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ABSTRACT: We study the entanglement phase structure of a holographic boundary conformal
field theory (BCFT) in a two-dimensional black hole background. The bulk dual is the AdS3
black string geometry with a Karch-Randall brane. We compute the subregion entanglement
entropy of various two-sided bipartitions to elucidate the phase space where a Page curve
exists in this setup. We do fully analytical computations on both the gravity side and the field
theory side and demonstrate that the results precisely match. We discuss the entanglement
phase structure describing where a Page curve exists in this geometry in the context of these
analytical results. This is a useful model to study entanglement entropy for quantum field
theory on a curved background.
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1 Introduction

The Karch-Randall braneworld [1, 2] has taught us important lessons about quantum gravity.
It allows for constructing calculable models of entanglement islands [3-6] with the potential to
partially resolve a version of the black hole information paradox. This involves demonstrating
the existence of a unitary Page curve for black hole radiation [4, 5, 7] that in some cases can
be calculated analytically [5]. In higher-dimensional setups, these advances have exploited
the three equivalent descriptions of the Karch-Randall braneworld:

e The bulk description: A d-dimensional end of the world brane embedded in an
asymptotically AdS;y; space. The geometry of the brane is asymptotically AdS; and
the physics of the AdS441 bulk is described by pure Einstein’s gravity.

e The intermediate description: A quantum gravity theory on an asymptotically
AdS, space glued to a half space conformal field theory by imposing transparent bound-
ary conditions on their common boundary.



e The boundary description: A d-dimensional conformal field theory living on a mani-
fold with boundary where we impose conformal boundary conditions. This is also called
a boundary conformal field theory (BCFT).

The intermediate picture provides the context in which we can study the information transfer
between a d-dimensional black hole and a thermal bath. The bath is realized by the half space
conformal field theory, which absorbs the radiation from the black hole. The entanglement
entropy of the radiation can then be formulated as the entanglement entropy of a specific
bipartition in the boundary description. In a generic case the calculation of the entanglement
entropy for a boundary subregion A is done in the bulk description using the Ryu-Takayanagi
formula [8, 9]

Sy = Aiz(j) , (1.1)
where v is the Ryu-Takayanagi surface, which is a bulk minimal surface homologous to the
boundary subregion A, and G is the bulk Newton’s constant.

The authors of [10] successfully studied interesting aspects of conformal field theory on
a specific curved space: the four-dimensional eternal AdS Schwarzschild black hole with a
conformal boundary condition imposed on its asymptotic boundary. We emphasize that
in this context the black hole is not gravitating but it is still radiating.! For simplicity
that paper studied only the entanglement entropy of symmetric bipartitions of the system.
As we will review in Sec. 2, these bipartitions are two-sided, and capture some interesting
dynamical aspects of the system. The main result is an interesting phase structure of the
entanglement entropy of the bipartition; i.e. for certain bipartitions we would see time-
dependent entanglement entropy and for others the entanglement entropy would be constant.
The calculation in [10] is done for a four-dimensional AdS Schwarzschild black hole (with the
dual bulk geometry as five-dimensional black string in AdS). It is fully numerical and relies
on applying the Ryu-Takayanagi formula back in the bulk description.

However, in most entanglement entropy calculations such as the one described above, the
boundary description in terms of the field theory is not fully exploited. In this paper, we
provide a model in a lower-dimensional context in which the calculations can be done in both
the boundary description and the bulk description fully analytically, even with more general
asymmetric bipartitions. We first do the computation in the bulk description using the Ryu-
Takayanagi formula i.e. the gravity side calculation. Then we perform the calculation in the
boundary field theory description and find that it indeed matches the gravity side calculation.
This is a nontrivial check of the equivalence between the bulk description and the boundary
description which is also called the AdS/BCFT correspondence [9, 11, 12]. We then provide a
detailed analysis of the entanglement phase structure using our analytical results and discuss
them in the concluding sections.

!The radiating process equilibrates due to the conformal boundary condition for the stress-energy tensor
T, = 0 imposed on its asymptotic boundary.



2 Review of Previous Work

2.1 Holographic BCFT in a Black Hole Background

The paper [10] considered the black string geometry in AdS41, which has the following metric

1 d—1 du?
ds? = ————| — [1- 2= ) a2 + % +dTG_o +utdp®| (2.1)
u2 sin? p wdt 1-%
i T

where p € [0,7] and 4 = 0 U p = 7 is the asymptotic boundary. A Karch-Randall brane
is embedded in the bulk geometry as a constant-u slice. The brane cuts off the bulk region
behind it and if the brane sits at ;4 = pp then the leftover bulk region runs from py = up
to p = 7 (see Fig. 4). Using the AdS/BCFT correspondence, the field theory dual of this
geometry at a generic value of d is a boundary conformal field theory living on an AdS; black
hole background with conformal boundary condition imposed at its asymptotic infinity.

More precisely, the geometry on each constant—p slice of the bulk black string is an eternal
AdSy black hole. Hence the dual BCEFT is living on an eternal black hole background which
has two asymptotic boundaries (see Fig.1 for the boundary Penrose diagram). The paper
[10] considered the the entanglement entropy of the field theory subsystem as indicated by
the green intervals and time evolved the system as in Fig. 1 to study whether or not there is
a time-dependent entanglement entropy i.e. a nontrivial Page curve. The boundaries (away
from the asymptotic boundary) of the green intervals are denoted as u; and ug (in the
coordinate defined by Equ. (2.1)) and [10] considered only the case ur = ug.

To address this question it suffices to look at the zero-time slice using holography. The
reason is that there are two candidate Ryu-Takayanagi (RT) surfaces for the entanglement
entropy, with one going through the black string interior connecting the boundaries of the
two green intervals and the other staying outside the black string horizon connecting the
boundaries of the green intervals to the nearby branes, and the RT prescription tells us
to take the area of the smaller one to compute the entanglement entropy. The one that
goes through the black string interior, which is called the Hartman-Maldacena surface, will
monotonically grow with time (as pointed out by Hartman and Maldacena in [13]) and the
one that stays outside the black string interior, the island surface, will be constant in time.
The island surface has two disconnected components with one in each exterior region of
the bulk black string. Therefore, if the Hartman-Maldacena surface has the smaller area
at zero time then we will have a time-dependent entanglement entropy where initially the
entanglement entropy is calculated by the Hartman-Maldacena surface and later switches to
the island surface when the area of the Hartman-Maldacena surface grows beyond that of the
island surface. Otherwise, there is a constant entanglement entropy which is computed by the
island surface. As it was firstly noticed in [5] and later pointed out in [14], the later case with
a constant entanglement entropy can be understood as the black hole being a fast scrambler.
In this case the Hilbert space of the subsystem we are considering is presumably too small to
be further scrambled. By considering the simple case u;, = ur = ug and doing the calculation
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Figure 1: Two diagrams representing different time slices on the boundary (p = oo) Penrose
diagram of the eternal black hole on which the BCF T lives. The two red vertical lines repre-
sent the asymptotic boundaries where we impose conformal boundary conditions. Each time
slice is composed of a blue component on one side of the bipartition and a green component
on the other side. The green intervals, determined by u; and ug are drawn as equal size
here, but generically vary in our setup. The union of the two green intervals is the subsystem
we considered in [10] where we computed the entanglement entropy between the green and
the blue subsystems. We label time as t;, and tp on either side of the diagram, and for both
sides we take time evolution to go up the diagram (note the contrast with Figure 5). The
u-coordinate increases along a given time slice from 0 on the red boundary to uy at the
bifurcation horizon, where the black diagonal lines cross. At the jagged singularities, u = oo.

only on the zero-time slice Ref.[10] mapped out a phase diagram parameterized by ug and
the brane angle pup for parameter regions where we can and cannot have a time-dependent
entanglement entropy. The calculation in [10] was fully numerical for d = 5.

In this paper, we consider the lower dimensional case d = 2 which is tractable even for
ur, # ugr and beyond the zero-time slice. The calculation in this paper is fully analytical
and can be done on both the gravitational side using holography and the dual field theory
side with mutually matched results. We map out a more complete phase diagram for this
lower-dimensional case as compared with [10].

2.2 Calculations of Entanglement Entropy in 2d Holographic BCFT

In this section, we review the calculation of entanglement entropy in two-dimensional bound-
ary conformal field theories (BCFT49’s) and its simplification for BCFTs with holographic
duals. For convenience, we will closely follow [12, 15] to use BCFT3 on a flat background to
demonstrate the concepts and techniques for the calculation in this section. In later sections,
we will apply these techniques to our study of BCFT5 in an AdS black hole background.



2.2.1 Vacuum State

To review the calculation of entanglement entropy in 2d BCFTs, let’s consider the case that
the bulk CFT5 is in the vacuum state. For the sake of convenience, we will consider the
Fuclidean signature. In this case, the CFT is living on an upper half plane parameterized by
the complex coordinates (z, zZ) with Re{z} > 0. The conformal boundary condition is imposed
on the boundary Re{z} = 0 and it preserves half of the conformal invariance of bulk CFT5
[16]. The Euclidean time ¢ is going along the axis of Re{z} (see Fig. 2). We will compute
the entanglement entropy associated with the bipartition (the blue cross in Fig. 2) indicated
in Fig. 2. This bipartition factorizes the whole system into A and its complement A and we
primarily focus on A4 and use its reduced density matrix p4 to compute this entanglement
entropy. This entanglement entropy is computed by taking the limit n — 1 of the n-th Renyi

entropy
1

n—1

InTr(p) . (2.2)

S
To compute the trace Tr(py) in the above formula we can use the replica trick [17]. The
result is that this is equivalent to compute the one-point function of a twist operator ®,,(z, z)
inserted at the bipartition point (the blue cross in Fig. 2). The effect of the twist operator
is creating a branch cut on the upper half plane (UHP) which is equivalent to considering a
smooth 2d manifold with multiple covers as obtained from the replica trick. The branch cut
is from the blue cross to infinity along the dashed black line in Fig. 2.

t
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Figure 2: This diagram shows the situation for a BCFTy living on the upper half plane (UHP).
We consider bulk CFT to be in the vacuum state. The boundary is specified by the red horizontal azis
where we impose conformal boundary conditions. The time direction is along the horizontal axis. We
take a constant time slice (dashed black vertical line) that defines the quantum state we are studying.
Our goal is to compute the entanglement entropy associated with the bipartition indicated by the blue
CToSs.

-

As a result, the entanglement entropy of the bipartition that we are considering is trans-



lated to the following formula

S4 = lim ln(@n(z, 2)>UHP , (23)

n—11—n

where (z, ) is the coordinate of the bipartition point on the UHP.
It has been understood that the twist operator ®,(z, Z) is a primary operator [17] with

- c 1
n=h,=— —— . 2.4
hp =h 24<n n) (2.4)

Hence the one-point function in Equ. (2.3) can be fixed by conformal symmetry. The result

conformal dimensions

is similar in the computation of the Green’s function in electrodynamics when there is a
dielectric boundary. It can be computed by the doubling trick [? | the UHP (®,(z, Z))unp
is equal to a two-point function for a chiral primary field ®,(z) (with conformal dimensions
hn = 51 (n — %) , hn = 0) on the complex plane. More precisely, this two point function is
for one ®,, inserted at the bipartition point and the other ®,, at its mirror symmetric point
on the lower half plane,
Ab
(Pn(z, 2))unp = (Pn(2)Pn(z%))c = EEp (2.5)
where .A%n is a normalization constant that is determined by the specific conformal boundary
condition for the BCFT3 [12] and will be fixed below.

Another way to compute the one-point function (®,(z,Zz))unp is to do the boundary
operator expansion (BOE) for the bulk operator ®,(zZ) first and compute the expectation
value of the resulting operator sum. The BOE states that for a BCFT on the UHP any bulk

operator O;(z, Z) can be expanded as sum of boundary operators O;(z),

bJ
Bz'

Oi(2) = 3 Gvara;

J

Cly, 3,10, (x). (2.6)

In this expression A; is the conformal weight of O;(z,2) (i.e. h; = h; = %), Ay is that
of the boundary primary operator O J(z) and we use the complex coordinate z = z + iy
(y > 0) on the UHP. The coefficients B?/ are the so called the BOE coefficients and they are
determined by the boundary condition and the structure of the parent CFT. The boundary
primary operator is normalized as

(Or(z1)0y(zs)) = _ G (2.7)

= [y — w257

where we have BY; = 3" ; BY’G;. Matching the result from the doubling trick Eq. (2.5) with
the vacuum expectation value of the BOE expansion Eq. (2.6), we see that the only boundary
operator in the BOE that contributes to (®,)yp is the identity operator 1, and we have

A, =8 .. (2.8)



As result we have the following explicit expression for entanglement entropy of the bi-

partition we are considering;:
20
Sa= gln<€A> + In(gp) , (2.9)

where ¢4 = (z — z)/2i is the length of the subsystem .4 and the second term is called the
boundary entropy. It is defined through the regularization

1
In(gp) — ¢ In(e) = lim

6 n—1 1 —

1 (B” ) 2.10
n N\ HLg,1 ( )

where € is a UV cutoff that universally appears in the entanglement entropy of quantum field
theories. We emphasize that the result Equ. (2.9) matches the holographic computation in
[11] and this is the universal form for the bipartite entanglement entropy of the vacuum state
in any BCFT on the UHP when the background geometry is flat.

2.2.2 Thermal field double state

Equipped with the concepts and techniques reviewed in the former section, we will consider a
more relevant case to black holes in this section. We consider the thermal field double (TFD)
state of two 2d BCFTs. We emphasize again that the two BCFTs in this section are all in
flat background. We will label the two BCFT's separately as L and R.

The TFD state can be prepared using an Euclidean path integral. In this Euclidean
picture, the time direction is periodic, and we can choose the time evolution for the L and
R BCFTs such that the TFD state evolves non-trivially (see Fig. 3a). We would like to
calculate the entanglement entropy of the bipartition shown in Fig. 3a which factorizes the
whole system into the subsystem Ay U Ag and its complement. In analogy with the previous
section, computing the entanglement entropy using the replica trick is equivalent to the
computation of the two-point function of a twist operator ®,, and an anti-twist operator ®,,
inserted respectively at the two blue crosses in Fig. 3a. Denoting the complex coordinate of
the two crosses respectively by wy, and wg, the resulting two-point function is

(@, (wr, WR)®p(wr, WL)) - (2.11)

In order to compute this two-point function, we will map the configuration to the upper half
plane, which is parametrized by z coordinates, using the following conformal transformation

—i. (2.12)

Under this transformation, the boundary circle in w coordinates (red circle in Fig. 3a) is
mapped to the real axis in the UHP and the infinity in w is mapped to a point z = i/2.
Moreover, the insertion points of the twist and anti-twist operators are mapped to two points
on the UHP as shown in Fig. 3b.



(a) The thermofield double state and its time (b) Conformal mapping of the region on left to a UHP
evolution

Figure 3: a) The two Fuclidean BCFTs L and R in the TFD state: time evolution is rotation
with respect to the origin, hence the red circle is the time evolution of the boundary. The two black
dashed lines define the zero time slice. Under the chosen time evolution, L and R evolve clockwise
and counter-clockwise respectively, as indicated. We are interested in the entanglement entropy of the
subsystem A = Ap U Agr corresponding to the solid green line segments. b) The UHP which results

from the conformal mapping of the region outside of the red circle in Fig. 3a. The circular boundary is

mapped to the real axis and infinity is mapped to (0, %) The location of twist operators is mapped to

the two blue crosses, separated in the horizontal direction. The branch cut is mapped (and deformed)
to the dashed green line connecting the two operators.

The task now is to compute the following two-point function of a twist operator and an
anti-twist operator on the UHP:

<(i)n(ZL,ZL)(I)n(ZR72R)>UHP~ (2.13)
In the absence of the boundary, this is the standard two-point function of primary oper-
ators in 2d CFT and it is totally fixed by the conformal symmetry as:

Ean

(®n(2L, ZL)Pu(2R, ZR))C (2.14)

" e -z
where d,, denotes the conformal weight and it equals to 2h, = 2h, = 15(n — %) In this
expression we have set the normalization of the two-point function to be €29, (where € is
a UV cutoff) and as we will show later that this is in order to have clean form for the
entanglement entropy.

In this presence of the boundary, this two-point function is not easy to compute for a
general 2d BCFT. The reason is that the doubling trick will translate it into a four-point
function in a chiral CF'T on the complex plane. In general, there is no universal form of the
four point function in 2d CFT and it is determined by the details of the CFT. If we want
to use the operator production expansion to compute this two-point functions there are two
ways to do this. The first way is based on the observation that away from the boundary the
structure of the BCFT is the same as its parent CFT. This tells us that the operator product
expansion (OPE) for two bulk operators is the same as in the parent CFT:

ck _
Oi(z1, 21)Oj(2’2, Zo) = g 71— Z2|AZZ+A]'—A1€ CAz'AjAk (212, Z12, 02, 2] O (22, Z2) , (2.15)




for bulk primaries O and OPE coeflicients éﬁ Hence to compute the two-point function
Equ. (2.13), we have to compute the expectation value of the resulting sum of bulk primary
operators. This turns to be a sum over one-point functions of the bulk primary operators Oy,
appearing in the product, as per Eq. (2.5) and Eq. (2.6). This is the so called bulk channel.
Alternatively, we can perform the boundary operator expansion (BOE) as in Eq. (2.6) first
and then compute the resulting (normalized) boundary two-point functions. This is called
the boundary channel.

The consistency of the BCFT tells us that these two channels should produce the same
result. This is a nontrivial bootstrap constraint. For holographic BCFTs, which is the case we
will be interested in, this constraint will significantly simplify the computation. A holographic
CFT is a CFT with holographic dual as Einstein’s gravity in one-dimensional higher anti-de
Sitter space [18]. In the 2d CFT case, it is characterized by the following two properties [18]:

e The central charge c is large.

2

e The spectrum of light operators, of conformal dimension O(c?),? is sparse.

The first condition implies that in the OPE the contribution from operators of conformal
dimension O(c) or higher, which is usually referred to as heavy operators, are suppressed (see
[12, 18, 19] for details). The second condition ensures the total contributions to the OPE
from the light operators is a multiplication of the contribution of the identity operator. As a
result, to a precise level of approximation, the whole OPE is proportional to the contribution
from the identity operator and this called the vacuum dominance. This greatly simplifies the
calculation of the higher-point correlators [12, 18, 19].

However, in our case we consider holographic BCFTs and in this case the two require-
ments above are naturally generalized to boundary operators [12] though with some subtleties.
Let us consider the bulk channel first. In the appearance of the boundary, the one-point func-
tions of bulk operators are now generically nonzero, and in the calculation of the two-point
function Equ. (2.13), this effect may compete with the effect that contribution from the heavy
operators are suppressed. Nevertheless, this could happen only if we are close enough to the
boundary such that the one-point functions of heavy operators are large enough. With this
in mind, we should use the boundary channel to compute the two-point function Equ. (2.13)
when the two bulk operators are close enough to the boundary. In this case, as it is shown in
Eq. (2.6), the contribution of a boundary operator with conformal dimension A ; to the BOE
of ® scales as y®/. Hence for small enough y the contribution from heavy boundary operators
is suppressed and by the sparseness requirement we just have to look at the contribution from
the identity operator. This is called the vacuum dominance in the boundary channel. How-
ever, for large y, the contribution from heavy boundary operators is not suppressed anymore.
This time we should work in the bulk channel.

In summary, the use of the bulk channel vacuum dominance for the calculation of the
bulk two-point function for holographic BCFTs works only when the operator insertions are

”

?In this paper we follow [15] where the symbol O(...) is used to denote ”of the order ...”.



far away from the boundary, and the vacuum dominance in the boundary channel applies
only when close to the boundary. Consistency of the BCF'T input a bootstrap constraint that
the results calculated by the bulk channel and the boundary channel must match such that
there is a unique result. Hence, we have to figure out the criterion for the applications of the
bulk channel vacuum dominance and the boundary channel vacuum dominance to ensure the
uniqueness of the result.

Once such criterion is that, when we compute the bulk two-point function for a given pair
of operator insertions, we examine the identity block in both channels and choose the larger
one. This can be justified in the following way. In a given channel each contribution to the
two-point function from different blocks (operators) is positive and if we take all corrections
into account we should get the same result for both channels. Thus, the larger of the identity
blocks in different channels is a better approximation. In other words, in the channel with
a smaller identity block contribution we would have a larger error if we neglect everything
except for the identity block.

As a result, the two-point function Equ. (2.13) for a holographic BCFT on an UHP is
given by

= - . e Bgﬂ15%n1

<‘1>n(ZL, ZL)(I)H(ZR, ZR)>UHP = max <|ZL — ZR|2d"’ |ZL — Zz|d”|ZR — Z}Hd") > (2.16)
where the first (second) term is the contribution from bulk (boundary) channel. From this
expression, we can immediately deduce the entanglement entropy for the TFD state of a
holographic BCFT in flat background. However, we defer details to later sections where
we consider the more general case of a curved background. Nevertheless, we notice that
the maximization prescription for the two-point function is equivalent to a minimization
prescription for the entanglement entropy (due to the minus sign in Eq. (2.2)), and this is
consistent with the Ryu-Takayanagi (RT) prescription in holographic computations [8, 20].
We will in fact see that the result exactly matches the RT calculation.

3 The Gravitational Calculation

The bulk geometry we are considering is the AdSs black string whose bulk geometry is given
by d =2 of (2.1), with the metric

1 du?
u® sin” | UH 1-— an
For the sake of convenience we will use the following reparameterization
—— = cosh p, (3.2)
sin g
and the metric becomes
(1—-2) du?
2 _ 2 u 2 2
ds® = cosh p[— UQHdt +u2( . +dp”. (3.3)

,10,
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Figure 4: A cartoon representation of the “left-side” thermofield double is shown here in
the Poincaré half-plane. The light purple shaded region is excised from the AdS bulk by the
KR brane at constant angular coordinate p.. The convenience of the p coordinate over the
u coordinate is clear here—we have conformally compactified the braneworld’s infinite extra
dimension into this finite diagram, so it now runs along the angular coordinate in the Poincaré
half-plane and we identify p = 0, 5,7 with p = —00, 0, 00, respectively. Also shown are the
island and radiation regions, drawn in blue, and the island surface and HM surface, drawn in
green and orange, respectively. The black string horizon forms a dotted arc at the coordinate
u = upg. For the eternal black string, we must also consider the “right-side” thermofield
double, which looks identical to the diagram above, except that we allow a bipartition for the
radiation region at a different coordinate v = upr, where we may have uy, # ug.

A complete picture of this geometric setup, illustrating the use of the p coordinate and its
correspondence with the p coordinate, is presented in Figure 4.

This geometry can be obtained using the embedding space formalism where the geometry
is embedded as a codimension-one sub-manifold of a four dimensional Minkowski space

ds® = —dX? — dX? 4+ dX2 +dX?3, (3.4)
with the following embedding equation
Xe+X2-Xx2-X2=1. (3.5)

The metric (3.3) can be recovered using the following parameterization of the embedding

— 11 —



equation

QN —
Xo = Mcoshp,
U
[12
uf — uuy 2t
X, = 2751nhlcoshp,
u B (3.6)
2
Uy —uuHg 2t
Xo = 27coshlcoshp,
u B
X3 =sinhp,

where 8 = 4wuy is the inverse Hawking temperature. The advantage of using this embedding
space formalism is that it is easy to calculate the area of the Hartman-Maldacena surface
without actually solving the minimal area (geodesic) differential equation. In this embedding,
we can calculate the length ¢ of a geodesic between the coordinates (X, X7, X2, X3) and
(X4, X1, X5, XY) as

0 = cosh™ (XX} + X1 X — Xo X} — X3X3). (3.7)

In contrast to the island surface, which starts at the bipartition and ends on the KR brane,
the HM surface passes through an Einstein-Rosen bridge and ends at the right bipartition
on the right-side thermofield double. In our u — p coordinates, the left and right bipartitions
lie at (u, p) = (ur,00) and (u, p) = (ug,00). To take advantage of the embedding (3.6), we
introduce a regularization parameter p., which we will take to co so that our bipartitions lie
on the asymptotic boundary. Then, we may embed the left bipartition as

2up — ug,
XOL = ———cosh pe,
ur,

Uf —ULUH 9t
sinh — cosh p,,
(3.8)

ufp —ULUH ot
cosh 3 cosh pe ,

i

ur,
L _ _: h
X3 = sinh pe ,

- 12 —



and the right bipartition as

Qup —
Xk = SUH T UR (osh Pe
UR
2 .
\/Uf — URUH or(—t + B
XE=29 sinh ( 2~ cosh p, ,
UR s
[0/2
Uy — URUH At
=2— sinhicoshpe,
up B (3.9)
2 .
Ug — URUH or(—t + B
XE=29 cosh ( 5 2)coshp€,

i

2
Ug — URUH 2mt

= -2 cosh 7 cosh pe ,

UR
XF = sinh p, .

Note that for the right bipartition, we have taken the time coordinate ¢ — —t + g, corre-
sponding to the reversal of the time-like Killing vector field on the other side of the black
string horizon. For clarity, the situation is shown in Figure 5. Henceforth, we will use the
substitutions

AL:’U,H—UL, AR:uH—uR (310)
where appropriate, to simplify and elucidate the physics in the following results. The area of
the Hartman-Maldacena surface can now be readily calculated using (3.7) as

Apym = cosh Y (XE X 4+ xExT — XEXE - XEXT

(2uH—uL)(QUH—UR)+4UH\/ALARCOSh<%) ) )
cosh”(pe) — sinh*(p¢) | .

= cosh™!

Urur
(3.11)
Note the hyperbolic trig identities
2x —2x 1
cosh?(z) = ej + 5 1 + 3 (3.12)
2x —2z 1
sinh?(z) = % _C 1 + 7 (3.13)

Since p is large, we can substitute cosh?(x) e?TI, sinh?(x) — esz, and cosh™!(z) — log(2z).

,13,



Figure 5: An AdS Penrose diagram shows a cartoon projection of the Hartman-Maldacena

surface in blue, connecting our two bipartition points, on the left- and right-universe patches
(left- and right-exterior). The Penrose diagram is shown as a projection onto a constant
p = pe slice, where the purple dashed line is the singularity at ©w = oo, the red diagonal
lines are the event horizon at u = ug, and the black borders on the left and right represent
the defect at u = 0. The color-gradient contours show the constant time-slices and reversed
direction of the time-like Killing vector field on each side of the black hole. Notice that in
this diagram, uy, # ugr, and the HM surface is not symmetric across the event horizon. Also
note that the HM surface is not confined to this diagram since it generically varies in the

coordinate p.

Following these substitutions, we obtain

Anm = log

— 14 —

(2ug —ur)(2ug — uR) + 4ugvV/ALAR cosh(%) 2 e2pe
2urup © 2 ]
(ugr — ug)(2ug — up) + dug BB eosh (1)
— —} + 2pe
i 2uruR 2
_ 47t
uH (AL +Ar+2ALAR cosh(i)) } + 2pe,
LU UR 5

(3.14)



and using the Ryu-Takayanagi formula we get the associated entanglement entropy

A
SHM = AEM
3
c U 47t c (3.15)
= —log [7H A+ Ag+ 2/ ALAgcosh| — } + =P,
6 UrLUR /8 3
where we used the Brown-Henneaux central charge ¢ = % In the special case u = uy, = ug,
using Ay = ug — u, this reduces to
c 2ug A 47t c
SHM = 6log [ 52 “ <1 + cosh<ﬂ>> } + gpe. (3.16)

We now compare this result to the pair of minimal island surfaces crossing from the bipar-
titions uy, and up to their respective physical branes at p = p,. In general, we compute the
area of the island surface

Ajsland = / ds (3.17)
min. island surface

and rewrite ds in terms of dp using the metric in (3.3)

cosh? p
u(p)? (142

UH

ds=dp |1+

u'(p)2. (3.18)
)

This is clearly minimized for u/(p) = 0 = wu constant, so the combined area for the pair of
island surfaces reads

Pe
Ajgland = 2/ dp = 2(pe - P*) s (319)
where p, is the location of the physical brane and the entanglement entropy calculated by
the island surface is

Ajsland _ ¢ c

— St Zpe, 3.20
1Gs 3P+ 3P (3.20)

S island =

According to the RT proposal the actual entanglement entropy is the minimum of Sgy and

Sisland
S = min(S’HM, Sisland) . (321)

4 The Field Theory Calculation

In this section, we apply the techniques developed in Sec.2.2 to provide a direct field theory
computation of the entanglement entropy that we computed holographically in the previous
section.
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4.1 Useful Geometries

Since the field theory is living on a curved background, to compute the entanglement entropy
on the field theory side, we first study the geometry on the field side. The geometry is given
by the boundary geometry (u = 7) of Eq. (2.1). This geometry is described by the following

metric
1 i1 du? dz?
2 2 d—2
ds® = —— (1 — ——)dt" + 5 py) 5 (4.1)
U (= U (1_ud*1) U

which is an AdS; planar black hole for a generic d and we have two copies of such geometry
corresponding to the two asymptotic boundaries of Eq. (2.1). We consider the special case
d = 2 where the metric is

1 U du?
ds? = —— (1 — —)dt*? + ——
5 u2( UH) +u2(1—u1;)’

(4.2)

and the conformal boundary of the 2d BCFT is located at w = 0. This metric can be put
into the conformally flat form by the following coordinate transform

ds® = Q(uy)? [— dt* + duﬂ , Ux = —UR log<1 - u) , (4.3)
Ug

where u, € (0,00) and the conformal factor is

Uy (1)) = %1 it (4.4)

To incorporate the fact that we have two asymptotic boundaries and a finite temperature in
the path integral language, we will consider the Euclidean version of the geometry

ds® = Q(u,)? [d72 + duz] , T~T+[, (4.5)

where the zero-time slices of the two asymptotic boundaries of eq. (3.3) are the 7 = 0 and
7 = 5 slices respectively and 7 = it. Therefore we have a cylindrical geometry the perimeter
of whose cross section is 8 and it is half infinitely long (see Fig. 6a).

To study the conformal properties of this geometry we can use complex coordinates

Z=Ug +IT, Z= Uy —IiT. (4.6)

This geometry can be conformally mapped to the plane with a disk ww < u?, removed (i.e.
the conformal boundary is now the circle ww = u%{) by the following map

z

W= ugeH , (4.7)

and in this new coordinate the metric is

ds® = Q(u,)2dzdz = 4Q(u,) e 11 dwdi . (4.8)
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(a) BCFT on a half- (b) Conformal mapping of
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Figure 6: a) The geometry of eq. (4.5) is (conformally) a half-infinitely long cylinder. The red circle
is the place of the conformal boundary u, = 0. b) The cylinder is now conformally transformed to a
plane by eq. (4.7) where the image of the cylinder covers only the region outside of the red circle. The
time coordinate T is mapped to the angular coordinate on this plane, constant u, slices are concentric
circles and the red circle is the conformal boundary.

Figure 7: The plane with a conformal boundary Fig. (6b) can be further conformally mapped
to an upper-half-plane (UHP) by Eq. (4.9). The conformal boundary is mapped now to the
real axis of the plane.

This geometry can be understood as a path integral preparing a thermofield double state
(TFD) of two half-space BCFTs [12, 15] if we use arg(w) (i.e. 7) as the time-coordinate
and it is in the vacuum state of two half-space BCFTs if we instead use Im(w) as the time-
coordinate.

Similar to Equ. (2.12), we can further conformally map the geometry to the upper-half-
plane (UHP) by

UH

wzv_i—iuH, (4.9)
2

where the conformal boundary is mapped to the real axis v — v = 0 and the metric transforms

to B
ds? = 40 (uy)2e v ud (e +i)2(eTr — i)2dvd. (4.10)

4.2 Computation of the Entanglement Entropy

To compute the entanglement entropy, we first consider the simplest bipartition: uy, = ug =
u. As we reviewed in Sec. 2.2, the entanglement entropy can be computed by first calculating
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the two-point function (®,(ug,t)®,(ur,t)) of the twist operator ®,(u,t) in the geometry
of Eq. (4.3). Since we are studying a holographic BCFT [12, 21], we will use the vacuum
dominance to compute this two-point function. The result will be similar to Equ. (2.16). We
will see that the boundary channel will reproduce the result of the island surface and the bulk
channel will reproduce the result of the HM surface in the gravity side calculation in Sec. 3.

4.2.1 Boundary Channel

Let’s first consider the boundary channel. As we reviewed in Sec. 2.2, this is in a sense a
disconnected channel and equivalently we are just computing the product of two one-point
functions (¢, (ur,t))p(én(ur, 1)), for operators ¢y, (urg),t) near the boundary. We know such
one-point functions when the field theory is on an flat UHP. However, in the current case we
can map the BCFT to a conformally flat UHP described Eq. (4.10) and as opposed to the
flat case we have to further dress the correlator by the conformal factor. The result is given

by

(@1, £)) = 272 S (e o+ 0) A (e — i) A (1) A (@ (0, D)) Brag vrep

2*AneﬁA”u§A”(eﬁ _|_7;)7An(e2qu _Z')fAnQ(u*(u))*AnB%nl
- (v —0)An
b
= Sa,

(4.11)

where we follow the notation we introduced in Sec. 2.2 that Bgnl denotes the coefficient of
the identity operator 1 in the boundary operator expansion (BOE) of ®,,. As a result, the
two point function in the boundary channel is given by

By B |
(@n(ur, tr)®ulur, tr))bdy = —x, " - (4.12)
Therefore the entanglement entropy is
Spay = lim — log(®y,(ur,tr)®n(ur, tR))bdy
(4.13)

2
:210ggb+§log( >,

€
where we have used Equ. (2.10) to the BOE coefficient by the boundary entropy term.

4.2.2 Bulk Channel

Now let’s consider the bulk channel. Applying vacuum dominance, we are just computing the
two-point function of the primary operator as if there is no boundary. We know the result for
such a two-point function if the field theory is on a flat plane. In our case we can conformally
map the geometry into a conformally flat plane as in Equ. 4.8. The result of the two-point
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function is the same as that in the flat plane Equ. (2.14) case, however with the conformal
factor Q(u,) properly dressed. It is given by

(B0, 12, ) bt = (o, 1+ 1) (0, 1)

UxAp UxADp

— 4 Bng 2upy Q(u)fA"e 2ug Q(u)fA"@Jn(u, —t+ ig)fbn(u, t))Flat Plane

uxAp

B 4=8nQ(u) e wn 20

2A )
lwr, — wg|

(4.14)

where we followed Equ. (2.14) to put a cutoff e for later convenience. Then we have the
entanglement entropy calculated by the bulk channel

1
Sbulk = — lim tr p"
n—1n-1

. 1
= lim log< n(ur,tr)®n(ur, tR))bulk

n—11—

. (4.15)
= —log 62“H 1——+e e 1——

6 ug ufg

c 2ug(ug — u) 47t c 2
= glog {uQ <1 —|—cosh/8>] + 3log<€> )

where we used Equ. (4.7), Equ. (4.6) and Equ. (4.3) to express wy, and wg in Equ. (4.14) in
terms of uy, = ugr = u and 7 and we transformed back to the Lorenzian signature ¢t = —i7 at
the end. We can rewrite this in the A, = uyg — u convention as

c 2ug A 47t c 2
Sbulk = 6 10g |: ZQ u <1 + cosh B>:| =+ g 10g<6> . (416)

Hence comparing the field theory results Eq. (4.13) and Eq. (4.16) with the gravity side
calculations Eq. (3.20) and Eq. (3.15) (with u;, = ur = u), we can see that the field theory
results precisely match the gravity side calculations if we use the following identifications

log gy = —%p* , €=2e Pe. (4.17)

Now for the most general case that uy # ur we have

(@p(ur, tr)Pn(ur, tr))buk = (Pr(u, —t + ig)q)n(uvt»bulk

A A
_4—Aneu§5Hn Qur)~ Ang EEHRQ(UR) A

B 4.18
X (@ (g, 1+ 1)@, )l (415
Uy An uxRAn
4_A"e g O(up) e 2em Qug) Ane?bn
lwr, — wg|**"
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Therefore, the entanglement entropy calculated by the bulk channel is

Spulk = lim log(®y, (ur, tr)®Pn(ur, tR))bulk
n—11—
L2
= —log YH_ ~ i 1———1—62“H 1——
6 eurup U
i 4 2 u ubi
— Zlog | 5H—((1— <) 4 1—+2\/1—\/1—“L6H+e H)] (4.19)
6 €E“UrUR umg
rdu?, — 2 -2 dup/ALA 4t 2
~ Clog U UHUL, uHUR_I_ UH L Rcosh amt ]—i—glog 4
6 °L QuLuR 2urug B 3 €
4t c 2
-9 As + Ap+2v/ALAp cosh [ -2~ }71 2).
G 08 _uLuR< L+ AR+ LARCOs ( 3 >> +3 0g<6>

which again precisely matches the gravity side calculation Equ. (3.15) under the identification
of the cutoffs Equ. (4.17).

5 Limits and Page Curve Behavior

Having shown that the gravitational and the field theory calculations of Sigjana = Shay and
SHM = Sphuik match, we can now describe the entanglement entropy given by the minimum
n (3.21). With these analytical results, we will perform an analysis similar to [14] on the
nature of the Page time and Page angle in our AdSs setup.

First, we note that in the limit ¢ — 0, the area of the HM surface, Equ. (3.14), goes to

2
AHM—log{ ( A+ AR> ] + 20 . (5.1)
The Page time Zpage can be calculated by

SHM(tPage) = Sisland 5 (5'2)

and the result is
e P urup —up (AL 4+ AR)

p “1
t = — cosh 5.3
Page A Quy /—ALAR ( )
For the special case ur, = ug = u, and taking the convention A, = uy — u, we have
B 1 672p* u2
t = — cosh —-1]. 5.4
Page = ©° Uy (5.4)

The Page angle ppag. describes the brane angle at which a non-trivial Page curve arises
(tpage > 0) and can be calculated by

Sum(t = 0) = Siglana (p+) - (5.5)

— 20 —



The result is

PPage = L og [ . AR (5.6)
2 ug (VAL 4+ VAR)
with the special case u = uy, = ug given by
1 u?
PPage = 5 log [4UHAJ . (5.7)

Here, the special case u = ur, = ur behaves similarly to the uy # ur case—the Page angle
increases monotonically in either variable. Then, let us analyze the special case. In particular,
we plot the dependence of the Page angle on u in Fig. 9. We can calculate the point at which
the Page angle is 0, corresponding to a tensionless brane. The result is

Up—o = (22 — 2)ug . (5.8)

This plot also acts as a phase diagram of sorts—for a given bipartition location u, placing
the KR brane at an value of p below this curve leads to a non-trivial Page time, since the
HM surface initially dominates. Above this curve, the island surface is always minimal, and
dominates for all time. Note that for u > u,—o, any positive-tension brane (p, < 0) will yield
a non-trivial Page curve.

1.0

08|

Ur/Uy

0.0 0.2 0.4 06 0.8 1.0
u /uy

Figure 8: A density plot of the Page angle ppage with respect to both uy and ug. The
contour with ppage = 0 is shown in maroon as a point of reference. Drawn in dashed blue and
dotted green are the slices of the parameter space shown in figures 9 and 10, respectively.
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Figure 9: A plot of the Page angle ppage in the special case u = uz, = ug. The point at
which the Page angle gives the tensionless brane p = 0 is marked on the horizontal axis, at
u = (2v/2 — 2)ug. The regions in which the island and Hartman-Maldacena surfaces initially
dominate the entropy calculation are marked. This plot is equivalent to plotting the density
along a diagonal slice of Figure 8 where uy, = up.

pPage
10
5+ Island dominates att=0
: ..---.------'J up
----------------- HHLZ-----"'"""""""‘. Uy
-5 Hartman-Maldacena dominates att =0
-10t%

Figure 10: A plot of the Page angle ppage in the special case ur = “Z. Note that the
horizontal axis here now refers to the location of uy. This plot is equivalent to plotting the
density along a horizontal slice of Figure 8 at up = “Z.
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We can also plot the Page angle as a function of vy, and up using a density plot, as shown
in Figure 8. This yields a somewhat surprising result—even for very different bipartition
locations uy, and wug, the Page angle is roughly the same (notice the large orange region in
the figure). It changes dramatically only when either of ur and uj are very close to 0 or
both are close to ug. Figure 10 illustrates how the phase diagram changes when we fix one
bipartition location (this time specifically at “f)—the Page angle is very stable for a wide
range of values uy,, blowing up only when the bipartition is very close to the defect. Following

this analysis, we see that taking just one bipartition to ug gives us

1 1
lim  ppage = 3 log [Z]j = —log [UL] : (5.9)

UR—UH 2 Ug —ur

In this limit, we also see that u; = “ yields a Page angle of zero. Furthermore, we see
from the contour ppage = 0 that if either uy or ug is less than “TH, there always exists a a
configuration of uz, and ug such that ppage < 0. Conversely, Page angles greater than 0 (a
brane at such an angle would have negative tension) only arise when at least one of uy, or ug
is greater than “IZ.

To see the Page time more explicitly, we examine the density plot in Figure 11. Here we
see that constant-time contours trace out plots similar to 9 (which is, of course, the limiting
edge of the density plot at tpage = 0). From this, we conclude that the Page time is roughly
the same across a large range of u coordinates, changing dramatically only when w is close to
0 or ug. This is consistent with and reinforces our findings that the Page curve behavior of
our setup is not strongly influenced by small or medium changes in the bipartition location,

except when it is close to either the event horizon or the defect.

6 Conclusion

In this paper, we constructed a lower dimensional analytical model for a holographic BCFT
living on a black hole background. The BCFT lives on a two-dimensional eternal AdS
Schwarzschild geometry with conformal boundary conditions imposed on its asymptotic bound-
aries. The dual bulk geometry is an AdSs black string with an embedded Karch-Randall brane
[1, 2]. This is a setup that satisfies the AdS/BCFT correspondence [9].

We studied entanglement entropy for a two-sided bipartition for the BCFT. This bipar-
tition is known to capture certain dynamical aspects of the system [13] and is relevant to
the recent Page curve calculation in the Karch-Randall braneworld [15, 22-96]. We found
an interesting phase diagram as well as analytical agreement between the field theory and
gravity calculations for the more general case where the bipartitions on the two sides of the
thermofield double are and are asymmetric, which is a nice check of the AdS/BCFT setup
and potentially a valuable result in its own right.

In particular, we found that for any fixed brane angle, the Page time has strong depen-
dence on the bipartition point only when at least one of the bipartitions is near the defect, or
when both are near the event horizon. Physically, this can be understood as a consequence
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u/uy

Figure 11: A density plot of the Page time tp,ge, in the special case u = ur, = ur. The plot
cuts off at tpage = 0, at the boundary given by the Page angle plot in Fig. 9.

of the system’s geometry on the HM surface in each case. In the limit that either bipar-
tition approaches the defect (u — 0), the metric forces the difference between the areas of
the island and the HM surface to blow up. The opposite limit—the HM surface approaching
zero area—can occur only if both bipartitions approach the event horizon simultaneously, as
a surface stretching from the event horizon to any point on one of the boundaries still has
non-zero area. This is likely saying that the Page time deviates significantly when the number
of degrees of freedom on one or the other side of the bipartition is small. We emphasize that
this is true only for the theory on the curved background. For example, if the bulk is a BTZ
black hole rather than black string, the boundary is flat and the HM surface has the same
area for any symmetric bipartition, in which case the only dependence of the Page time on
the bipartition point comes from the island surface. In this case, the significant deviations
near the boundary don’t apply. We conclude that studying different types of systems, and
in particular ones where either or both sides are tractable analytically can lead to further
understanding of the evolution of information. In our analysis we show that the asymmetric
bipartition leads to different limiting behavior than the symmetric case. The more general
results from the asymmetric bipartition give new insights into the field theory interpretation.
This is the first exact result of this type.
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