ |Ψ〉 = G−ω δ(ω − ω′)δ`,`′ , (A.7)

where

G+
ω =

1

1− e−βω
; G−ω = G+

ω − 1 =
e−βω

1− e−βω
, (A.8)

and β is the inverse temperature of the black hole. We find that

lim
r→∞

r3∆〈Ψ|φ(r, t2,Ω1)φ(r, t3,Ω2)[X,φ(r, t1,Ω)]|Ψ〉 = Cω1Cω2Cω3

×
[
−e−iω1t1G−ω2

G−ω3

(
eiω2t2+iω3t3 + eiω3t2+ω2t3

)
+ eiω2t1G+

ω1
G−ω3

(
e−iω1t2+ω3t3 + e−iω1t3+ω3t2

)
+eiω3t1G+

ω1
G−ω2

(
e−iω1t2+ω2t3 + e−iω1t3+ω2t2

)]
.

(A.9)

Note that once we use ω1 = ω2+ω3 we see that the result depends only on the time-differences

(t2 − t1), (t3 − t1) and (t3 − t2).

We can present this result in a manner that is identical to section 3 by showing how a

unitary operator containing X changes correlators outside the island. X is not Hermitian,

but we can construct a unitary operator via UX = eiλ(X+X†). We then find that

lim
r→∞

r3∆ ∂

∂λ
〈Ψ|φ(r, t1,Ω1)φ(r, t2,Ω2)UXφ(r, t,Ω)U †X |Ψ〉

∣∣∣∣
λ=0

= lim
r→∞

ir3∆〈Ψ|φ(r, t1,Ω1)φ(r, t2,Ω2)[X +X†, φ(r, t1,Ω)]|Ψ〉 6= 0.

(A.10)
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The exact expression on the right hand side above can be read off from (A.9) but we do not

write it since it is not illuminating.

We pause to note another subtlety with the unitary UX . One might have thought that

the unitary changes the occupation number of modes with frequency ω1, ω2 and ω3. However,

a simple check shows that the correlators (A.7) are unchanged in the state UX |Ψ〉 for all

frequencies including these three frequencies. More precisely,

〈Ψ|U †Xaωa
†
ωUX |Ψ〉 = 〈Ψ|aωa†ω|Ψ〉, and 〈Ψ|U †Xa

†
ωaωUX |Ψ〉 = 〈Ψ|a†ωaω|Ψ〉, ∀ω (A.11)

This is a general property of unitary operators that commute with the Hamiltonian. They

do not “create excitations” in typical states because correlators in typical states are thermal

correlators, and so if A is any operator,

〈Ψ|U †XAUX |Ψ〉 =
1

Z(β)
Tr(e−βHU †XAUX) =

1

Z(β)
Tr(UXe

−βHU †XA) = 〈Ψ|A|Ψ〉, (A.12)

where we have used the cyclicity of the trace and the commutator of UX and the Hamiltonian,

and Z(β) is the partition function.

So UX |Ψ〉 is not an excited state at all and can be thought of as just another black hole

microstate. This observation is not in contradiction with (A.10) since the unitary operator

there is inserted in the middle of other operators.

To summarize, our calculation implies that X cannot be thought of, in any sense, as an

operator localized to the island. Moreover, the action of a unitary made up of X does not

even create an excitation. So its existence does not resolve the puzzle presented in the text

and, moreover, is irrelevant for the discussion of entanglement wedge reconstruction.

The discussion above is quite general and can be generalized to all operators that can

be formed from the operators displayed in (A.1). We note that by using state-dependent

operators it is possible to construct operators that cannot be detected by means of (A.9) [41]

but even these operators are infinitely delocalized and are not relevant for entanglement wedge

reconstruction.

A.2 Swapping excitations

Another proposal is to only study operators that swap one excitation for another. More

specifically, one starts not with an empty black hole but rather with an excited black hole

state of the form U |Ψ〉 where U is defined in section 3. Now imagine that one has another field

with precisely the same mass, which we denote by φ̃. One might then consider the operator

that swaps an excitation made up of φ for an excitation made up of φ̃. More precisely we

study the unitary operator V = ŨU † where Ũ = eiλφ̃(P ) in the notation of section 3.

We note that to leading order in G,

lim
r→∞

rd̃−2+∆

∫
(∂AdS)

∂

∂λ
〈Ψ|Ũ ∂φ(P ′)

∂t
h00Ũ

†|Ψ〉
∣∣∣∣
λ=0

= 0. (A.13)
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But the insertion sandwiched between the unitaries above is precisely the same insertion

that appeared in section 3 where we found a nonzero value. Therefore the insertion of the

boundary Hamiltonian and a matter field can distinguish between the state with an excitation

of φ and the state with an excitation of φ̃. Therefore the operator V does not commute with

the product of the boundary Hamiltonian and a matter field at infinity.

This should not be puzzling since the correlator we are measuring keeps keep track of

more than just the energy; the insertion of φ breaks the symmetry between the two states.

Indeed, one can check that for a different correlator,

lim
r→∞

rd̃−2+∆

∫
(∂AdS)

∂

∂λ
〈Ψ|Ũ ∂φ̃(P ′)

∂t
h00Ũ

†|Ψ〉

∣∣∣∣∣
λ=0

6= 0, (A.14)

and the nonzero value is precisely the value that was explored in section 3.

A.3 Background fields as coordinates

In the presence of suitable background fields, it is possible to define perturbatively gauge-

invariant local operators. More precisely, imagine that in d̃ + 1 spacetime dimensions we

have d̃+ 1 background scalar fields X1 . . . X d̃+1 and a classical background where a point in

spacetime can be uniquely specified by specifying the values of the fields. Let φ be another

propagating field. It is then possible to define the operator

O(Zi) =

∫
φ(x)F (Z1 −X1(x), . . . Z d̃+1 −X d̃+1)dx. (A.15)

where F is a sharply peaked function that has support only when all its arguments are close

to zero. Such an operator commutes with boundary operators within perturbation theory

(although not nonperturbatively) and approximates a local operator. For more details we

refer the reader to [69] and references there.

However, such a construction is not possible for a black hole at late times. By the

classical no-hair theorem, at late times and in the absence of asymptotic sources, the black

hole solution does not support classical fields that take on distinct values at each point in

spacetime. On the other hand, if we consider asymptotic sources that stay on permanently

and stabilize a background of classical scalar hair, we would break diffeomorphism invariance

and therefore give the graviton a mass as discussed in [70].

Indeed, it is the emergent time-translational symmetry of the black hole solution that

allows us to phrase our puzzle within perturbation theory. For general time-dependent back-

grounds, it might be nonperturbatively difficult to detect the presence of a local excitation

from infinity due to the existence of operators like (A.15). But because the late-time geome-

try of the black hole is so simple, local excitations can also be detected within perturbation

theory as in empty AdS.

As opposed to the eternal black hole, the time-translational symmetry is not exact for the

evaporating black hole in that the evaporation of the black hole itself defines a “clock.” One

could attempt to use this clock to define operators along the lines of (A.15) that commute
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with the boundary Hamiltonian within perturbation theory. However since the evaporation

happens over a very long time scale, this clock allows one to only define a class of very dif-

fuse operators. These operators do not act at a well-defined time and are smeared out over

an O (1) fraction of the evaporation time scale. Such operators are very different from the

approximately local operators that one seeks in standard entanglement-wedge reconstruc-

tion. However, it would be interesting to explore the graviton mass and such operators more

precisely and their significance for the island proposal for evaporating black holes.

A.4 Mundane locality

In this paper, we have pointed out that gravitational effects pose an obstruction to defining

operators that are confined to the island. The reader might wonder how this analysis is

consistent with everyday experience: although we live in a world where gravity is presumably

quantized, it is perfectly sensible to discuss local experiments without having to worry about

the effect of these experiments at a distant location.

This has to do with the weakness of gravity as we now explain. As we have mentioned

above, even in the presence of long-range gravity it is easy to obtain approximately local gauge-

invariant operators. One option is simply to fix gauge. Such gauge-fixed operators depend

on the choice of gauge and obey a nonlocal algebra [71]. But these nonlocal commutators

are suppressed by a factor of
(

E
Mpl

)d̃−2
where E is a characteristic energy scale. (This is

also the factor that appears on the right hand side of (3.3), where E depends on the precise

operators inserted in that correlator.) For the energy scales probed in ordinary experiments,

this factor is well below the threshold of experimental accuracy, and so the unusual localization

of information in gravity is of no practical consequence.

On the other hand, gravitational effects are a key aspect of entanglement-wedge recon-

struction. It is due to such effects that the entanglement wedge can be larger than the causal

wedge, as happens when islands appear. Therefore such effects cannot be ignored in the study

of islands.

A.5 Decoupling the bath

Yet another proposal for reconstructing operators in the island in a standard theory of gravity

is to start with a theory of massive gravity coupled to a nongravitational bath, wait until

an island forms in the bulk, and then turn off the coupling. One might naively expect that

the graviton becomes massless in the bulk while operators in the island are still redundant

with operators in the radiation region. Therefore a naive analysis might suggest that this

procedure can be used to obtain islands in a standard theory of gravity.

We now show that this does not happen. Even in this scenario, the island forms and

exists only in the presence of a massive graviton.

In simple models, where the coupling is given by the product of a light operator on the

boundary of AdS with an operator in the nongravitational bath, the coupling can be turned
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Figure 11: A possible attempt to produce islands in standard gravity. An island is first

formed in a theory of massive gravity that involves a nongravitational bath. At time tD the

coupling to the bath is switched off. The change in boundary conditions is expected to make

the graviton massless at all points in the causal future of the decoupling event (shown in red).

But the island (shown in green) is unaffected by this event since every point in the island is

spacelike to the decoupling event. So the graviton remains massive in the island.

on and off by means of a simple change of boundary conditions at the boundary of AdS. One

expects the effect of this change in boundary conditions to propagate causally in the bulk.

Physically, one can think of a “shock wave” that propagates inwards and changes the

graviton from being massive to being massless in its wake. The graviton therefore becomes

massless only at points in the bulk that are in the causal future of the decoupling event on

the boundary. This is shown in Figure 11: the coupling is turned off in a coordinated manner

at the time tD on the boundary and the graviton becomes massless in the red “triangular”

regions on the top left and top right corner of the Penrose diagram.

We see that the entanglement wedge corresponding to the island is a causal diamond in

the bulk with the property that every point in the diamond is spacelike to the decoupling

event. The island is depicted as a green diamond in Figure 11. Therefore the island never

learns of the change in boundary conditions and the graviton remains massive everywhere in

the island.

In the black-hole geometry, if the bath is decoupled at late times the graviton remains

massive on at least some part of every spacelike slice in the bulk. This is a consequence of the
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fact that the black-hole spacetime contains nontrivial causal patches. In contrast if a bath

is coupled and then decoupled in empty AdS then, after a “transitional period” in the bulk,

the graviton becomes massless everywhere. However, even in empty AdS the island is always

confined to the region where the graviton is massive.

We note that were the graviton in the vicinity of the island to indeed become massless,9

the longitudinal mode essential to the consistency with Gauss’ law would disappear when the

mass turns off, leading to a violation of Gauss’ law even if the mass had been present at an

intermediate stage.
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