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ABSTRACT: We compute holographic entanglement entropy for subregions of a BCFT
thermal state living on a nongravitating black hole background. The system we consider is
doubly holographic and dual to an eternal black string with an embedded Karch-Randall
brane that is parameterized by its angle. Entanglement islands are conventionally expected
to emerge at late times to preserve unitarity at finite temperature, but recent calculations
at zero temperature have shown such islands do not exist when the brane lies below a
critical angle. When working at finite temperature in the context of a black string, we find
that islands exist even when the brane lies below the critical angle. We note that although
these islands exist when they are needed to preserve unitarity, they are restricted to a finite
connected region on the brane which we call the atoll. Depending on two parameters —
the size of the subregion and the brane angle — the entanglement entropy either remains
constant in time or follows a Page curve. We discuss this rich phase structure in the context
of bulk reconstruction.
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1 Introduction

The Ryu-Takayanagi (RT) prescription [1-3], and its generalization to incorporate quantum
effects [4-6], have proven to be powerful tools in the AdS/CFT correspondence [7-9]. These
techniques yield remarkably simple formulas for the entropy of subregions of strongly
coupled conformal field theories with bulk gravitating AdS duals, and they have since been
extended to compute entropy in conformal field theories on spaces with boundaries (BCFTS).

Some strongly coupled BCFTs admit multiple dual descriptions and are called “doubly
holographic” [10-12]. The dual descriptions comprise AdS,;1 gravity containing a subcritical
end-of-the-world Karch-Randall (KR) brane [13, 14] and an “intermediate” description
where brane-localized AdS, gravity coupled to a CFT is connected to a nongravitating bath
with the same CFT [15-19]. The (d — 1)-dimensional boundary of the BCFT is sometimes
called a defect.



In this paper, we will study a black-string state in the bulk theory illustrated in figure 1.
This is dual to an AdS, black hole coupled to a bath but it is also described by a CFT in a
thermal state that itself resides on a nongravitating eternal black hole background. The
braneworld black-hole horizon is where the black-string horizon connects to the brane and
the horizon also extends to the boundary theory.

Since the BCFT description of this system is entirely nongravitational we expect
that, in a generic state, the entanglement entropy of subregions in the dual BCFT will
be governed by a universal expression depending on the size of the subregion and its
complement [20, 21]. However, the original state of the BCFT at ¢t = 0 is not generic; this
is reflected in correlations between operators in the left and right wedges of the background
black hole. The subregions that we study have support in both of these wedges, and so
their initial entropy is sometimes lower than the generic value. Time evolution leads to
the loss of correlations between the two sides, and this causes the entanglement entropy
of these subregions to approach that of a typical state, leading to a “Page curve” for the
evolution of this entropy with time.

From the (d + 1)-dimensional bulk perspective, the Page curve is expected to emerge
classically because, while the early time entropy is controlled by an extremal Hartman-
Maldacena (HM) surface [22] which crosses the black-string horizon and traverses the
growing Einstein-Rosen bridge, the late-time entropy should be controlled by an extremal
island surface which connects the brane to the conformal boundary and is constant in
time [19]. Such island surfaces are standard RT surfaces ending on the KR brane, but in
the d-dimensional braneworld these are dual to quantum extremal surfaces (QES) [6, 17]
which are disconnected from the AdS; boundary and enclose (semiclassical) “islands” on
the brane.!

The story clearly breaks down if the bulk island surfaces do not exist in the first place,?
and recent computations have shown [94, 95] that this may happen in the empty AdSg.1
bulk for d > 2. More precisely, there is a critical angle for the brane that depends on d, and
island solutions do not exist when the brane lies below that angle. This is not necessarily
a problem for empty AdS;;; because there will be no Einstein-Rosen bridge, but island
solutions are needed to obtain the Page curve when there is a black hole in the bulk. This
concern is not unique to the black string model. The critical angle plays an important role
in every braneworld model which is asymptotically AdS [95], and there seems to be no
guarantee that island solutions exist in all configurations, even when they are needed to
preserve unitarity.

To address this issue, this paper considers a tractable geometric configuration in which
islands and their properties can be studied numerically. First a KR brane is embedded in
an eternal AdS;4q planar black string. The symmetries of the background allow the brane
to be inserted at an arbitrary angle using the Israel junction conditions [96] that uniquely

!Entanglement islands have been studied extensively in the literature [23-87], and useful reviews
are [88-93].

2Concretely, “nonexistence” of island surfaces means that the area functional of a codimension-2 bulk
surface ending on the brane does not have any extrema. This is qualitatively different from the island
surfaces existing but being subleading in the entanglement entropy.



associate the brane tension with a given brane angle. Note that the planar black string is
stable in that it does not have the usual Gregory-Laflamme instability [97]. Furthermore
the horizon extends all the way to the conformal boundary and this is why the dual BCFT
state itself resides on a nongravitating black hole background [98].

Although the bulk computation of the entropy is simpler than an ab initio computation
in the strongly coupled BCFT [99, 100], it still often requires the numerical solution of
partial differential equations [18, 50]. In this paper we show how the entropy of subregions
for this BCF'T state can be computed in the bulk using simple numerical techniques. Our
main result is a presentation of the rich phase structure for this system, in which island
solutions exist for all values of brane angle and finite subregion size, even below the critical
angle. Instead of failing to exist, the semiclassical islands for fixed 6, are restricted to a
region of the brane which we call the atoll, which we illustrate in figure 3.

To determine which surface is dominant (i.e. minimizes the area functional) on the initial
time slice, one simply computes the area difference between the HM and island surfaces for
the same parameters.®> We find that subregion entropy depends on both subregion size and
brane angle. Depending on the values of these parameters, the initial dominant bulk surface
is either an HM surface or the union of an island surface and its thermofield partner.

We obtained some simple rules for the phase structure. One can tune the size of the
island by varying either radiation region size or the angle of the brane. Shrinking the
radiation region size or decreasing the brane angle decreases the island size (except for the
special case when the radiation region is the entire bath and the island covers the whole
brane). In figure 13 we illustrate the Russian doll rule, which states that nested surfaces
can be constructed by either decreasing the brane angle 6, or increasing the anchor point
I'. We show how this “Russian doll rule” can be used to qualitatively compare the area
difference for different parameter choices. This rule shows that the Page time diverges as
the parameters are varied to probe regions near the black-string horizon in the bulk. We
comment on this rule in the context of entanglement wedge reconstruction.

Another interesting feature of this model is the “constant entropy belt,” which is a
connected interval on the boundary defined as the values of I'" for which island surfaces
dominate on the initial time slice. When the angle of the brane 6, is increased from 0 to ,
the belt first appears slightly below the critical angle (at what we call the Page angle) and
grows monotonically until it covers the entire boundary as 6, — 7. We find an interesting
formula describing this region, which we elaborate on in section 3.4.

Relationship with previous work. Before we proceed to our analysis, we pause to
clarify how the results of this paper should be interpreted in light of our previous results on
gravitating baths and the relationship between massive gravity and islands [95, 102].

In [95], we showed that the physics of an AdS; black hole coupled to a bath is
qualitatively different when the bath is gravitating as opposed to nongravitating. Specifically,
for a gravitating bath the Page curve disappears, even if gravity in the bath is parameterically
weak (i.e. the ratio of G between the “bath brane” and the “system brane” is small). This

3The areas are technically UV-divergent, but the area difference is manifestly UV-finite since all extremal
surfaces anchored to the conformal boundary exhibit the same divergence structure [101].



is consistent with the finding that the full fine-grained entropy at Z* does not follow a Page
curve for black holes in asymptotically flat space [89, 103]. The nongravitating bath also
induces a mass for the graviton in the region where gravity is dynamical [104] as a result of a
bulk one-loop effect [105]. In [102] we showed that this mass causes a breakdown of the Gauss
law that is essential for islands to constitute consistent entanglement wedges; in theories of
gravity where the Gauss law applies, islands are inconsistent even in perturbation theory.

So we caution the reader that, in contrast to some proposals in the literature [88, 106],
we do not necessarily view the nongravitating bath that appears in this paper as a model
for the region far from a black hole in asymptotically flat space. Moreover, the graviton
that is localized on the brane is massive. Therefore the Page curve that we discuss below
should not be thought of as the Page curve for Hawking radiation in a standard theory of
gravity. Our results have a clean interpretation in terms of the entanglement entropy of
subregions in the nongravitating BCFT — which is a problem of independent interest and
one for which the Page curve is relevant — and we use the bulk theory of gravity simply as

a tool to perform this computation.

Overview of the paper. We first discuss the geometrical aspects of our model in
section 2, starting with a review of double holography and then delving into the types of
extremal surfaces that appear in the black string with a KR brane present. We then discuss
the numerics in section 3, presenting our results for the phase structure (summarized above)
in detail. We conclude with some discussion of our results and potential future directions
in section 4.

2 The doubly holographic black-string model

This section describes general features of the doubly holographic black-string model, illus-
trated in figure 1. The first two subsections are mostly qualitative and we refer the reader
to [95] for additional technical details. Readers who are already familiar with the literature
may want to skip the overview of doubly holographic models in section 2.1. The main
point is to review the doubly holographic setup and point out that transparent boundary
conditions make the graviton on the KR brane massive.

Section 2.2 provides an overview of the doubly holographic black-string model, illustrated
in figure 1, and determines the area functional for the codimension-2 surfaces. Section 2.3
explains how boundary conditions distinguish the extremal surfaces into two distinct classes.
These are the Hartman-Maldacena (HM) surfaces [22], which avoid the branes and traverse
the Einstein-Rosen bridge, and island surfaces, which connect the boundary to the brane
and avoid the Einstein-Rosen bridge. Due to the growth of the Einstein-Rosen bridge,
the former grow with boundary time and the latter do not. The interplay between these
two classes of surfaces ensures the growth of the entanglement entropy will be consistent
with unitarity, provided the island surfaces exist. In section 2.4 we review recent work
performed independently by our group [95] and others [94] that revealed that island solutions
sometimes fail to exist when the boundary has more than two spatial dimensions. This
potentially leads to a serious puzzle in any braneworld model.



2.1 Review of doubly holographic KR models

While KR models have recently become more visible, they have been well understood for
some time as having three equivalent descriptions [10-12, 14, 17]:

e Boundary: d-dimensional CFT with a (d — 1)-dimensional defect (BCFT4 [107, 108]).

e Bulk: Einstein gravity in an asymptotically AdS;,; spacetime containing an AdSy
Karch-Randall (KR) brane [14].

o Intermediate: d-dimensional CFT coupled to “localized” gravity on the AdS, brane [14],
with transparent boundary conditions between the brane at infinity and a nongravi-
tating CFT4 (the bath) on half space.

The transparent boundary conditions are responsible for an important and sometimes
overlooked result, which is that the graviton on the KR brane’s gravity theory picks
up a mass [105, 110, 111] from energy exchange. In the dual “boundary” description,
the transparent boundary conditions leads to the nonconservation of the stress tensor
at the BCFT defect, which causes the stress tensor to pick up an anomalous dimension
corresponding to a mass for the graviton [104]. The graviton’s mass is roughly quadratic in
brane angle for small angles (the “near-critical” regime) [112, 113] and comparable to the
AdSg41 length scale when the angles are not parametrically small.

As discussed in [114], all reliable calculations of the semiclassical Page curve in more
than 1 + 1 spacetime dimensions (d > 2) have been performed in systems with massive
gravitons. It was further explained in [102] that this mass plays an essential role in enabling
islands to constitute a consistent entanglement wedge. Consistent with these statements,
the setup in which we study islands in this work features massive gravity on the brane.

2.2 The black-string model

This section provides an overview of the doubly holographic black string illustrated in
figure 1. Starting with a (d + 1)-dimensional black string, we embed a d-dimensional KR
brane [13, 14]. By the AdS/BCFT correspondence [11, 12], the setup is dual to a thermal
BCFT state on a black hole background whose degrees of freedom [115, 116] are counted
by the brane tension. The intermediate picture is a gravitating black hole coupled to a
nongravitating black-hole bath.*

The planar black string (with the AdS441 radius set to 1) is described by the metric,

2 1 o du’ =2 27,2
ds® = ———— | —h(u)dt* + —— +d2* +u dp” |,
u?sin? p h(u)
(2.1)
w1
h(U) =1- )
!

where t € R, u > 0, 0 < p < 7, and Z € R%2. The blackening factor h(u) gives a black
hole on each constant p slice — one such slice will be the end-of-the-world KR brane.

4One can also start with empty AdSqy; instead of the black string [117]. This would produce an analogous
picture lacking any black holes.
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Figure 1. This cartoon illustrates the doubly holographic black-string model, where the region
behind the KR brane has been excised. There are three perspectives, with the AdSy;1 gravitating
bulk illustrated at the top of the diagram. The d-dimensional BCFT and d-dimensional AdS,; brane
are depicted in colors which correspond with the intermediate picture indicated at the bottom
of the diagram. Notice the island region envelops the black-hole horizon on the brane, and the
defect cannot be reached from the island in the intermediate picture without crossing through its
complement. The two parameters in the theory are the anchor point I and brane angle 6,. Note
that “left/right” has a different meaning than in our previous paper [95].

We briefly mention that one could also consider the global version, in which case the
metric would be,

1 du?
ds?® = ———— —hg(u)dt* + Yoy A%, +uPdu?|
u? sin ha(u) 59
i (2:2)
ha(u) =14 u® — T
Up,

In the global metric, instead of the transverse coordinates comprising R%~2, they form
a (d — 2)-sphere with a line element proportional to d€2;_2. The dual boundary state is
a finite temperature CF'T state on a sphere. However, the global black string features a
Gregory-Laflamme instability [97]. This thermodynamic instability was identified by [118]
with a Hawking-Page transition on the brane controlled by a dimensionless combination of
the horizon temperature and the boundary sphere’s radius. In this paper we will consider
only the planar black string, for which the Hawking-Page transition is absent.

The brane is introduced by adding the standard Randall-Sundrum (RS) term [13]
to the Einstein action, and then restricting to subcritical brane tensions. The brane is
parametrized as u = 0. The model dual to BCFT is then obtained by treating this as an

end-of-the-world brane and restricting the u coordinate to u € [0y, 7).

®The tension of the brane is known to be (d — 1) cos 8, [11, 12].
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Figure 2. The bulk gravitational system we study in this paper is dual to a BCFT thermal state on
a nongravitating black-hole background. We compute the entropy of the subregion R, a connected
interval that runs through the bifurcation surface (the horizon at ¢ = 0 separating the past and
future horizons, represented by the point in the middle of the Penrose diagram above), using the
holographic RT prescription. This bipartition is similar to that in a recent work [109] studying
entanglement islands in de Sitter space.

Our main objective is to use the RT prescription to calculate the entanglement entropy
between a BCFT subregion R and its complement R induced by a generic bipartition of the
initial time (¢ = 0) slice, as depicted in figure 2. From here the prescription is to determine
the minimal extremal surfaces 3 that are either homologous to R or terminate on the
end-of-the-world brane [12, 19], with the latter leading to islands on the brane [15, 16]. First
we consider a generic interval on the brane Z — a “candidate” island. We then determine
extremal surfaces ¥ that satisfy the homology constraint,

9% = OR U IT. (2.3)

The next step is to apply a variational principle to the area density functional A,

2

T du )

A= o, Gasin T hw)

(2.4)
to find the ¥ and corresponding Z for which the area is minimized. Note that u; can be
brought to the front of the action as an overall prefactor uiid in planar coordinates. For
simplicity we choose uy = 1 for all of our numerical calculations.

The action (2.4) is extracted from the constant-¢ slices of the line element (2.1) as the
area density of a surface u = u(u) with respect to the transverse space Z.” This determines
the area of the surface up to a factor, proportional to the volume of the suppressed
dimensions, that does not affect the phase structure.

The Euler-Lagrange equation for the action (2.4), which we also call the “equation
of motion,” is an ordinary differential equation because of the parameterization u = u(u).
Furthermore, we ensure that the boundary terms in the variation of A vanish by imposing

5% simply being homologous to R corresponds to Z = @, i.e. the empty set.
"For the rest of this paper we will use area density and area interchangeably.



boundary conditions on X. As discussed in [95], we impose a Dirichlet condition at the
conformal boundary and a Neumann condition—requiring that the first derivative u’ vanishes
— at the brane. The latter tells us that such surfaces must anchor onto the brane at right
angles. Solving the Euler-Lagrange equation for the second derivative u” gives,

u”:—(d—z)uh(u)+(d—1)u’cow(1—“””‘ v, v )—(d_5)“/2. (2.5)

2 wh(u) u?h(u) 2 u

The nonlinear first term leads directly to nontrivial physics below the critical angle that we
explore in section 2.4. Figure 4 reviews how the critical angle depends on the number of
dimensions for the space. Note that the critical angle vanishes for d = 2 — the first term
in (2.5) vanishes and the trajectories of the RT surfaces become circular geodesics that exist
for all brane angles.

While we have so far presented the equations for general dimension, we work exclusively
with d = 4 in the remaining sections of this paper.

2.3 Different classes of RT surfaces

We now take a closer look at the Dirichlet and Neumann boundary conditions that play an
important role in the construction of the RT surfaces. The relevant surfaces are illustrated
in figure 3. The two parameters of interest are I', which is the endpoint of the relevant
subregion R.,® and 6, the angle between the brane and the excised boundary region. There
are two classes of surfaces because, while all surfaces obey Dirichlet boundary conditions at
I', only some surfaces connect to the brane where the boundary condition must be Neumann
by diffeomorphism-invariance.’

The Hartman-Maldacena (HM) surfaces avoid the branes as they plunge from the
boundary into the black-string horizon, pass through the Einstein-Rosen bridge to the other
side, and anchor to the boundary of the thermofield double space. As the Einstein-Rosen
bridge grows, the HM surfaces are stretched out behind the horizon, and their areas grow [22].

The counterparts to the HM surfaces are the “island surfaces” that connect the brane
to the conformal boundary. Since these avoid the Einstein-Rosen bridge, their areas are
constant in time. Near the conformal boundary they are roughly the same as the HM
surfaces at ¢ = 0, since they also obey the Dirichlet condition there by virtue of being
extremal. However, the island surfaces satisfy a Neumann boundary condition at the brane.

The interplay between these two surfaces makes it possible for the entanglement entropy
to obey unitarity. Essentially, island surfaces prevent the entropy from growing forever,
since they are constant in time and always dominate (i.e. are minimal) at sufficiently late
times. Specifically, even if an island surface is subdominant on the initial time slice to an
HM surface in the entanglement entropy, the latter will eventually outgrow the former.

8Technically, there are two endpoints, with one on each side. This subtlety is particularly important for
the surfaces explored in section 2.3.1, but for now it suffices to say that we assume that R is symmetric
with respect to the boundary black hole’s bifurcation surface.

Tt is mathematically possible to impose a Dirichlet boundary condition on the brane [46]; the Neumann
condition is motivated by the presence of localized gravity.
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Figure 3. This cartoon illustrates the relevant RT surfaces for different brane angles 6 o below
the critical angle. Island surfaces end on the brane at right angles, and HM surfaces cross the
black-string horizon and traverse the Einstein-Rosen bridge. Islands always attach to the brane
inside the atoll, which begins at a point called the critical anchor and extends to the black-hole
horizon. Decreasing the brane angle reduces the size of the atoll, which shrinks to the horizon as
6 — 0. Increasing the size of R, bounded by I', pushes the anchors (in purple) toward the black-hole
horizon; increasing the brane angle pushes the anchors toward the defect. The critical anchor,
which is the point on the brane that determines the size of the largest island on the brane (which
always corresponds to I' = 0), coincides with the defect above the critical angle. See figure 5 for
numerical results.

This phase transition of surfaces takes place at the Page time. Its value depends on
parameters that are clearly connected to the physics of the BCFT state; these are 6, which
determines the number of degrees of freedom on the defect [11, 12], and ', which determines
the size of R. The Page time is roughly proportional to the area difference between the RT
surfaces at ¢ = 0.

2.3.1 Hartman-Maldacena (HM) boundary conditions

Here we look at the Hartman-Maldacena surfaces in more detail. An alternative p = p(u)
parameterization for the area functional is sometimes useful:

du 1 ,
A= / (usin 1)° \/h(u) + u?p (u)? . (2.6)

Since the HM surface traverses the Einstein-Rosen bridge, we must specify the location

of R on both sides of the geometry. Calling the endpoint of R and its thermofield double
partner I' and T respectively, for simplicity we consider the symmetric case I' = I. In
our previous paper [95], in which we computed “left /right” entanglement entropy with a
gravitating bath, we could consider only the case where I' = 0. With the nongravitating
bath, the choice of I' is no longer restricted.

Choosing the symmetric case leads to a constraint for the HM surfaces on the initial time
slice — there will be a “kink” unless the surfaces cross the black-string horizon orthogonally
in tortoise-like coordinates:

dr = —= W (r=0)=0. (2.7)



This can be translated into our p(u) parameterization by expanding around the horizon:
o [e.9]
pu(r) = Z fnT" ~ Z fn(up — u)n/Q- (2.8)
n=0 n=0

This expansion has to be done in half-integer powers of (uj — u) because r ~ \/up — u.

The condition that p/(r = 0) = 0 in the tortoise-like coordinates implies the absence of
a term linear in r. Thus the \/u, — u term in the expansion in the u coordinate vanishes,
so p(u) becomes a regular power series. Imposing the equation of motion in terms of yu(r)
now fixes p/(uyp,) in terms of u(up). So even though it naively looks like we imposed only
one boundary condition at uy, regularity as implied by the symmetric ansatz tells us that
the solution is completely fixed by simply specifying p(up).

To ensure that we construct an HM surface with a particular value of T' = u/uy, we
need to solve the shooting problem with boundary conditions:

2cot 0
p(upl) =, p(up) = Osu, p (up) = S (2.9)

Up,
where I is the boundary of R relative to up, fv is the angle p where the HM surface
intersects the horizon, and the prime indicates a derivative with respect to the radial
coordinate u. The Dirichlet condition y'(upI') = co at the conformal boundary is enforced
automatically by the equations of motion. If one prefers the u(u) parameterization, one
can obtain the same results by inverting the boundary conditions instead. !

2.3.2 Island surface boundary conditions

The island surfaces avoid the Einstein-Rosen bridge and terminate on the brane y = 6.
On the initial time slice they are distinguished from the Hartman-Maldacena surfaces by
their resulting brane boundary conditions, which are Neumann and thus require the island
surfaces to connect to the brane orthogonally. So, we need to solve the shooting problem for:

u(m) = upl, u(bp) = up, u'(6) = 0, (2.10)

where u indicates the location on the brane where the surface terminates. The condition
u'(m) = 0 is enforced automatically by the equations of motion.

Since these surfaces do not pass through the black-string horizon, they do not traverse
the Einstein-Rosen bridge and their areas do not change in time. The generic late-time
dominance of island surfaces over HM surfaces leads to the saturation of entanglement
entropy at the Page time, provided the island surfaces actually exist.'' But past work [94, 95]
has shown these solutions do not exist for empty AdS below the critical angle, as we
now review.

19This involves the reciprocals of the derivatives in (2.9). This reparameterization from u(u) to u(p) is
consistent because as we proved in [95] that any solution u(u) of (2.5) is a monotonic function.
1We define the Page time as ¢ = 0 when the island dominates at the beginning.

~10 -
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Figure 4. These figures were included in our previous work [95], but we repeat them here for
emphasis. The critical angle is a monotonically increasing function of the number of spatial
dimensions d and takes the same value for any geometry which is asymptotically AdS4y;. This is
distinct from the behavior of the critical anchor defining the beginning of the atoll for the black
string. The critical anchor instead decreases monotonically with brane angle and coincides with the
defect at the critical angle (about 0.98687 for d = 4). It can be shown that the critical anchor also
increases monotonically with the number of dimensions for the space.

2.4 A potential puzzle for unitarity in higher dimensions

Recent work performed independently by our group [95], and others [94], found that island
solutions cease to exist below a critical angle in empty AdS;y1. The angle of the brane,
which we reiterate encodes the number of degrees of freedom at the defect and uniquely
determines the brane tension in the bulk, plays an important role in determining whether
(and where) islands can exist on the brane. This potentially leads to a serious problem for
unitarity in all thermal doubly holographic states — without an island surface in the bulk
the HM surface would grow without bound.

We note that the previously observed failure of islands to exist occurs when they are
not needed to preserve unitarity. Empty AdSg,; with a KR brane is the prime example —
RT surfaces are forbidden from traveling between the boundary and any brane below the
critical angle, which means the region containing islands on the brane (the atoll) does not
exist in this regime. However, since there is no Einstein-Rosen bridge there is no potential
paradox involving a monotonically growing entanglement entropy and therefore there is
no need for a phase transition between entanglement surfaces in such vacuum states. The
nonexistence of island surfaces would, however, lead to a breakdown of unitarity in thermal
states, such as the black-string geometry considered in this paper.

The preservation of unitarity is thus more subtle for the black-string model because
it features an Einstein-Rosen bridge. We find that while island surfaces still exist below
the critical angle, they connect only to a finite region of the brane — the atoll. These
islands are sufficient to prevent the entanglement entropy from growing without bound, as
we showed in a previous paper [95] in the context of “left/right” entanglement, in which
we are forced to I' = 0. There we found a critical anchor, which is the boundary of the
atoll we find in the current context. In this paper, we find a more complex phase structure
associated with the freedom to choose the size of the radiation region on the boundary.
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Our results show that for each choice of brane angle below the critical angle, the
largest possible island is formed when the island surface begins at the critical anchor and
terminates on the defect. This suffices to determine the atolls (see figure 3). The critical
anchor coincides with the defect above the critical angle, so the atoll completely covers the
brane in that case.

3 Numerical results for the area difference

Here we present our numerical results for the initial area difference between the competing
island and HM surfaces as a function of the two parameters I' and 8,. The intricacy of our
results compared to those found with a gravitating bath [95] arises from the freedom to
vary I' on the nongravitating bath. The phase structure is determined by the sign of the
UV-finite area difference,

AA(t) = Ais — Anm(?). (3.1)

The sign is important because it tells us which type of surface is dominant in the entanglement
entropy (i.e. minimal in area). The HM surface is dominant when AA(t) > 0, and the
island surface is dominant when AA(t) < 0. To determine whether or not we have a Page
curve at all, it is sufficient to look at the ¢t = 0 slice, since the HM surface is at its smallest
in t when it crosses the bifurcation surface of the black string.

Through the boundary conditions (2.9)—(2.10), the initial area difference AA(0) depends
on just two free parameters, the anchor point on the bath I' and the angle of the brane
0,. We mentioned before that wuy scales out of the action, so we are free to choose up = 1
for our numerical results. We find that AA(0) is finite when the parameters lie within the
following open intervals,

I'e(0,1), Oy € (0,7). (3.2)

See figure 5 for samples of our numerical data at brane angles below, at, and above the
critical angle. The question of what happens when one parameter is fixed while the other
varies is explored in figures 6 and 7. AA(0) as a function of both I' and 6, is plotted in 3D
in figure 9.

3.1 The difference between the Page angle and critical angle

There are two special angles that play an important role in this section — the Page angle
Op and the critical angle 0. [95]. For clarity, we briefly review these before presenting our
numerical results.

The Page angle is the value of 0, at which AA(0) (for I' = 0) vanishes and the
entanglement entropy becomes constant, and the critical angle is the slightly larger value of
0y below which extremal island surfaces do not exist in empty AdS;11. Note however that
the critical angle still plays a role in other geometries so long as the asymptotic region is
still empty AdSg4y1. In particular, when the brane is below the critical angle, island surfaces
approach the horizon but do not probe the asymptotic region. The islands on the braneworld
are restricted to the atoll discussed in section 2.4, which is only a finite portion of the brane
below the critical angle, whereas above the critical angle the atoll covers the entire brane.
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Figure 5. Here we see the setup together with numerical data in the planar black string. The KR
brane is green, the HM surfaces are red, the island surfaces are blue, and the black-string horizon
is the semicircle in black. The area difference between the island surface and the HM surface for
various anchor points I' is displayed in the set of second plots below. Sending I' — 0 recovers the
finite area differences from our previous paper [95] for angles below the critical angle. When the
brane lies above the critical angle, the area difference diverges to negative infinity. These divergences
are explained physically in section 3.3.

In empty AdS, the Page angle and the critical angle are equal, but in other geometries
they are generally slightly different. The area difference vanishes slightly below the critical
angle in the black string geometry because the area of the HM surface is bigger than it
would be in empty AdS, but the island solution for I" = 0 is unchanged at the critical angle.

3.2 Numerical results for fixed parameters

Here we take a closer look at the initial area differences in our numerical results, which
were computed for thousands of combinations of the anchor point I' and the brane angle 6.
We depict a representative portion of the full (T, 6;) parameter space.

The t = 0 area differences'? (AA = Aun — Aisland) for fixed T' as a function of 6, are
illustrated numerically in figure 6. The area difference decreases monotonically with the
value of 6, and from comparing the different curves on constant-6; slices it can be seen
that the area difference increases monotonically with anchor point I'. The area difference is
negative — and thus the island surface is initially dominant — only when the brane lies
above the Page angle.'> Above the critical angle the area difference diverges at the edges of
the intervals I € (0,1) and 6}, € (0, 7), while below the critical angle the area difference is
finite as I' — 0. For all other values of I and 8, the area difference is finite.

Similar considerations hold for fixed brane angles 8, as a function of anchor point
I, illustrated numerically in figure 7. Again we see that the area difference increases
monotonically with the value of I'. From comparing the different curves on constant-I"
slices, one can see the area difference is also monotonically decreasing in brane angle 6.
Again the area difference is negative only when the brane lies above the Page angle.

12By area differences, we always mean at t = 0.
13Recall that the brane angle is measured from the excised boundary region, see figure 1.
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Figure 6. The area difference is displayed as a function of brane angle 6, for many possible CE'T
anchor points I'. The area difference is clearly monotonically increasing in I" and monotonically
decreasing in 6. The anchor points were determined numerically for many values of Oy using the
shooting method with the boundary conditions in (2.9). The area difference diverges to negative
infinity as I' — 0 for 8, > 6., but when I' — 0 for 6, < 6, it converges to a finite value.

AA = Arrr — Aum
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Figure 7. The area difference is displayed as a function of CFT anchor point I' for many possible
brane angles 6. The area difference is clearly monotonically increasing in I' and monotonically
decreasing in #,. The islands become dominant when the area difference is negative, which is
possible only above the Page angle. The Page angle [95] is very slightly less than the critical angle
(6. =~ 0.98687 in d = 4). The area difference diverges to negative infinity as I' — 0 for 6, > 6.,
but when I' — 0 for 6, < 6. it converges to a finite value. We explain in section 3.3 that the area
difference diverges to positive infinity as 6, — 0.
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Figure 8. This cartoon illustrates how the area difference is affected by each limiting case for
the boundary anchor point I', with angles below the critical angle on the right, and angles above
the critical angle on the left. Taking the difference between the surfaces essentially acts as a
renormalization scheme. The area difference between the island surface and HM surface diverges
when one of them shrinks to a point because the difference between the surfaces reaches farther into
the boundary region. When the brane lies below the critical angle, the island surface cannot shrink
to a point when I' — 0 because it anchors to the brane inside the atoll.

Note that numerical results are included in the figures only above 6, = 0.5. This is
because the computation time for the most stable!* version of the shooting method becomes
very large as 6, becomes small. As a check, the calculation was also performed using a
slightly different method for smaller brane angles. While this is not visible in the figures,
we found that the area difference diverges to positive infinity as 6, — 0. These numerical
results are found to match our earlier work [95] in the limit where I' — 0.

3.3 The geometric origin of the divergences

It is simple to understand the diverging area difference for parameters at the edges of the
intervals I' € (0,1) and 6, € (0, 7) geometrically. We reiterate that the surfaces themselves
have been illustrated in figure 5, the area differences for fixed values of I' and 6, have been
given in figures 6 and 7. The positive area differences are presented in 3D in figure 9.

3.3.1 Positive divergence

First we consider each case where the area difference diverges to positive infinity, meaning
the island surface has infinitely bigger area than the HM surface. This happens when
0, — 0 for each fixed I' and when I' — 1 for each fixed 6. The former can be understood
by counting how many times each RT surface hits the conformal boundary; in a single
exterior patch of the black string, the island surface touches the boundary twice while the
HM surface touches it only once. The latter case where I' — 1 is illustrated in figure 8.

141 order to validate our numerics, we have repeated the calculations of the area difference for a large
range of different cutoffs. As we show in appendix B, our results are very stable.
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Since the HM surface shrinks to a point on the boundary, it only serves to “cut off the end”
of the island surface, so the area difference diverges to positive infinity.

The divergence can be understood as follows. As we approach the limiting value I' = 1,
we are effectively computing the entropy of a small strip on the boundary (see figure 15 in
appendix A). In this limit, the curvature of the boundary black hole is not important so
the HM surface reduces to the familiar RT surface for a small strip in empty AdS. It is well
known that the renormalized entanglement entropy of a small strip — and, correspondingly,
the renormalized area of the HM surface — tends to —oo in this limit.!® Therefore the area
difference between the area of the island surface and the HM diverges.

3.3.2 Negative divergence

Infinite negative area differences do not lead to eternally-increasing entropy, since island
surfaces start out dominant on the initial time-slice for every negative area difference. The
HM surface starts out infinitely larger than the island surface, so the entropy is simply
constant and lacks a phase transition. But we can still consider the cases leading to such
divergences.

The area difference diverges to negative infinity whenever the island surface shrinks to
a point, as illustrated in figure 8; this takes place when I' — 0 for each fixed 6, above the
critical angle 6.. Note that these are the “tiny” island surfaces found in [95].

There are also some nonphysical limits which give diverging negative area differences,
for example in the limit where 6, — 7, but note the brane tensions are negative when
0y > m/2. For example, the area difference also diverges to negative infinity when 6, — 7 for
a fixed I', with the caveat that the associated HM surface takes a nonphysical path through
the brane and into the excised region.'® Fortunately, it turns out that the HM surfaces
never travel through the brane when the area difference is positive,'” and the critical angle
never takes a value greater than 7/2 for any dimension.

We have seen what happens when 6, — 7 and when I' — 1 separately, but it is
interesting to note what happens if both limits are applied simultaneously. This is a sensible
procedure because you can keep Ogn > 6y, while taking the limit. It turns out that the area
difference vanishes, which can be seen geometrically because the boundary conditions for the
HM surface and island surface become degenerate. This can be seen in (2.9); when the pa-
rameterization is switched over to u(u), the boundary condition for the HM surface becomes,

Up

(1) e, = (3.3)

2 cot O '
Recalling that O is the polar angle p where the HM surface crosses the black-string
horizon, and considering the geometry of the planar black string, we see that Oy — «
is the same limit as I' — 1. When this limit is taken, the boundary conditions in (2.10)
and (3.3) match, the surfaces are the same, and the area difference vanishes.

5See the second term in (A.1) in appendix A; this term is the renormalized entanglement entropy.

16Such HM surfaces do not satisfy the homology constraint in any case in the bulk spacetime cutoff by
the KR brane.

1" This was also noted in [48] in a lower dimensional setup together with a precise field theory calculation.
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Figure 9. Here we present the positive area difference as a function of 6, and fgy;. The parameter
subspace for which the area difference vanishes is an approximately straight line. Negative brane
tensions are most likely not physical but they have been included without much trouble. This figure
is more complete than figures 6 and 7, which simply correspond to slices along the x and y axes,
with the main difference being that I' has been swapped out for fyy;. Note the area difference
increases monotonically with 6y and decreases monotonically with 8y, and that the area difference
vanishes along an approximately straight line.

3.4 Symmetry in brane angle and HM angle

We observe a striking symmetry between figure 6 and figure 7 which can be made more
apparent by replacing I' with the HM angle 0y, which we recall is the polar angle where
the HM surface strikes the event horizon. This redefinition is not as arbitrary as it may seem
at first glance. Since the boundary condition is given in polar coordinates, the coordinate
transformation is natural from the perspective of solving the shooting problem in (2.9).

From looking at figure 9, one can see the area difference is roughly symmetric in brane
angle and HM angle; this can be made more apparent by including 6, < 0.5 but at the cost
of some accuracy. Only positive tension branes are considered on the left, but negative
tension branes have been included for completeness on the right.

The symmetry can be used to write an approximately linear constraint on the region
of parameter space for which the area difference is positive, with AA4(0) = 0 at equality,

O > g + oy — 0. — 8) = AA®0) >0, (3.4)

where 0. is the critical angle, 6, is the brane angle, 6 = 0p — 0. (0 = —0.02 in d = 4), and
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Figure 10. The phase diagram is approximately linear when the anchor point I' is exchanged for
the HM angle Oy)p; this can also be seen in figure 9. The phase diagram is otherwise the same as in
figure 11, with gy = 7 corresponding to I' = 1 and 6y = 7/2 corresponding to I' = 0.

a =~ 0.75 in d = 4. The value of « generically depends on d; it equals unity for d = 2 and
vanishes as d — co. When the phase diagram is expressed in these variables, in figure 10,
the linear behavior is clearly visible.

Choosing I' = 0 recovers the result of [95], since the area difference vanishes at the Page
angle 0p = 0. + 6 for I' = 0. Furthermore, the area difference vanishes when Oyn = 6, = 7;
in that case it can be seen that the surfaces are the same, since the HM and island surface
boundary conditions become degenerate in that limit.

It can be seen in this equation that, as we mentioned before, the area difference is
always positive when 6y > 0. This serves as a useful consistency check, since the HM
surface never travels through the brane for positive area differences, and the area difference
vanishes when Oy = 6, = 7.

3.5 Phase structure and the constant entropy belt

Here we explain our main result, the phase structure for the black-string model with a
nongravitating bath as a function of the anchor point I' and the brane angle 6. Figure 11
illustrates the phase transition that occurs for a given 6, > @p when I', which separates R
from R in figure 2, becomes large enough for the entropy to be described by a time-dependent
Page curve. When discussing figures 6 and 7 we pointed out that the area difference is
monotonically decreasing in 6, and monotonically increasing in I'. This behavior manifests
in the phase diagram.
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Figure 11. The phase diagram depends on the anchor point I' and the brane angle #,. When the
brane lies above the Page angle, the island surfaces are dominant when I' is sufficiently small; as the
brane angle increases the island surfaces are dominant for increasingly large values of I'. For anchor
points outside the boundary black hole’s horizon (" < 1), the island surfaces become dominant as
we take 0, — .

It can be seen in figure 9 and figure 11 that for a given value of I' the initial area
difference is negative (thus the island surface is dominant) if 6, is large enough. This is
precisely the condition (3.4). In such cases the entanglement entropy does not grow with
time, since the island surface does not traverse the Einstein-Rosen bridge. In the limit
I' — 0, or equivalently gy — /2, the area difference vanishes at the Page angle [95].

The above properties make it possible to nearly summarize the phase structure in terms
of what we call the constant entropy belt, illustrated in figure 12. The definition is that the
entropy curve is constant, for a given 8, when I' lies within the constant entropy belt. In all
such cases the area difference is negative, which means the island surface will be dominant
on the initial time slice, and therefore the entanglement entropy will be constant in time.

The belt does not exist when 6, is below the Page angle because the area difference
is positive for all I'. The belt first forms at the Page angle, only very slightly below the
critical angle, so there is a small parametric range 6, € (6p,0.) for which we have both a
constant entropy belt and a finite critical anchor and hence a nontrivial atoll. Whereas the
entropy belt (on the boundary) always includes the defect, the atoll (on the brane) extends
almost to the defect at the Page angle at which the constant entropy belt first appears.
Since the area difference decreases monotonically with brane angle, increasing 6, increases
the range of I' values for which the entropy is constant, so the belt grows with angle and
is always connected. The belt completely covers the region on the boundary outside the
boundary black hole’s horizon, which is located at I' = 1, in the limit where 6, — .
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Figure 12. When an RT surface anchors within the constant entropy belt on the bath, the island
surfaces are dominant on the initial time slice and the entanglement entropy is constant in time.
Decreasing the brane tension (d—1) cos 6, increases the width of the belt, indicated by the color-coded
arrows on the boundary which correspond to the vertical axis in figure 11. The belt first appears at
the Page angle, slightly below the critical angle, and covers the entire region outside the boundary
black hole horizon (at T' = 1) in the limit where 8, — 1. All angles are measured from the boundary,
and the tensionless limit is achieved at 6, = 7/2.

Figure 13 illustrates one more noteworthy property of the phase structure; the initial
area difference is geometrically related to the size of the island on the brane. Decreasing
0, or increasing I' pushes the island surfaces deeper into the bulk and reduces the size of
the island. The aforementioned monotonicity in those parameters leads to what we call
the Russian doll rule, which states that the area difference always increases when I' is
increased, which always pushes the island surfaces closer to the horizon in the bulk. This
area difference diverges to positive infinity as the black-string horizon is approached by the
island surfaces. We expect that the Page time also diverges in this limit.

3.6 Consequences for entanglement wedge reconstruction

Armed with many copies of this doubly holographic model, experimenters on the boundary
could go about reconstructing the bulk region by making many measurements of observables
on the boundary region [19, 119, 120]. We suppose that we have two sets of experimenters
who can access specific boundary degrees of freedom outside the horizon. For simplicity we
will call these groups Cixin and Bindu. See figure 14.

The first group (Cixin) has access to boundary degrees of freedom on both sides of the
Einstein-Rosen bridge shown in figure 2, namely the open interval (0,T") and its thermofield
double partner (0,T'). The other group (Bindu) has access to only one side, which may as
well be the right side, since I' = [ in our model.’® The punchline is that Cixin can use

18We could have instead considered a class of observers who have access to one side of the radiation region
(I",1). To find the entanglement wedge for this region we would have to construct a separate extremal surface
that is confined to one side of the horizon and has endpoints at I" and 1.
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Figure 13. Here we illustrate the Russian doll rule, which states that nested surfaces can be
constructed by either decreasing the brane angle 6, or increasing the anchor point I'. This always
pushes the surfaces closer to the event horizon into the bulk, decreases the size of the island on the
brane, and increases the area difference between the island surface and the HM surface on the initial
time slice. The area difference increases without bound as the event horizon is approached by the
island surface.
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Figure 14. The island region can be reconstructed using boundary data in R only if both sides
are accessible and only until the Page time. According to the Russian doll rule, the size of the
region which is lost at the Page time increases monotonically with the brane angle 6, and decreases
monotonically with I'.

correlations between the right and left sides of the geometry to reconstruct a larger region
of the right side of the dual bulk geometry than Bindu, but only up until the Page time.
Neither group can reconstruct the entanglement wedge for R on the boundary. Cixin
can always reconstruct the entanglement wedge of the complement R that we will call the
entanglement co-wedge of R. This means she can never reconstruct the island region on
the brane. Cixin can reconstruct the more encompassing co-wedge bounded by the HM
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surfaces. Since Bindu has access to only one side, her only option is to reconstruct the
co-wedge bounded by the island surfaces on the right side of the bulk. After the Page time,
which will be zero when I' lies inside the constant entropy belt, the island surfaces are
dominant and the island region cannot be reconstructed. However Cixin and Bindu can
regain access to the island region by increasing their value of I', and both have access to
the same information in the limit where I' — 1.

There are some special considerations for higher-dimensional (d > 2) finite temperature
models. The most immediate implications concern the critical angle. For the black string,
when the brane is below the critical angle, the island Z cannot extend beyond the critical
anchor on the brane. In other words, the islands are confined to the atoll. This means the
complementary region on the brane, Z, can always be reconstructed when the brane lies
below the critical angle. This information must be “stored” on the defect itself because
the co-wedge will always contain Z in the limit where I' — 0. This is not true above the
critical angle, since the co-wedge then vanishes in the limit where I' — 0.'° We suspect
similar considerations will hold in other finite temperature models.

It is interesting to consider the limit as I' — 1, where the area difference diverges to
infinity according to the Russian doll rule. We need I' — 1 to reconstruct the event horizon
at late times, and the Page time goes to infinity in that limit. This could indicate that
information stored near the black string’s event horizon is difficult to access but also robust
against the loss of correlation between the two sides induced by time evolution. Suppose
for example that Cixin chooses increasingly large values of I and reconstructs regions of
the entanglement co-wedge which are increasingly close to the event horizon. The Russian
doll rule states that these surfaces will be nested and that the area difference will increase
without bound as I' — 1. Since these larger area differences will prolong the Page time,
Cixin loses access to the island regions at increasingly late times. Meanwhile the island
surface coincides with the black-string horizon as I' — 1 as the area difference diverges
to positive infinity. Therefore Cixin will need to access increasingly large regions of the
boundary to reconstruct regions near the event horizon at late times, but the reconstruction
can always be performed, provided I' is large enough.

4 Discussion of results

We have presented our computation of subregion entanglement entropy for the doubly
holographic black-string model. The system is dual to a strongly coupled BCFT living
on a black-hole background at finite temperature and to an AdS, black hole coupled to a
nongravitating thermal bath. In empty AdS, which corresponds to the zero-temperature
limit of this system, it is known that the bulk geometry does not support island solutions
for d > 2 when the brane is below the critical angle.

If this feature were to persist in the presence of any finite-temperature horizon, it would
pose a serious problem for unitarity. Therefore an important consistency criterion for any
braneworld model is that islands must exist even below the critical angle in the presence

19T other words, using the language in our previous paper [95], we have a tiny island surface in the limit
as I' = 0 above the critical angle.
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of a finite-temperature horizon. In this study we have shown that this is precisely what
happens in the black-string model: islands exist at finite temperature, albeit with limited
extent bounded by a critical anchor. The islands are restricted to the atoll. These solutions
are consistent with empty AdS because the critical anchor stays away from the defect below
the critical angle.

We have summarized the phase structure for the area differences (figure 11) with some
simple geometric rules. For a given brane angle 6, the island surfaces are dominant on
the initial time slice only when the anchoring point in the bath I' lies within the constant
entropy belt. In other words, the initial area difference in such cases is negative. This belt
starts at the defect, grows monotonically with brane angle, and extends to the horizon on
the bath in the limit where 6, — 7. The constant entropy belt forms at almost the same
brane angle where the atoll first saturates the brane.

The signed area difference, which is monotonically decreasing in 6, (figure 6) and
monotonically increasing in I' (figure 7), features some additional geometric structure
which is captured by the Russian doll rule. Nested island surfaces can be constructed by
either decreasing 6, or increasing I'; this pushes surfaces closer to the black-string horizon,
decreases the size of the island on the brane, and increases the area difference between
the island surface and the HM surface. This has interesting implications for entanglement
wedge reconstruction — as described in section 3.6, an experimenter would need to access
increasingly large regions of the boundary to reconstruct bulk regions increasingly near the
black-string horizon at late times.

It would be interesting to determine the phase structure for other doubly holographic
AdS, braneworlds with d > 2. There are some results which we believe will be quite
general even if the geometry is changed, with the critical angle playing an important role.
The atoll should include a region near the horizon on the brane, because the horizon in
the bulk is an extremal surface, and above the critical angle the atoll should include a
region near the defect, but the atoll need not be connected. We suspect area differences
will remain monotonic in both subregion size and brane angle; reducing the brane angle
increases the number of degrees of freedom on the defect, and since the defect encodes the
braneworld black hole, this should increase the Page time. The reduced Page time correlates
with the reduced number of degrees of freedom on the defect. We hope that such general
considerations will yield insights into the dynamics of BCFTs with holographic duals and
help to uncover the physics underlying the critical angle, the Page angle and other aspects
of the remarkable phase structure that we have found.
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A Analytic results for the area difference in the I' — 1 limit

In the bulk of this paper we have considered RT surfaces anchored at a given point I' in the
nongravitating black hole bath, and an symmetric point I' = I in the second asymptotic
region of the same black hole. In the limit that I' — 1 these two anchor points approach
the bifurcation surface from both sides. Furthermore, the spacetime near the black horizon
becomes essentially flat. So the initial HM surface in this limit is really calculating the
entanglement entropy of a thin strip in empty AdS, illustrated in figure 15, for which
analytic results have been known for a long time [2].

The entanglement entropy of a strip of length s in a nongravitating CFT; with dual
empty AdSgy; is given by [2],

d—1
s L |2 <L>d‘2 2 (T () (L>H (A1)

2(d-1)

where the first term is the divergent piece, which is subtracted upon renormalization. L2
is the volume factor of to the orthogonal directions which were generally omitted in this
note. Since the near-horizon geometry is flat, in order to compare with the above expression
we need to transform our coordinate u = up — ¢, so that,

du? du? d¢?
=y~ g (A.2)
(u) 1— 1 WC

Upon transforming the coordinate, we take the near-horizon limit. In these new coordinates,
we define ( = (, to correspond to u = uyl.

Now we define the flat coordinate such that dy = d{//¢ du;hl. The length of the near-
horizon belt in the flat setup is s = 2 [;* dy = 2y., where the factor of 2 comes from the
fact that our geometry is replicated on the other side of the horizon. In this coordinate, we
have y, = 2, /(7% . Now, substituting this into (A.1), dividing by the transverse volume

factor L?2, and renormalizing the expression we obtain,
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Figure 15. Here we illustrate the doubly holographic black string setup for a small radiation region
of width s. This corresponds to the limit I' — 1. The island region becomes infinitesimally small as
well; this is consistent with the Russian doll rule.

)

note that this is the area of the full initial HM surface spanning both exterior regions of

where we have multiplied the entropy by 4GS§+1 to obtain the corresponding area. However,

the bulk black string; to appropriately match with the conventions of this paper, we use A
to mean the area of the HM surface restricted to a single exterior region of the bulk.

In the limit where I' — 1, we take the above expression to (, — 0. After substituting
d =4 and u, = 1, we find that,

(A4)

We plot our numerical results for the Hartman-Maldacena area close to ., = 0 in figure 16
and demonstrate that they agree well with the analytic form (A.4), validating our method.

B Validation of numerics

One may wonder whether the results we are obtaining are indeed physical. To show that
this is the case, we compute the area difference as a function of the brane angle for different
cutoffs. We see in figure 17 that our area differences do not vary substantially for a large
range of cutoff choices.
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Figure 16. Area of the HM surface as a function of (, with u; = 1. The red curve is what we
expect for the near-horizon region (small ¢,) from theory, namely —0.030/,. Close to the horizon,
the data roughly matches the theory, but for some large enough (. the finite temperature kicks in
and we should not expect the data to match. It is not visible, but there is a small error in the “large”

(s region.
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Figure 17. Area difference as a function of brane angle, for I' = 0.32 for angular cutoffs ranging
from 0.0005 to 0.2 in steps of 0.0005 (with up = 1). Each curve is shown in a different colour, but
since they are very close it is hard to distinguish one from the other.
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