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Abstract: We study the entanglement phase structure of a holographic boundary conformal

field theory (BCFT) in a two-dimensional black hole background. The bulk dual is the AdS3

black string geometry with a Karch-Randall brane. We compute the subregion entanglement

entropy of various two-sided bipartitions to elucidate the phase space where a Page curve

exists in this setup. We do fully analytical computations on both the gravity side and the field

theory side and demonstrate that the results precisely match. We discuss the entanglement

phase structure describing where a Page curve exists in this geometry in the context of these

analytical results. This is a useful model to study entanglement entropy for quantum field

theory on a curved background.
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1 Introduction

The Karch-Randall braneworld [1, 2] has taught us important lessons about quantum gravity.

It allows for constructing calculable models of entanglement islands [3–6] with the potential to

partially resolve a version of the black hole information paradox. This involves demonstrating

the existence of a unitary Page curve for black hole radiation [4, 5, 7] that in some cases can

be calculated analytically [5]. In higher-dimensional setups, these advances have exploited

the three equivalent descriptions of the Karch-Randall braneworld:

• The bulk description: A d-dimensional end of the world brane embedded in an

asymptotically AdSd+1 space. The geometry of the brane is asymptotically AdSd and

the physics of the AdSd+1 bulk is described by pure Einstein’s gravity.

• The intermediate description: A quantum gravity theory on an asymptotically

AdSd space glued to a half space conformal field theory by imposing transparent bound-

ary conditions on their common boundary.
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• The boundary description: A d-dimensional conformal field theory living on a mani-

fold with boundary where we impose conformal boundary conditions. This is also called

a boundary conformal field theory (BCFT).

The intermediate picture provides the context in which we can study the information transfer

between a d-dimensional black hole and a thermal bath. The bath is realized by the half space

conformal field theory, which absorbs the radiation from the black hole. The entanglement

entropy of the radiation can then be formulated as the entanglement entropy of a specific

bipartition in the boundary description. In a generic case the calculation of the entanglement

entropy for a boundary subregion A is done in the bulk description using the Ryu-Takayanagi

formula [8, 9]

SA =
Area(γ)

4GN
, (1.1)

where γ is the Ryu-Takayanagi surface, which is a bulk minimal surface homologous to the

boundary subregion A, and GN is the bulk Newton’s constant.

The authors of [10] successfully studied interesting aspects of conformal field theory on

a specific curved space: the four-dimensional eternal AdS Schwarzschild black hole with a

conformal boundary condition imposed on its asymptotic boundary. We emphasize that

in this context the black hole is not gravitating but it is still radiating.1 For simplicity

that paper studied only the entanglement entropy of symmetric bipartitions of the system.

As we will review in Sec. 2, these bipartitions are two-sided, and capture some interesting

dynamical aspects of the system. The main result is an interesting phase structure of the

entanglement entropy of the bipartition; i.e. for certain bipartitions we would see time-

dependent entanglement entropy and for others the entanglement entropy would be constant.

The calculation in [10] is done for a four-dimensional AdS Schwarzschild black hole (with the

dual bulk geometry as five-dimensional black string in AdS). It is fully numerical and relies

on applying the Ryu-Takayanagi formula back in the bulk description.

However, in most entanglement entropy calculations such as the one described above, the

boundary description in terms of the field theory is not fully exploited. In this paper, we

provide a model in a lower-dimensional context in which the calculations can be done in both

the boundary description and the bulk description fully analytically, even with more general

asymmetric bipartitions. We first do the computation in the bulk description using the Ryu-

Takayanagi formula i.e. the gravity side calculation. Then we perform the calculation in the

boundary field theory description and find that it indeed matches the gravity side calculation.

This is a nontrivial check of the equivalence between the bulk description and the boundary

description which is also called the AdS/BCFT correspondence [9, 11, 12]. We then provide a

detailed analysis of the entanglement phase structure using our analytical results and discuss

them in the concluding sections.

1The radiating process equilibrates due to the conformal boundary condition for the stress-energy tensor

T⊥‖ = 0 imposed on its asymptotic boundary.
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2 Review of Previous Work

2.1 Holographic BCFT in a Black Hole Background

The paper [10] considered the black string geometry in AdSd+1, which has the following metric

ds2 =
1

u2 sin2 µ

[
−

(
1− ud−1

ud−1
H

)
dt2 +

du2

1− ud−1

ud−1
H

+ d~x2
d−2 + u2dµ2

]
, (2.1)

where µ ∈ [0, π] and µ = 0 ∪ µ = π is the asymptotic boundary. A Karch-Randall brane

is embedded in the bulk geometry as a constant-µ slice. The brane cuts off the bulk region

behind it and if the brane sits at µ = µB then the leftover bulk region runs from µ = µB
to µ = π (see Fig. 4). Using the AdS/BCFT correspondence, the field theory dual of this

geometry at a generic value of d is a boundary conformal field theory living on an AdSd black

hole background with conformal boundary condition imposed at its asymptotic infinity.

More precisely, the geometry on each constant−µ slice of the bulk black string is an eternal

AdSd black hole. Hence the dual BCFTd is living on an eternal black hole background which

has two asymptotic boundaries (see Fig.1 for the boundary Penrose diagram). The paper

[10] considered the the entanglement entropy of the field theory subsystem as indicated by

the green intervals and time evolved the system as in Fig. 1 to study whether or not there is

a time-dependent entanglement entropy i.e. a nontrivial Page curve. The boundaries (away

from the asymptotic boundary) of the green intervals are denoted as uL and uR (in the

coordinate defined by Equ. (2.1)) and [10] considered only the case uL = uR.

To address this question it suffices to look at the zero-time slice using holography. The

reason is that there are two candidate Ryu-Takayanagi (RT) surfaces for the entanglement

entropy, with one going through the black string interior connecting the boundaries of the

two green intervals and the other staying outside the black string horizon connecting the

boundaries of the green intervals to the nearby branes, and the RT prescription tells us

to take the area of the smaller one to compute the entanglement entropy. The one that

goes through the black string interior, which is called the Hartman-Maldacena surface, will

monotonically grow with time (as pointed out by Hartman and Maldacena in [13]) and the

one that stays outside the black string interior, the island surface, will be constant in time.

The island surface has two disconnected components with one in each exterior region of

the bulk black string. Therefore, if the Hartman-Maldacena surface has the smaller area

at zero time then we will have a time-dependent entanglement entropy where initially the

entanglement entropy is calculated by the Hartman-Maldacena surface and later switches to

the island surface when the area of the Hartman-Maldacena surface grows beyond that of the

island surface. Otherwise, there is a constant entanglement entropy which is computed by the

island surface. As it was firstly noticed in [5] and later pointed out in [14], the later case with

a constant entanglement entropy can be understood as the black hole being a fast scrambler.

In this case the Hilbert space of the subsystem we are considering is presumably too small to

be further scrambled. By considering the simple case uL = uR = u0 and doing the calculation
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tL tR
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• • tL tR
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• •

Figure 1: Two diagrams representing different time slices on the boundary (ρ =∞) Penrose

diagram of the eternal black hole on which the BCFTd lives. The two red vertical lines repre-

sent the asymptotic boundaries where we impose conformal boundary conditions. Each time

slice is composed of a blue component on one side of the bipartition and a green component

on the other side. The green intervals, determined by uL and uR are drawn as equal size

here, but generically vary in our setup. The union of the two green intervals is the subsystem

we considered in [10] where we computed the entanglement entropy between the green and

the blue subsystems. We label time as tL and tR on either side of the diagram, and for both

sides we take time evolution to go up the diagram (note the contrast with Figure 5). The

u-coordinate increases along a given time slice from 0 on the red boundary to uH at the

bifurcation horizon, where the black diagonal lines cross. At the jagged singularities, u =∞.

only on the zero-time slice Ref.[10] mapped out a phase diagram parameterized by u0 and

the brane angle µB for parameter regions where we can and cannot have a time-dependent

entanglement entropy. The calculation in [10] was fully numerical for d = 5.

In this paper, we consider the lower dimensional case d = 2 which is tractable even for

uL 6= uR and beyond the zero-time slice. The calculation in this paper is fully analytical

and can be done on both the gravitational side using holography and the dual field theory

side with mutually matched results. We map out a more complete phase diagram for this

lower-dimensional case as compared with [10].

2.2 Calculations of Entanglement Entropy in 2d Holographic BCFT

In this section, we review the calculation of entanglement entropy in two-dimensional bound-

ary conformal field theories (BCFT2’s) and its simplification for BCFTs with holographic

duals. For convenience, we will closely follow [12, 15] to use BCFT2 on a flat background to

demonstrate the concepts and techniques for the calculation in this section. In later sections,

we will apply these techniques to our study of BCFT2 in an AdS black hole background.
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2.2.1 Vacuum State

To review the calculation of entanglement entropy in 2d BCFTs, let’s consider the case that

the bulk CFT2 is in the vacuum state. For the sake of convenience, we will consider the

Euclidean signature. In this case, the CFT is living on an upper half plane parameterized by

the complex coordinates (z, z̄) with Re{z} ≥ 0. The conformal boundary condition is imposed

on the boundary Re{z} = 0 and it preserves half of the conformal invariance of bulk CFT2

[16]. The Euclidean time t is going along the axis of Re{z} (see Fig. 2). We will compute

the entanglement entropy associated with the bipartition (the blue cross in Fig. 2) indicated

in Fig. 2. This bipartition factorizes the whole system into A and its complement Ā and we

primarily focus on A and use its reduced density matrix ρA to compute this entanglement

entropy. This entanglement entropy is computed by taking the limit n→ 1 of the n-th Renyi

entropy

SnA = − 1

n− 1
ln Tr(ρnA) . (2.2)

To compute the trace Tr(ρnA) in the above formula we can use the replica trick [17]. The

result is that this is equivalent to compute the one-point function of a twist operator Φn(z, z̄)

inserted at the bipartition point (the blue cross in Fig. 2). The effect of the twist operator

is creating a branch cut on the upper half plane (UHP) which is equivalent to considering a

smooth 2d manifold with multiple covers as obtained from the replica trick. The branch cut

is from the blue cross to infinity along the dashed black line in Fig. 2.

t

×

A

Ā

`A

Figure 2: This diagram shows the situation for a BCFT2 living on the upper half plane (UHP).

We consider bulk CFT to be in the vacuum state. The boundary is specified by the red horizontal axis

where we impose conformal boundary conditions. The time direction is along the horizontal axis. We

take a constant time slice (dashed black vertical line) that defines the quantum state we are studying.

Our goal is to compute the entanglement entropy associated with the bipartition indicated by the blue

cross.

As a result, the entanglement entropy of the bipartition that we are considering is trans-
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lated to the following formula

SA = lim
n→1

1

1− n
ln〈Φn(z, z̄)〉UHP , (2.3)

where (z, z̄) is the coordinate of the bipartition point on the UHP.

It has been understood that the twist operator Φn(z, z̄) is a primary operator [17] with

conformal dimensions

hn = h̄n =
c

24

(
n− 1

n

)
. (2.4)

Hence the one-point function in Equ. (2.3) can be fixed by conformal symmetry. The result

is similar in the computation of the Green’s function in electrodynamics when there is a

dielectric boundary. It can be computed by the doubling trick [? ] the UHP 〈Φn(z, z̄)〉UHP

is equal to a two-point function for a chiral primary field Φn(z) (with conformal dimensions

hn = c
24

(
n− 1

n

)
, h̄n = 0) on the complex plane. More precisely, this two point function is

for one Φn inserted at the bipartition point and the other Φn at its mirror symmetric point

on the lower half plane,

〈Φn(z, z̄)〉UHP = 〈Φn(z)Φn(z∗)〉C =
AbΦn

|z − z∗|2hn
, (2.5)

where AbΦn is a normalization constant that is determined by the specific conformal boundary

condition for the BCFT2 [12] and will be fixed below.

Another way to compute the one-point function 〈Φn(z, z̄)〉UHP is to do the boundary

operator expansion (BOE) for the bulk operator Φn(zz̄) first and compute the expectation

value of the resulting operator sum. The BOE states that for a BCFT on the UHP any bulk

operator Oi(z, z̄) can be expanded as sum of boundary operators ÔI(x),

Oi(z, z̄) =
∑
J

BbJi
(2y)∆i−∆J

C̃[y, ∂x]ÔJ(x) . (2.6)

In this expression ∆i is the conformal weight of Oi(z, z̄) (i.e. hi = h̄i = ∆i
2 ), ∆J is that

of the boundary primary operator ÔJ(x) and we use the complex coordinate z = x + iy

(y > 0) on the UHP. The coefficients BbJi are the so called the BOE coefficients and they are

determined by the boundary condition and the structure of the parent CFT. The boundary

primary operator is normalized as

〈ÔI(xI)ÔJ(xJ)〉 =
GIJ

|xI − xJ |2∆I
. (2.7)

where we have BbiI =
∑

J BbJi GIJ . Matching the result from the doubling trick Eq. (2.5) with

the vacuum expectation value of the BOE expansion Eq. (2.6), we see that the only boundary

operator in the BOE that contributes to 〈Φn〉UHP is the identity operator 1, and we have

AbΦn = BbΦn1 . (2.8)
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As result we have the following explicit expression for entanglement entropy of the bi-

partition we are considering:

SA =
c

6
ln

(
2`A
ε

)
+ ln(gb) , (2.9)

where `A = (z − z̄)/2i is the length of the subsystem A and the second term is called the

boundary entropy. It is defined through the regularization

ln(gb)−
c

6
ln(ε) = lim

n→1

1

1− n
ln
(
Bb

Φn1

)
, (2.10)

where ε is a UV cutoff that universally appears in the entanglement entropy of quantum field

theories. We emphasize that the result Equ. (2.9) matches the holographic computation in

[11] and this is the universal form for the bipartite entanglement entropy of the vacuum state

in any BCFT on the UHP when the background geometry is flat.

2.2.2 Thermal field double state

Equipped with the concepts and techniques reviewed in the former section, we will consider a

more relevant case to black holes in this section. We consider the thermal field double (TFD)

state of two 2d BCFTs. We emphasize again that the two BCFTs in this section are all in

flat background. We will label the two BCFTs separately as L and R.

The TFD state can be prepared using an Euclidean path integral. In this Euclidean

picture, the time direction is periodic, and we can choose the time evolution for the L and

R BCFTs such that the TFD state evolves non-trivially (see Fig. 3a). We would like to

calculate the entanglement entropy of the bipartition shown in Fig. 3a which factorizes the

whole system into the subsystem AL ∪AR and its complement. In analogy with the previous

section, computing the entanglement entropy using the replica trick is equivalent to the

computation of the two-point function of a twist operator Φn and an anti-twist operator Φ̄n

inserted respectively at the two blue crosses in Fig. 3a. Denoting the complex coordinate of

the two crosses respectively by wL and wR, the resulting two-point function is

〈Φn(wR, w̄R)Φ̄n(wL, w̄L)〉 . (2.11)

In order to compute this two-point function, we will map the configuration to the upper half

plane, which is parametrized by z coordinates, using the following conformal transformation

w =
1

z − i
2

− i . (2.12)

Under this transformation, the boundary circle in w coordinates (red circle in Fig. 3a) is

mapped to the real axis in the UHP and the infinity in w is mapped to a point z = i/2.

Moreover, the insertion points of the twist and anti-twist operators are mapped to two points

on the UHP as shown in Fig. 3b.
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BCFTL BCFTR

tRtL

++ ARAL

ĀRĀL

(a) The thermofield double state and its time

evolution

××
Φ̄n Φn

•

(
0, 1

2

)

(b) Conformal mapping of the region on left to a UHP

Figure 3: a) The two Euclidean BCFTs L and R in the TFD state: time evolution is rotation

with respect to the origin, hence the red circle is the time evolution of the boundary. The two black

dashed lines define the zero time slice. Under the chosen time evolution, L and R evolve clockwise

and counter-clockwise respectively, as indicated. We are interested in the entanglement entropy of the

subsystem A = AL ∪ AR corresponding to the solid green line segments. b) The UHP which results

from the conformal mapping of the region outside of the red circle in Fig. 3a. The circular boundary is

mapped to the real axis and infinity is mapped to
(
0, 12

)
. The location of twist operators is mapped to

the two blue crosses, separated in the horizontal direction. The branch cut is mapped (and deformed)

to the dashed green line connecting the two operators.

The task now is to compute the following two-point function of a twist operator and an

anti-twist operator on the UHP:

〈Φ̄n(zL, z̄L)Φn(zR, z̄R)〉UHP . (2.13)

In the absence of the boundary, this is the standard two-point function of primary oper-

ators in 2d CFT and it is totally fixed by the conformal symmetry as:

〈Φ̄n(zL, z̄L)Φn(zR, z̄R)〉C =
ε2dn

|zL − zR|2dn
, (2.14)

where dn denotes the conformal weight and it equals to 2hn = 2h̄n = c
12(n − 1

n). In this

expression we have set the normalization of the two-point function to be ε2dn , (where ε is

a UV cutoff) and as we will show later that this is in order to have clean form for the

entanglement entropy.

In this presence of the boundary, this two-point function is not easy to compute for a

general 2d BCFT. The reason is that the doubling trick will translate it into a four-point

function in a chiral CFT on the complex plane. In general, there is no universal form of the

four point function in 2d CFT and it is determined by the details of the CFT. If we want

to use the operator production expansion to compute this two-point functions there are two

ways to do this. The first way is based on the observation that away from the boundary the

structure of the BCFT is the same as its parent CFT. This tells us that the operator product

expansion (OPE) for two bulk operators is the same as in the parent CFT:

Oi(z1, z̄1)Oj(z2, z̄2) =
∑
k

Ĉkij
|z1 − z2|∆i+∆j−∆k

C∆i∆j∆k
[z12, z̄12, ∂2, ∂̄2]Ok(z2, z̄2) , (2.15)
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for bulk primaries Ok and OPE coefficients Ĉkij . Hence to compute the two-point function

Equ. (2.13), we have to compute the expectation value of the resulting sum of bulk primary

operators. This turns to be a sum over one-point functions of the bulk primary operators Ok
appearing in the product, as per Eq. (2.5) and Eq. (2.6). This is the so called bulk channel.

Alternatively, we can perform the boundary operator expansion (BOE) as in Eq. (2.6) first

and then compute the resulting (normalized) boundary two-point functions. This is called

the boundary channel.

The consistency of the BCFT tells us that these two channels should produce the same

result. This is a nontrivial bootstrap constraint. For holographic BCFTs, which is the case we

will be interested in, this constraint will significantly simplify the computation. A holographic

CFT is a CFT with holographic dual as Einstein’s gravity in one-dimensional higher anti-de

Sitter space [18]. In the 2d CFT case, it is characterized by the following two properties [18]:

• The central charge c is large.

• The spectrum of light operators, of conformal dimension O(c0),2 is sparse.

The first condition implies that in the OPE the contribution from operators of conformal

dimension O(c) or higher, which is usually referred to as heavy operators, are suppressed (see

[12, 18, 19] for details). The second condition ensures the total contributions to the OPE

from the light operators is a multiplication of the contribution of the identity operator. As a

result, to a precise level of approximation, the whole OPE is proportional to the contribution

from the identity operator and this called the vacuum dominance. This greatly simplifies the

calculation of the higher-point correlators [12, 18, 19].

However, in our case we consider holographic BCFTs and in this case the two require-

ments above are naturally generalized to boundary operators [12] though with some subtleties.

Let us consider the bulk channel first. In the appearance of the boundary, the one-point func-

tions of bulk operators are now generically nonzero, and in the calculation of the two-point

function Equ. (2.13), this effect may compete with the effect that contribution from the heavy

operators are suppressed. Nevertheless, this could happen only if we are close enough to the

boundary such that the one-point functions of heavy operators are large enough. With this

in mind, we should use the boundary channel to compute the two-point function Equ. (2.13)

when the two bulk operators are close enough to the boundary. In this case, as it is shown in

Eq. (2.6), the contribution of a boundary operator with conformal dimension ∆J to the BOE

of Φ scales as y∆J . Hence for small enough y the contribution from heavy boundary operators

is suppressed and by the sparseness requirement we just have to look at the contribution from

the identity operator. This is called the vacuum dominance in the boundary channel. How-

ever, for large y, the contribution from heavy boundary operators is not suppressed anymore.

This time we should work in the bulk channel.

In summary, the use of the bulk channel vacuum dominance for the calculation of the

bulk two-point function for holographic BCFTs works only when the operator insertions are

2In this paper we follow [15] where the symbol O(. . . ) is used to denote ”of the order . . . ”.
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far away from the boundary, and the vacuum dominance in the boundary channel applies

only when close to the boundary. Consistency of the BCFT input a bootstrap constraint that

the results calculated by the bulk channel and the boundary channel must match such that

there is a unique result. Hence, we have to figure out the criterion for the applications of the

bulk channel vacuum dominance and the boundary channel vacuum dominance to ensure the

uniqueness of the result.

Once such criterion is that, when we compute the bulk two-point function for a given pair

of operator insertions, we examine the identity block in both channels and choose the larger

one. This can be justified in the following way. In a given channel each contribution to the

two-point function from different blocks (operators) is positive and if we take all corrections

into account we should get the same result for both channels. Thus, the larger of the identity

blocks in different channels is a better approximation. In other words, in the channel with

a smaller identity block contribution we would have a larger error if we neglect everything

except for the identity block.

As a result, the two-point function Equ. (2.13) for a holographic BCFT on an UHP is

given by

〈Φ̄n(zL, z̄L)Φn(zR, z̄R)〉UHP = max

(
ε2dn

|zL − zR|2dn
,

BbΦn1BbΦn1

|zL − z∗L|dn |zR − z∗R|dn

)
, (2.16)

where the first (second) term is the contribution from bulk (boundary) channel. From this

expression, we can immediately deduce the entanglement entropy for the TFD state of a

holographic BCFT in flat background. However, we defer details to later sections where

we consider the more general case of a curved background. Nevertheless, we notice that

the maximization prescription for the two-point function is equivalent to a minimization

prescription for the entanglement entropy (due to the minus sign in Eq. (2.2)), and this is

consistent with the Ryu-Takayanagi (RT) prescription in holographic computations [8, 20].

We will in fact see that the result exactly matches the RT calculation.

3 The Gravitational Calculation

The bulk geometry we are considering is the AdS3 black string whose bulk geometry is given

by d = 2 of (2.1), with the metric

ds2 =
1

u2 sin2 µ

[
−
(

1− u

uH

)
dt2 +

du2

1− u
uH

+ u2dµ2

]
. (3.1)

For the sake of convenience we will use the following reparameterization

1

sinµ
= cosh ρ, (3.2)

and the metric becomes

ds2 = cosh2 ρ

[
−

(1− u
uH

)

u2
dt2 +

du2

u2(1− u
uH

)

]
+ dρ2 . (3.3)
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Radiation RegionDefect
μ = 0, ρ = -∞ μ = π , ρ = ∞

ρ*

(brane angle)

μ = π /2, ρ = 0

Black String Horizon

u = uH

Island Surface

Island Region

Bipartition uL

HM Surface

Figure 4: A cartoon representation of the “left-side” thermofield double is shown here in

the Poincaré half-plane. The light purple shaded region is excised from the AdS bulk by the

KR brane at constant angular coordinate ρ∗. The convenience of the ρ coordinate over the

µ coordinate is clear here—we have conformally compactified the braneworld’s infinite extra

dimension into this finite diagram, so it now runs along the angular coordinate in the Poincaré

half-plane and we identify µ = 0, π2 , π with ρ = −∞, 0,∞, respectively. Also shown are the

island and radiation regions, drawn in blue, and the island surface and HM surface, drawn in

green and orange, respectively. The black string horizon forms a dotted arc at the coordinate

u = uH . For the eternal black string, we must also consider the “right-side” thermofield

double, which looks identical to the diagram above, except that we allow a bipartition for the

radiation region at a different coordinate u = uR, where we may have uL 6= uR.

A complete picture of this geometric setup, illustrating the use of the ρ coordinate and its

correspondence with the µ coordinate, is presented in Figure 4.

This geometry can be obtained using the embedding space formalism where the geometry

is embedded as a codimension-one sub-manifold of a four dimensional Minkowski space

ds2 = −dX2
0 − dX2

1 + dX2
2 + dX2

3 , (3.4)

with the following embedding equation

X1
0 +X2

1 −X2
2 −X2

3 = 1. (3.5)

The metric (3.3) can be recovered using the following parameterization of the embedding
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equation

X0 =
2uH − u

u
cosh ρ ,

X1 = 2

√
u2
H − uuH
u

sinh
2πt

β
cosh ρ ,

X2 = 2

√
u2
H − uuH
u

cosh
2πt

β
cosh ρ ,

X3 = sinh ρ ,

(3.6)

where β = 4πuH is the inverse Hawking temperature. The advantage of using this embedding

space formalism is that it is easy to calculate the area of the Hartman-Maldacena surface

without actually solving the minimal area (geodesic) differential equation. In this embedding,

we can calculate the length ` of a geodesic between the coordinates (X0, X1, X2, X3) and

(X ′0, X
′
1, X

′
2, X

′
3) as

` = cosh−1(X0X
′
0 +X1X

′
1 −X2X

′
2 −X3X

′
3). (3.7)

In contrast to the island surface, which starts at the bipartition and ends on the KR brane,

the HM surface passes through an Einstein-Rosen bridge and ends at the right bipartition

on the right-side thermofield double. In our u− ρ coordinates, the left and right bipartitions

lie at (u, ρ) = (uL,∞) and (u, ρ) = (uR,∞). To take advantage of the embedding (3.6), we

introduce a regularization parameter ρε, which we will take to ∞ so that our bipartitions lie

on the asymptotic boundary. Then, we may embed the left bipartition as

XL
0 =

2uH − uL
uL

cosh ρε ,

XL
1 = 2

√
u2
H − uLuH
uL

sinh
2πt

β
cosh ρε ,

XL
2 = 2

√
u2
H − uLuH
uL

cosh
2πt

β
cosh ρε ,

XL
3 = sinh ρε ,

(3.8)
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and the right bipartition as

XR
0 =

2uH − uR
uR

cosh ρε ,

XR
1 = 2

√
u2
H − uRuH
uR

sinh
2π(−t+ iβ

2 )

β
cosh ρε ,

= 2

√
u2
H − uRuH
uR

sinh
2πt

β
cosh ρε ,

XR
2 = 2

√
u2
H − uRuH
uR

cosh
2π(−t+ iβ

2 )

β
cosh ρε ,

= −2

√
u2
H − uRuH
uR

cosh
2πt

β
cosh ρε ,

XR
3 = sinh ρε .

(3.9)

Note that for the right bipartition, we have taken the time coordinate t 7→ −t + iβ
2 , corre-

sponding to the reversal of the time-like Killing vector field on the other side of the black

string horizon. For clarity, the situation is shown in Figure 5. Henceforth, we will use the

substitutions

∆L = uH − uL, ∆R = uH − uR (3.10)

where appropriate, to simplify and elucidate the physics in the following results. The area of

the Hartman-Maldacena surface can now be readily calculated using (3.7) as

AHM = cosh−1(XL
0 X

R
0 +XL

1 X
R
1 −XL

2 X
R
2 −XL

3 X
R
3 )

= cosh−1
[(2uH − uL)(2uH − uR) + 4uH

√
∆L∆R cosh

(
4πt
β

)
uLuR

cosh2(ρε)− sinh2(ρε)
]
.

(3.11)

Note the hyperbolic trig identities

cosh2(x) =
e2x

4
+
e−2x

4
+

1

2
, (3.12)

sinh2(x) =
e2x

4
− e−2x

4
+

1

2
. (3.13)

Since ρε is large, we can substitute cosh2(x) 7→ e2x

4 , sinh2(x) 7→ e2x

4 , and cosh−1(x) 7→ log(2x).
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Figure 5: An AdS Penrose diagram shows a cartoon projection of the Hartman-Maldacena

surface in blue, connecting our two bipartition points, on the left- and right-universe patches

(left- and right-exterior). The Penrose diagram is shown as a projection onto a constant

ρ = ρε slice, where the purple dashed line is the singularity at u = ∞, the red diagonal

lines are the event horizon at u = uH , and the black borders on the left and right represent

the defect at u = 0. The color-gradient contours show the constant time-slices and reversed

direction of the time-like Killing vector field on each side of the black hole. Notice that in

this diagram, uL 6= uR, and the HM surface is not symmetric across the event horizon. Also

note that the HM surface is not confined to this diagram since it generically varies in the

coordinate ρ.

Following these substitutions, we obtain

AHM = log
[(2uH − uL)(2uH − uR) + 4uH

√
∆L∆R cosh

(
4πt
β

)
2uLuR

e2ρε − e2ρε

2

]
= log

[(2uH − uL)(2uH − uR) + 4uH
√

∆L∆R cosh
(

4πt
β

)
2uLuR

− 1

2

]
+ 2ρε

= log
[ uH
uLuR

(
∆L + ∆R + 2

√
∆L∆R cosh

(
4πt

β

))]
+ 2ρε ,

(3.14)
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and using the Ryu-Takayanagi formula we get the associated entanglement entropy

SHM =
AHM

4G3

=
c

6
log
[ uH
uLuR

(
∆L + ∆R + 2

√
∆L∆R cosh

(
4πt

β

))]
+
c

3
ρε ,

(3.15)

where we used the Brown-Henneaux central charge c = 3
2G3

. In the special case u = uL = uR,

using ∆u = uH − u, this reduces to

SHM =
c

6
log
[2uH∆u

u2

(
1 + cosh

(
4πt

β

))]
+
c

3
ρε . (3.16)

We now compare this result to the pair of minimal island surfaces crossing from the bipar-

titions uL and uR to their respective physical branes at ρ = ρ∗. In general, we compute the

area of the island surface

Aisland =

∫
min. island surface

ds (3.17)

and rewrite ds in terms of dρ using the metric in (3.3)

ds = dρ

√√√√1 +
cosh2 ρ

u(ρ)2
(

1− u(ρ)
uH

)u′(ρ)2. (3.18)

This is clearly minimized for u′(ρ) = 0 =⇒ u constant, so the combined area for the pair of

island surfaces reads

Aisland = 2

∫ ρε

ρ∗

dρ = 2(ρε − ρ∗) , (3.19)

where ρ∗ is the location of the physical brane and the entanglement entropy calculated by

the island surface is

Sisland =
Aisland

4G3
= − c

3
ρ∗ +

c

3
ρε , (3.20)

According to the RT proposal the actual entanglement entropy is the minimum of SHM and

Sisland

S = min(SHM, Sisland) . (3.21)

4 The Field Theory Calculation

In this section, we apply the techniques developed in Sec.2.2 to provide a direct field theory

computation of the entanglement entropy that we computed holographically in the previous

section.
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4.1 Useful Geometries

Since the field theory is living on a curved background, to compute the entanglement entropy

on the field theory side, we first study the geometry on the field side. The geometry is given

by the boundary geometry (µ = π) of Eq. (2.1). This geometry is described by the following

metric

ds2 = − 1

u2
(1− ud−1

ud−1
H

)dt2 +
du2

u2(1− ud−1

ud−1
H

)
+
d~x2

d−2

u2
, (4.1)

which is an AdSd planar black hole for a generic d and we have two copies of such geometry

corresponding to the two asymptotic boundaries of Eq. (2.1). We consider the special case

d = 2 where the metric is

ds2 = − 1

u2
(1− u

uH
)dt2 +

du2

u2(1− u
uH

)
, (4.2)

and the conformal boundary of the 2d BCFT is located at u = 0. This metric can be put

into the conformally flat form by the following coordinate transform

ds2 = Ω(u?)
2
[
− dt2 + du2

?

]
, u? = −uH log

(
1− u

uH

)
, (4.3)

where u? ∈ (0,∞) and the conformal factor is

Ω(u?(u)) =
1

u

√
1− u

uH
. (4.4)

To incorporate the fact that we have two asymptotic boundaries and a finite temperature in

the path integral language, we will consider the Euclidean version of the geometry

ds2 = Ω(u?)
2
[
dτ2 + du2

?

]
, τ ∼ τ + β , (4.5)

where the zero-time slices of the two asymptotic boundaries of eq. (3.3) are the τ = 0 and

τ = β
2 slices respectively and τ = it. Therefore we have a cylindrical geometry the perimeter

of whose cross section is β and it is half infinitely long (see Fig. 6a).

To study the conformal properties of this geometry we can use complex coordinates

z = u? + iτ , z̄ = u? − iτ . (4.6)

This geometry can be conformally mapped to the plane with a disk ww̄ ≤ u2
H removed (i.e.

the conformal boundary is now the circle ww̄ = u2
H) by the following map

w = uHe
z

2uH , (4.7)

and in this new coordinate the metric is

ds2 = Ω(u?)
2dzdz̄ = 4Ω(u?)

2e
− u?
uH dwdw̄ . (4.8)
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u∗

τ

(a) BCFT on a half-

infinite cylinder.

τ

(b) Conformal mapping of

the cylinder on the left to a

plane.

Figure 6: a) The geometry of eq. (4.5) is (conformally) a half-infinitely long cylinder. The red circle

is the place of the conformal boundary u∗ = 0. b) The cylinder is now conformally transformed to a

plane by eq. (4.7) where the image of the cylinder covers only the region outside of the red circle. The

time coordinate τ is mapped to the angular coordinate on this plane, constant u∗ slices are concentric

circles and the red circle is the conformal boundary.

Figure 7: The plane with a conformal boundary Fig. (6b) can be further conformally mapped

to an upper-half-plane (UHP) by Eq. (4.9). The conformal boundary is mapped now to the

real axis of the plane.

This geometry can be understood as a path integral preparing a thermofield double state

(TFD) of two half-space BCFTs [12, 15] if we use arg(w) (i.e. τ) as the time-coordinate

and it is in the vacuum state of two half-space BCFTs if we instead use Im(w) as the time-

coordinate.

Similar to Equ. (2.12), we can further conformally map the geometry to the upper-half-

plane (UHP) by

w =
uH

v − i
2

− iuH , (4.9)

where the conformal boundary is mapped to the real axis v− v̄ = 0 and the metric transforms

to

ds2 = 4Ω(u?)
2e
− u?
uH u2

H(e
z

2uH + i)2(e
z̄

2uH − i)2dvdv̄ . (4.10)

4.2 Computation of the Entanglement Entropy

To compute the entanglement entropy, we first consider the simplest bipartition: uL = uR =

u. As we reviewed in Sec. 2.2, the entanglement entropy can be computed by first calculating
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the two-point function 〈Φn(uR, t)Φn(uL, t)〉 of the twist operator Φn(u, t) in the geometry

of Eq. (4.3). Since we are studying a holographic BCFT [12, 21], we will use the vacuum

dominance to compute this two-point function. The result will be similar to Equ. (2.16). We

will see that the boundary channel will reproduce the result of the island surface and the bulk

channel will reproduce the result of the HM surface in the gravity side calculation in Sec. 3.

4.2.1 Boundary Channel

Let’s first consider the boundary channel. As we reviewed in Sec. 2.2, this is in a sense a

disconnected channel and equivalently we are just computing the product of two one-point

functions 〈φn(uL, t)〉b〈φn(uR, t)〉b for operators φn(uL(R), t) near the boundary. We know such

one-point functions when the field theory is on an flat UHP. However, in the current case we

can map the BCFT to a conformally flat UHP described Eq. (4.10) and as opposed to the

flat case we have to further dress the correlator by the conformal factor. The result is given

by

〈Φn(u, t)〉b = 2−∆ne
u?

2uH
∆nu−∆n

H (e
z

2uH + i)−∆n(e
z̄

2uH − i)−∆nΩ(u?(u))−∆n〈Φn(v, v̄)〉bFlat UHP

=
2−∆ne

u?
2uH

∆nu−∆n
H (e

z
2uH + i)−∆n(e

z̄
2uH − i)−∆nΩ(u?(u))−∆nBbΦn1

(v − v̄)∆n

=
BbΦn1

2∆n
,

(4.11)

where we follow the notation we introduced in Sec. 2.2 that BbΦn1 denotes the coefficient of

the identity operator 1 in the boundary operator expansion (BOE) of Φn. As a result, the

two point function in the boundary channel is given by

〈Φn(uL, tL)Φn(uR, tR)〉bdy =
BbΦn1BbΦn1

4∆n
. (4.12)

Therefore the entanglement entropy is

Sbdy = lim
n→1

1

1− n
log〈Φn(uL, tL)Φn(uR, tR)〉bdy

= 2 log gb +
c

3
log

(
2

ε

)
,

(4.13)

where we have used Equ. (2.10) to the BOE coefficient by the boundary entropy term.

4.2.2 Bulk Channel

Now let’s consider the bulk channel. Applying vacuum dominance, we are just computing the

two-point function of the primary operator as if there is no boundary. We know the result for

such a two-point function if the field theory is on a flat plane. In our case we can conformally

map the geometry into a conformally flat plane as in Equ. 4.8. The result of the two-point
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function is the same as that in the flat plane Equ. (2.14) case, however with the conformal

factor Ω(u∗) properly dressed. It is given by

〈Φn(uL, tL)Φn(uR, tR)〉bulk = 〈Φn(u,−t+ i
β

2
)Φn(u, t)〉bulk

= 4−∆ne
u?∆n
2uH Ω(u)−∆ne

u?∆n
2uH Ω(u)−∆n〈Φn(u,−t+ i

β

2
)Φn(u, t)〉Flat Plane

=
4−∆nΩ(u)−2∆ne

u?∆n
uH ε2∆n

|wL − wR|2∆n
,

(4.14)

where we followed Equ. (2.14) to put a cutoff ε for later convenience. Then we have the

entanglement entropy calculated by the bulk channel

Sbulk = − 1

n− 1
lim
n→1

tr ρn

= lim
n→1

1

1− n
log〈Φn(uL, tL)Φn(uR, tR)〉bulk

=
c

6
log

[
4u2

H

ε2u2

∣∣∣∣e iτ
2uH

√
1− u

uH
+ e
− iτ

2uH

√
1− u

uH

∣∣∣∣2
]

=
c

6
log

[
2uH(uH − u)

u2

(
1 + cosh

4πt

β

)]
+
c

3
log

(
2

ε

)
,

(4.15)

where we used Equ. (4.7), Equ. (4.6) and Equ. (4.3) to express ωL and ωR in Equ. (4.14) in

terms of uL = uR = u and τ and we transformed back to the Lorenzian signature t = −iτ at

the end. We can rewrite this in the ∆u = uH − u convention as

Sbulk =
c

6
log

[
2uH∆u

u2

(
1 + cosh

4πt

β

)]
+
c

3
log

(
2

ε

)
. (4.16)

Hence comparing the field theory results Eq. (4.13) and Eq. (4.16) with the gravity side

calculations Eq. (3.20) and Eq. (3.15) (with uL = uR = u), we can see that the field theory

results precisely match the gravity side calculations if we use the following identifications

log gb = − c
6
ρ∗ , ε = 2e−ρε . (4.17)

Now for the most general case that uL 6= uR we have

〈Φn(uL, tL)Φn(uR, tR)〉bulk = 〈Φn(u,−t+ i
β

2
)Φn(u, t)〉bulk

= 4−∆ne
u?L∆n

2uH Ω(uL)−∆ne
u?R∆n

2uH Ω(uR)−∆n

× 〈Φn(uL,−t+ i
β

2
)Φn(uR, t)〉Plane

=
4−∆ne

u?L∆n
2uH Ω(uL)−∆ne

u?R∆n
2uH Ω(uR)−∆nε2∆n

|wL − wR|2∆n
.

(4.18)
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Therefore, the entanglement entropy calculated by the bulk channel is

Sbulk = lim
n→1

1

1− n
log〈Φn(uL, tL)Φn(uR, tR)〉bulk

=
c

6
log

[
4u2

H

ε2uLuR

∣∣∣∣e− iτ
2uH

√
1− uR

uH
+ e

iτ
2uH

√
1− uL

uH

∣∣∣∣2
]

=
c

6
log

[
4u2

H

ε2uLuR

(
(1− uR

uH
) + (1− uL

uH
) + 2

√
1− uR

uH

√
1− uL

uH

e
iτ
uH + e

− iτ
uH

2

)]

=
c

6
log
[4u2

H − 2uHuL − 2uHuR
2uLuR

+
4uH
√

∆L∆R

2uLuR
cosh

(
4πt

β

)]
+
c

3
log

(
2

ε

)
=
c

6
log
[ uH
uLuR

(
∆L + ∆R + 2

√
∆L∆R cosh

(
4πt

β

))]
+
c

3
log

(
2

ε

)
,

(4.19)

which again precisely matches the gravity side calculation Equ. (3.15) under the identification

of the cutoffs Equ. (4.17).

5 Limits and Page Curve Behavior

Having shown that the gravitational and the field theory calculations of Sisland = Sbdy and

SHM = Sbulk match, we can now describe the entanglement entropy given by the minimum

in (3.21). With these analytical results, we will perform an analysis similar to [14] on the

nature of the Page time and Page angle in our AdS3 setup.

First, we note that in the limit t→ 0, the area of the HM surface, Equ. (3.14), goes to

AHM = log
[ uH
uLuR

(√
∆L +

√
∆R

)2 ]
+ 2ρε . (5.1)

The Page time tPage can be calculated by

SHM(tPage) = Sisland , (5.2)

and the result is

tPage =
β

4π
cosh−1

[
e−2ρ∗uLuR − uH(∆L + ∆R)

2uH
√

∆L∆R

]
. (5.3)

For the special case uL = uR = u, and taking the convention ∆u = uH − u, we have

tPage =
β

4π
cosh−1

(
e−2ρ∗u2

2uH∆u
− 1

)
. (5.4)

The Page angle ρPage describes the brane angle at which a non-trivial Page curve arises

(tPage > 0) and can be calculated by

SHM(t = 0) = Sisland(ρ∗) . (5.5)
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The result is

ρPage =
1

2
log

[
uLuR

uH
(√

∆L +
√

∆R

)2
]
. (5.6)

with the special case u = uL = uR given by

ρPage =
1

2
log

[
u2

4uH∆u

]
. (5.7)

Here, the special case u = uL = uR behaves similarly to the uL 6= uR case—the Page angle

increases monotonically in either variable. Then, let us analyze the special case. In particular,

we plot the dependence of the Page angle on u in Fig. 9. We can calculate the point at which

the Page angle is 0, corresponding to a tensionless brane. The result is

uρ=0 = (2
√

2− 2)uH . (5.8)

This plot also acts as a phase diagram of sorts—for a given bipartition location u, placing

the KR brane at an value of ρ below this curve leads to a non-trivial Page time, since the

HM surface initially dominates. Above this curve, the island surface is always minimal, and

dominates for all time. Note that for u > uρ=0, any positive-tension brane (ρ∗ < 0) will yield

a non-trivial Page curve.

Figure 8: A density plot of the Page angle ρPage with respect to both uL and uR. The

contour with ρPage = 0 is shown in maroon as a point of reference. Drawn in dashed blue and

dotted green are the slices of the parameter space shown in figures 9 and 10, respectively.
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Hartman-Maldacena dominates at t = 0

Island dominates at t = 0

uH/2 (2 2 -2)uH uH

u

-10

-5

5

10

ρPage

Figure 9: A plot of the Page angle ρPage in the special case u = uL = uR. The point at

which the Page angle gives the tensionless brane ρ = 0 is marked on the horizontal axis, at

u = (2
√

2− 2)uH . The regions in which the island and Hartman-Maldacena surfaces initially

dominate the entropy calculation are marked. This plot is equivalent to plotting the density

along a diagonal slice of Figure 8 where uL = uR.

Hartman-Maldacena dominates at t = 0

Island dominates at t = 0

uH/2 uH
uL

-10

-5

5

10

ρPage

Figure 10: A plot of the Page angle ρPage in the special case uR = uH
2 . Note that the

horizontal axis here now refers to the location of uL. This plot is equivalent to plotting the

density along a horizontal slice of Figure 8 at uR = uH
2 .
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We can also plot the Page angle as a function of uL and uR using a density plot, as shown

in Figure 8. This yields a somewhat surprising result—even for very different bipartition

locations uL and uR, the Page angle is roughly the same (notice the large orange region in

the figure). It changes dramatically only when either of uR and uL are very close to 0 or

both are close to uH . Figure 10 illustrates how the phase diagram changes when we fix one

bipartition location (this time specifically at uH
2 )—the Page angle is very stable for a wide

range of values uL, blowing up only when the bipartition is very close to the defect. Following

this analysis, we see that taking just one bipartition to uH gives us

lim
uR→uH

ρPage =
1

2
log

[
uL
∆L

]
=

1

2
log

[
uL

uH − uL

]
. (5.9)

In this limit, we also see that uL = uH
2 yields a Page angle of zero. Furthermore, we see

from the contour ρPage = 0 that if either uL or uR is less than uH
2 , there always exists a a

configuration of uL and uR such that ρPage < 0. Conversely, Page angles greater than 0 (a

brane at such an angle would have negative tension) only arise when at least one of uL or uR
is greater than uH

2 .

To see the Page time more explicitly, we examine the density plot in Figure 11. Here we

see that constant-time contours trace out plots similar to 9 (which is, of course, the limiting

edge of the density plot at tPage = 0). From this, we conclude that the Page time is roughly

the same across a large range of u coordinates, changing dramatically only when u is close to

0 or uH . This is consistent with and reinforces our findings that the Page curve behavior of

our setup is not strongly influenced by small or medium changes in the bipartition location,

except when it is close to either the event horizon or the defect.

6 Conclusion

In this paper, we constructed a lower dimensional analytical model for a holographic BCFT

living on a black hole background. The BCFT lives on a two-dimensional eternal AdS

Schwarzschild geometry with conformal boundary conditions imposed on its asymptotic bound-

aries. The dual bulk geometry is an AdS3 black string with an embedded Karch-Randall brane

[1, 2]. This is a setup that satisfies the AdS/BCFT correspondence [9].

We studied entanglement entropy for a two-sided bipartition for the BCFT. This bipar-

tition is known to capture certain dynamical aspects of the system [13] and is relevant to

the recent Page curve calculation in the Karch-Randall braneworld [15, 22–96]. We found

an interesting phase diagram as well as analytical agreement between the field theory and

gravity calculations for the more general case where the bipartitions on the two sides of the

thermofield double are and are asymmetric, which is a nice check of the AdS/BCFT setup

and potentially a valuable result in its own right.

In particular, we found that for any fixed brane angle, the Page time has strong depen-

dence on the bipartition point only when at least one of the bipartitions is near the defect, or

when both are near the event horizon. Physically, this can be understood as a consequence
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Figure 11: A density plot of the Page time tPage, in the special case u = uL = uR. The plot

cuts off at tPage = 0, at the boundary given by the Page angle plot in Fig. 9.

of the system’s geometry on the HM surface in each case. In the limit that either bipar-

tition approaches the defect (u → 0), the metric forces the difference between the areas of

the island and the HM surface to blow up. The opposite limit—the HM surface approaching

zero area—can occur only if both bipartitions approach the event horizon simultaneously, as

a surface stretching from the event horizon to any point on one of the boundaries still has

non-zero area. This is likely saying that the Page time deviates significantly when the number

of degrees of freedom on one or the other side of the bipartition is small. We emphasize that

this is true only for the theory on the curved background. For example, if the bulk is a BTZ

black hole rather than black string, the boundary is flat and the HM surface has the same

area for any symmetric bipartition, in which case the only dependence of the Page time on

the bipartition point comes from the island surface. In this case, the significant deviations

near the boundary don’t apply. We conclude that studying different types of systems, and

in particular ones where either or both sides are tractable analytically can lead to further

understanding of the evolution of information. In our analysis we show that the asymmetric

bipartition leads to different limiting behavior than the symmetric case. The more general

results from the asymmetric bipartition give new insights into the field theory interpretation.

This is the first exact result of this type.
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