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Abstract: It has been argued that the Randall-Sundrum (RS) phase transition rate is

suppressed when the holographic theory corresponds to a large N Yang-Mills and when

the stabilizing field has a small mass. Here we argue that self-interactions can alleviate the

latter suppression. We consider a cubic term in the bulk potential for the Goldberger-Wise

(GW) scalar that is responsible for stabilizing the RS geometry. Adding a cubic term

suffices to separate the two roles of the GW stabilization: generating a large hierarchy and

triggering confinement. We study the resulting radion potential and the dynamics of the

early universe phase transition. For a negative coefficient of the cubic term, the effect of

the cubic becomes important in the infra-red, and the resulting radion potential is deeper,

thereby increasing the radion mass while maintaining a large hierarchy. Staying within the

radion effective field theory, we calculate the rate of bubble nucleation from the hot phase

to the confined RS phase, both in thin and thick wall limits. The cubic term enhances

the rate and allows relaxing the condition on the maximum number of colors Nmax of the

dual theory for which the phase transition can be completed. Importantly, this reduces the

amount of supercooling that the false vacuum undergoes, increases the peak frequency of

the gravitational waves (GW) produced from bubble collisions, and reduces the strength

of the GW signal. The reduced GW signal is however still within the reach of proposed

space-based GW detectors.
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1 Introduction

The Randall-Sundrum (RS) framework based on warped extra-dimensional geometry is an

elegant way to understand various hierarchies in the Standard Model (SM), and provides

a rich framework for exploring several directions in both formal and phenomenological

research [1]. The early cosmological history of these models is a confluence of many

interesting phenomena. At low temperatures, the RS phase is the thermodynamically

stable phase. At high temperatures, the RS phase is only metastable, while the stable

phase is given by a black-brane geometry, which in the dual field theory corresponds to the

deconfined phase. In minimal constructions, these two phases are separated by a barrier [2],

and a transition between the two phases proceeds by bubble nucleation.

Starting in the deconfined phase at high temperatures, the rate of transition to the

confined phase is very suppressed in the minimal models, and they generically supercool
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past the critical temperature. The field configuration that allows tunneling from one

phase to another is a gravitational instanton, the grammar for which is an active area

of investigation. Early cosmological history of RS models is therefore tied to the physics

of confinement, supercooling, and gravitational instantons. All these effects have direct

phenomenological relevance—the confinement/deconfinement phase transition and its order

is relevant for potential gravitational wave (GW) signals. Supercooling is important

for estimating the peak frequency and abundance for the GW signal [3, 4], the present

abundance of relics from that era, as well as when and whether the phase transition

completes.1 The characteristic peak frequency and the frequency dependence of the GW

abundance have an imprint of the energy scales involved and can be probed in present

and proposed GW detectors [6–14]. Finally, the exploration of gravitational instantons is

relevant for all of these since it affects the rate of transition. These considerations make

an exploration of the theoretical and phenomenological aspects of phase transitions in RS

framework a well-motivated direction to pursue. If the phase transition is first-order, the

resulting GWs can provide access to the cosmological history of the universe [15–18] and

point towards yet to be discovered beyond the Standard Model (BSM) physics.

In a realistic UV complete warped scenario, we generically expect significant IR modi-

fications, since in the dual picture, the theory is close to confinement, and is very far away

from a conformal field theory (CFT). With this motivation, in the present work we allow

for an IR modification in the RS framework stabilized by a Goldberger-Wise (GW) scalar.

We focus on how such a modification affects various cosmological features.

More concretely, we consider a quadratic and a cubic term in the bulk potential for the

stabilizing GW field, with both their coefficients negative, so that the GW profile grows

in the IR, and the effect of the cubic becomes important in the IR as well. Generically

one expects even higher-order terms in the potential, but for the present purposes, a cubic

suffices to model the IR modification. A non-zero cubic allows splitting the two roles

played by the GW mechanism—a logarithmic running which gives a large hierarchy, and

the triggering of the IR brane. As we will see, a non-zero cubic term can change the shape of

the radion potential while maintaining a large hierarchy. This translates to a modification

of the free energy and the bounce action for the phase transition. In the present work,

we will focus on the modifications on the RS phase only and stay in the regime where the

backreaction is not important.

A suppressed rate of phase transition in the minimal models can be tracked down to

two parametric reasons: large Nc and small δ. Here Nc is the number of colors in the

dual theory, and δ characterizes CFT breaking in the IR where the phase transition takes

place (and is a function of the parameters of the stabilization mechanism). For theoretical

control, we need Nc ≫ 1. The minimal RS models, stabilized with a quadratic bulk GW

potential, also have δ ≪ 1. The present work can be understood as a way to enhance

the rate by increasing δ, and is similar in spirit to other such attempts in the literature.

Addressing the Nc suppression directly will require a better modeling of the IR dynamics,

and including backreaction, which we will present in a future work.

1See ref. [5] for a general discussion of supercooling at both weak and strong coupling.
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Cosmological aspects of RS models have been studied both in the minimal scenario [2],

and with interesting variations [4, 19–36] that were aimed towards addressing the issues

in the minimal scenario. The authors in ref. [2] pointed out that without a stabilization

mechanism, if the RS model is in the deconfined phase at high temperatures, it never

completes a transition to the confined phase. With a stabilization mechanism from a GW

scalar, the rate for the phase transition is extremely suppressed, and is very constraining

on what constitute viable physical parameters. Ref. [20] pointed out that by including

back-reaction, the situation is less constraining than originally claimed. In subsequent

work, ref. [21] used corrections to the radion potential coming from the QCD condensate,

which reduced the barrier depth, and hence enhanced the rate for the phase transition.

The authors in [25] further required the 4D CFT degrees of freedom to flow to another

fixed point after QCD confinement, thereby gaining more theoretical control, and gave a

geometrical picture for this situation where the mass of the GW scalar is tachyonic [27].

The authors in [28, 32] used similar ingredients where they modeled the IR flow to another

fixed point by a special form of bulk potential for the GW field. In an orthogonal direction,

the authors of ref. [33] used finite temperature corrections to the combined potential of

radion and other light fields to address the issue. Ref. [34] used a relevant UV deformation

to model the CFT breaking in the IR, which resulted in a deeper radion potential. See

also [35, 36] for other interesting alternatives.

Compared to the previous approaches, the present work is different in the following

ways: the modified bulk potential we consider is generic, and is expected in a realistic UV

completion. We stay within the radion EFT parameter space. We use a combination of

analytical and numerical methods to handle the computations. We consider both thin and

thick wall limits, for completeness. Our approach is a first step towards systematically

including strongly coupled IR effects. In some respects our results mimic those of [28, 32],

who explicitly separated the two roles of the radion by having one CFT to establish the

hierarchy and the second to establish the mass. Though perhaps under less control, our

model is more generic and reproduces the second feature organically. Once the GW field

is sufficiently big, playing a role in triggering the IR phase transition, it also contributes

to the radion mass and eases the phase transition completion.

The outline of the paper is the following. In sec. 2 we set up the notation and obtain

the GW scalar profile for both phases. In sec. 3 we derive the radion potential, and in

sec. 4 we derive the free energy of the two phases as a function of temperature. In sec. 5

we calculate the rate of phase transition, first in thin-wall approximation and then away

from it, focusing on the role of the IR effects. Sec. 6 contains the results, and a conclusion

follows in sec. 7. Technical details of the calculations are presented in app. A, B, C.
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2 5D action and scalar profiles

To set the stage we first fix some notation. We consider 5D spacetime with locally constant

negative cosmological constant. The general solution can be parameterized as

ds2 = −e−2r
(
1− e4(r−rh)

)
dt2 + e−2rdx⃗2 +

dr2

1− e4(r−rh)
, (2.1)

which is the metric for Anti-de Sitter Schwarzschild (AdSS) space, with the asymptotic

boundary of AdS space at r → −∞ and a horizon r = rh, extended in the transverse

directions (a black brane). We have set the AdS scale ℓAdS = 1 here, and in what follows.

In the limit of rh → ∞, this reduces to the Poincare patch of AdS space.

A UV brane with appropriate (positive) tension, whose location can be chosen to be

at ruv = 0, cuts off the UV region of the spacetime and ensures a normalizable 4d graviton.

For the rh = ∞ case, the spacetime will be truncated at the IR brane located at r = rir,

again with an appropriately chosen (negative) tension. We therefore have two spacetime

metrics to consider, which we refer to as the BB (Black Brane) and RS (Randall Sundrum)

spacetimes respectively:

RS : ds2 = −e−2r dt2 + e−2rdx⃗2 + dr2 , 0 ≤ r ≤ rir ,

BB : ds2 = −e−2r
(
1− e4(r−rh)

)
dt2 + e−2rdx⃗2 +

dr2

1− e4(r−rh)
, 0 ≤ r ≤ rh . (2.2)

The RS and BB spacetimes are dual to the confined and the deconfined phases respectively

in the field theory. The Hawking radiation from the horizon in the BB geometry gives a

temperature to the black hole, which is a function of the location of the horizon. The

effect of a finite temperature T can be studied in the Euclidean version of the spacetime,

with the Euclidean time tE identified with a period β = 1/T . For rh ̸= 0, the Euclidean

continuation of eq. (2.1) with a periodic tE is smooth only when

β = π exp(rh) , (2.3)

whereas any β is fine for rh = ∞ (RS background). Since we need to consider the dynamics

at finite temperature, we will work in Euclidean compactified time.

The location of the IR brane is a modulus in the RS geometry, and needs a stabilization

mechanism to have a fixed value. Such a stabilization can be provided by a 5D GW

scalar χ with appropriately chosen parameters such that it gets a profile along the extra

dimension, and generates a potential for the field rir(x). In this work we consider more

general potentials and boundary conditions than the original proposal [37, 38], and argue

that these modifications are well-motivated and geared towards modeling the IR dynamics

appropriately. Specifically, we consider a 5D scalar χ, with the action

Sχ =

∫
d5x

√
g

(
−1

2
(∂ χ)2 − VB(χ)

)
−
∑
i

∫
d4x

√
gi Vi(χ) , (2.4)

with a bulk potential VB(χ) and boundary potential(s) Vi(χ) which set the boundary

conditions. Note that i takes the value (uv, ir) for the RS case, and only (uv) for the BB
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case. We would like to solve for the profile of χ in the two backgrounds, and in the limit

of small back-reaction.

The choice of the bulk and brane localized potentials is governed by the dynamics

one wants to model. In the dual interpretation, the bulk GW potential can be mapped

to the renormalization flow of a deformation. For the effect to become more important in

the IR, the deformation should be relevant, and higher-order terms in the beta function

should become important as the deformation grows. A constant mass for the GW scalar

corresponds to a constant beta function. Higher order terms in the beta function correspond

to higher order terms in the GW potential [39, 40]. We add a cubic term in the bulk

GW potential, in addition to the mass term, to model the higher-order terms in the beta

function. With this motivation, we choose the bulk potential to be

VB(χ) = 2ϵ2χ
2 +

4

3
ϵ3χ

3 , (2.5)

with ϵ2 < 0, ϵ3 < 0. The first sign, ϵ2 < 0, corresponds to a relevant deformation of the dual

theory, and ensures a logarithmic running for small |ϵ2|. The second sign, ϵ3 < 0, ensures

the deformation gets larger in the IR. We have kept to a cubic term in the potential, which

is sufficient to capture the effect of strong coupling as we show later, although there can in

general be quartic and higher-order terms as well.2

The mass term and the self-interaction term in the GW potential model different

aspects of the dynamics. A small mass allows a large running, whereas the self-interaction

term, which for small ϵ3 is important only in the IR, models the existence of a more

complicated radion potential in the IR after confinement. It is important to separate these

two effects, and study the resulting effect on radion potential and the phase transition,

which is the motivation for this work.

For simplicity we choose a UV brane potential that fixes the value of χ at the UV

brane. The IR brane potential is chosen to allow the scalar to adjust its value, and again

for simplicity we fix its derivative. These features can be modeled by the potentials

Vuv(χ) = βuv(χ− vuv)
2 , βuv → ∞ ,

Vir(χ) = 2αirχ . (2.6)

Note that these are simplifications, and a more complete analysis should allow for mixed

boundary conditions at both the UV and the IR. Also note that the IR boundary condition

is not relevant for the BB case—the GW profile is required to have a “regular” behavior

at the horizon. For a truly holographic interpretation, we would not necessarily have a

boundary condition imposed directly in the IR but we follow the original analysis and do

this for simplicity.

Given the bulk and boundary potentials, the GW field develops a profile χ(r) along

the radial direction, which is different for the RS and BB backgrounds because the IR

boundary condition is different for the two cases. While an exact solution can be obtained

2Ref. [32] used a GW potential with up to quartic terms to model a specific flow in the dual theory,

from a UV fixed point to an IR fixed point. The dynamics we want to model in the present work is different.
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numerically, it is possible to get approximate analytical solutions by dividing the bulk

into different parts where different terms in the equation dominate. Leaving the details to

appendix A, the leading order solutions are given as

χRS(r) = −αir

4
e4(r−rir) +

vuve
−ϵ2r

1 + vuvϵ3

(
1−e−ϵ2r

ϵ2

) , 0 ≤ r ≤ rir , (2.7)

χBB(r) =
vuve

−ϵ2r

1 + vuvϵ3

(
1−e−ϵ2r

ϵ2

) , 0 ≤ r ≤ rh . (2.8)

The solutions are obtained in the limit of |ϵ2| ≪ 1, vuv ≪ 1, rir ≫ 1, |ϵ2|rir ≲ 1, |ϵ3|rir ≲ 1

(rir → rh in the corresponding conditions for the BB solution). In the case of ϵ2 < 0,

χ becomes singular at rs = −(1/ϵ2) log(1 + ϵ2/vuvϵ3) and is an artifact of the analytical

solution failing to be a good approximation. By appropriately choosing parameters rs can

be made large and as long as rs ≫ rir, rh, we can trust the solutions.

A few comments are in order about these solutions. First, for the RS solution, the term

proportional to αir can be important only very close to r = rir. Second, the requirement

of regularity of the solution in the BB background is the same as dropping the term pro-

portional to αir in the RS solution, at least to leading order in the approximation. Finally,

these approximate solutions clarify the effect of ϵ3. For small r, the term proportional to vuv
can be written as vuv exp(−(ϵ2 + vuvϵ3)r). The self-interaction term therefore effectively

acts as an additive effect to ϵ2. As r increases, this effect compounds.

A good diagnostic to quantify the effect of a non-zero ϵ3 is to look at the ratio of the

mass of the radion to the IR scale. The model requires a large hierarchy, which is the result

of logarithmic running. A non-zero ϵ3 allows higher order terms in the radion potential to

balance in the IR. We will have more to say about this in the next section.

Figure 1 shows a comparison between the approximate solutions in eqs. (2.7), (2.8)

with numerical solutions, for some choices of parameters. The procedure to numerically

obtain regular solutions in the BB background are discussed in appendix A.
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Figure 1: GW scalar profile with and without self-interactions, for the RS background (left) and

the BB background (right), for other parameters fixed. Solid lines (numerical) show good agreement

with the approximate solutions (in dashed). A negative (positive) ϵ3 leads to more (less) growth of

the profile in the IR.
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3 Radion potential

Given the profile for χ(r), we can calculate the resultant radion potential. The basic idea is

that as one varies rir, the energy contained in the potential for χ(r) changes and for a choice

of parameters, a suitable minimum can be obtained. The purely gravitational part of the

action gives a kinetic term for rir. Evaluating the χ action on the approximate solution for

χ(r) in eq. (2.7), one obtains the potential for rir. In terms of the field φ = e−rir , the 4D

action is given as

S =

∫
d4x

√
g
(
−12M3

5 (∂φ)
2 − V (φ)

)
,

V (φ) = 24M3
5κ

4 φ4

(
1 +

a2
24M3

5κ
4

λφϵ2

1− λφϵ2
− a3

24M3
5κ

4
log(1− λφϵ2)

)
,

λ =
vuvϵ32

1 + vuvϵ32
, ϵ32 =

ϵ3
ϵ2
, a2 = − 1

32
ϵ2α

2
ir −

ϵ2
ϵ3
αir + 2αir, a3 =

1

2

ϵ2
ϵ3
αir . (3.1)

The details of the computation for V (φ) are given in app. B. Note that φ is not canonically

normalized in our notation. We have pulled an overall factor of M3
5 outside from the

potential, and the parameter κ ≲ 1 for small back-reaction.3 In the limit of λφϵ2 ≪ 1

(note that for this we need λ ∼ O(vuv) ≪ 1, since φϵ2 can be O(1), for ϵ2 < 0), the

potential can be expanded in a power series:

V (φ) = φ4
(
b0 + b1λφ

ϵ2 + b2λ
2φ2ϵ2 + b3λ

3φ3ϵ2 + · · ·
)
. (3.2)

The coefficients bi are readily calculable given the explicit form of the potential, and are

functions of αir, vuv, ϵ2 and ϵ3. In the limit of ϵ3 → 0, only b0 and b1 are non-zero, and the

potential simplifies to the familiar racetrack form. Note that in this limit, λ → 0 but it is

balanced by the ϵ3 in the denominator of a2 and a3 in eq. (3.1).

V (φ) =
ϵ3→0

24M3
5κ

4 φ4

(
1− 1

48M3
5κ

4
αirvuvφ

ϵ2

)
= 24M3

5κ
4 φ4

(
1− 1

1 + ϵ/4

(
φ

φmin

)ϵ2)
. (3.3)

The b2 and higher order terms in eq. (3.2) mimic the effects of strong dynamics—as the

running coupling grows to be big, the higher order terms become important [39]. In fact,

we will see that for a relevant choice of parameters, we have to include several terms in

the expansion. The effect of higher order terms is that for a small φmin (large hierarchy),

various combinations of terms can balance each other and give a minimum in the radion

potential in which case the second derivative of the potential at the minimum can be

enhanced. This is the usual expectation that for a strong breaking in the IR, the radion is

not parametrically light anymore. To understand this enhancement, let’s first consider the

generic form of the radion potential

V (φ) = b0 φ
4 P (φϵ2) , (3.4)

3We are working in the glueball normalization where the quartic scales as N2
c ∼ M3

5 .
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where P (x) is a polynomial in x of some given order, with the first term 1 (since we have

factored out an overall constant in eq. (3.4)). Expanding eq. (3.1), some of the terms in

P (x) are explicitly given as

b0 P (x) = b0 +
∑
i≥1

bix
i , b0 = 24M3

5κ
4 ,

b1 = −vuv

(
1

2
αir − 2αir

ϵ3
ϵ2

+
1

32
α2
irϵ3

)(
1 +

vuvϵ3
ϵ2

)−1

,

b2 = −vuv

(
vuvϵ3
ϵ2

)(
3

4
αir − 2αir

ϵ3
ϵ2

+
1

32
α2
irϵ3

)(
1 +

vuvϵ3
ϵ2

)−2

,

b3 = −vuv

(
vuvϵ3
ϵ2

)2(3

4
αir − 2αir

ϵ3
ϵ2

+
1

32
α2
irϵ3

)(
1 +

vuvϵ3
ϵ2

)−2

,

... (3.5)

For vuv ≲ 1 and ϵ3/ϵ2 ≲ 1, higher order terms are successively smaller. However, near the

minimum, x = φϵ2 ≳ 1 so that higher powers of x are bigger. Therefore, near the minimum,

terms in P (x) are products of successively increasing and successively decreasing factors.

For certain choice of parameters, a combination of terms balance each other. Since x ≳ 1,

we still get a large hierarchy. This discussion also makes it clear that for a small ϵ3, the

higher order terms can contribute without changing the hierarchy too much when αir and

vuv take larger values. At such values, P is enhanced and so is the second derivative of the

potential.

In summary, a non-zero ϵ3, in conjunction with other parameters of the GW sector,

can increase the radion mass while generating a similar hierarchy. To illustrate this, we will

work with four benchmark parametersA,B,C,D in table 1, for which φmin ∼ 10−16.4 These

parameters are chosen with certain self-consistency conditions in mind. Requiring to stay in

the radion EFT, we need to ensure that the radion mass is at most or slightly smaller than

the Kaluza-Klein (KK) scale which sets the mass of other KK modes. This also ensures

that the back-reaction on the geometry from the GW scalar can be ignored. Another

requirement is to have Tc/φmin ≲ 1 so that temperature corrections to the potential can

be ignored, at least in the vicinity of the minimum. Tc is set by the value of the potential

at the minimum V (φmin) (as discussed in the next section).

Fig. 2a shows the radion potential for these parameters. For B,C,D, with ϵ3 ̸= 0, a

deeper potential at the minimum can be clearly seen. Fig. 2b shows the value of various

terms in the series expansion of the derivative of the potential near the minimum. It is

clear that for A, the first and the second terms balance, for B, the first and the third

terms balance, for C, the second and the third terms balance, and for D, the second term

balances the third and fourth terms together. For C,D, vuv was increased to make sure the

higher order terms are enhanced. Further, the magnitude of the dominant term is largest

in D, which is correlated with the largest value of the second derivative at the minimum.

4In table 1, φmin is calculated for M3
5 = N2

c /16π
2, Nc = 1. For a different Nc, αir and vuv have to be

adjusted to keep φmin fixed. The mass of the physical radion and Tc (defined in eq. (4.4)) do not change

with Nc.
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κ ϵ2 ϵ3 αir vuv φmin × 1016 V ′′(φmin)/φ
2
min −V (φmin)/φ

4
min

A 10−1/4 -1/25 0 1/10 1/14 1.47 0.002 10−4

B 10−1/4 -1/25 -1/100 5/2 1/14 1.09 0.005 3× 10−4

C 10−1/4 -1/25 -1/90 5/2 1/5 0.86 0.032 2× 10−3

D 10−1/4 -1/25 -1/81 5/2 1/3 0.59 0.135 8× 10−3

Table 1: Benchmark choice of parameters to show the effect of self-interaction.

One can estimate the second derivative at the minimum once we know which terms balance

which. Starting with the mth term in the potential, Vm = bm φ4+mϵ2 , the derivative and

the second derivative are

V ′
m = bm (4 +mϵ2)φ

3+mϵ2 , V ′′
m = bm (4 +mϵ2)(3 +mϵ2)φ

2+mϵ2 . (3.6)

The mth and nth term in V ′ can balance near the minimum if

bm (4 +mϵ2)φ
3+mϵ2
min ∼ −bn (4 + nϵ2)φ

3+nϵ2
min . (3.7)

Considering these two terms, and using the above, the second derivative at the minimum

is

V ′′/φ2
min ∼ bm (4 +mϵ2)(m− n)ϵ2 φ

mϵ2 ∼ bn (4 + nϵ2)(n−m)ϵ2 φ
nϵ2 . (3.8)

Using b0 = 24M3
5κ

4, bm>0 ∼ vuv (vuvϵ3/ϵ2)
m−1 αir and φϵ2 ∼ (10−16)−1/25 ∼ 4.3 near

the minimum, the above estimate for V ′′/φ2
min matches the numbers in table 1 obtained

numerically. For parameters C,D, the dominant term at the minimum scales as 1/ϵ2 (i.e.

m = 2), and this parametrically cancels the ϵ2 factor in the numerator in eq. (3.8).

A word of caution for the obtained radion potential: for ϵ2 < 0, ϵ3 < 0, which is the case

at hand, the potential has a singularity at φs = (1/λ)1/ϵ2 . The singularity is coming from

the analytical solution for χ(r) breaking down, and since we used this analytical solution

to obtain the radion potential we see it in the potential too. In a more complete but

numerically tedious calculation, this singularity would not appear. The potential in (3.1)

therefore cannot be trusted for large rir, or equivalently for φ → 0. This is to be kept

in mind when we discuss the thick wall results in sec. 5 (and the computational details

in app. C), which probe small values of φ as the temperature becomes small. At a finite

temperature T , the potential is expected to be modified for φ ≲ T . As we will explain later,

we use the potential only in the φ ≳ T region. The expression for the radion potential

is therefore useful as long as φs ≪ T . This also means we cannot extend the analysis to

arbitrarily low temperatures. As we will show, before running into this issue a significant

reduction in bounce action can be achieved.

4 Free energy of the phases

For both RS and BB phases, the free energy gets contributions from the gravitational and

the GW sectors. Since we are not including back-reaction, the gravitational calculation
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(a) Radion potentials near the minimum, for the parameter choices in table 1. A deeper potential

results from a non-zero ϵ3.
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(b) Various terms in the series expansion of the derivative of the radion potential, for the parameter

choices in table 1. The terms balancing near the minimum are, top left: first and second, top right:

first and third, bottom left: second and third, and bottom right: second, third and fourth.

Figure 2: Radion potentials, for the parameter choices in table 1.

is the same as reported in the literature [2]. The free energy is UV sensitive, so it is

more sensible to talk about the difference in the free energies between the phases. At the

minimum, the difference in free energies coming purely from the gravitational part of the

action is given by:

(FGR, BB − FGR, RS)min = −2π4M3
5T

4 + C = −π2

8
N2

c T
4 + C , (4.1)
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where C is a finite constant to be determined later, and in the last equality we have used

the relation between M5 and the number of colors Nc of the dual theory: 16π2M3
5 = N2

c .

As discussed in ref. [2], in this computation the location of the horizon rh, parameterized

by a temperature Th = π exp(rh), is made a dynamical variable. For generic values of

Th (in the Euclidean picture), there is a conical singularity at the horizon. Regulating the

singularity one gets a contribution to the free energy for Th ̸= T . At the minimum, Th = T ,

the conical singularity disappears, and T is related to rh by eq. (2.3). In deriving eq. (4.1),

β in the RS phase is adjusted to match the geometry at the UV cutoff (see refs. [2, 41] for

details).

We can effectively define eq. (4.1) to be the free energy of the BB phase at the minimum.

Taking C ≡ 2π4M3
5T

4
c , the free energy of the BB phase at the minimum can be written as

FBB, min = 2π4M3
5

(
T 4
c − T 4

)
. (4.2)

At the moment, Tc is a parameter and the free energy of the BB phase is positive or

negative depending on whether T < Tc or T > Tc.

In the presence of a GW scalar, the free energy of the BB phase gets an additional

contribution. This can be computed by first solving for the scalar profile in the BB

background, which is then used to calculate the free energy. The scalar contribution is

subleading compared to the purely gravitational contribution, and we will not include it

here. This is self-consistent with not including back-reaction from the scalar on the BB

geometry.

Similarly, the free energy of the RS phase gets an additional contribution in the

presence of a GW scalar. Staying within the radion EFT, and at low enough temperatures,

the free energy is given by the radion potential itself. The radion potential is normalized

so that it vanishes at the minimum. This amounts to tuning the cosmological constant in

the 4D EFT to zero. We therefore have

FGW, RS = V (φ)− V (φmin) , FGW, RS, min = 0 . (4.3)

We further require that the free energies of the two phases are equal in the φ → 0 and

T → 0 limits, which gives

−V (φmin) = 2π4M3
5T

4
c . (4.4)

This fixes Tc in terms of the radion potential. Putting everything together, we have

FBB, min = 2π4M3
5

(
T 4
c − T 4

)
, (4.5)

FRS = V (φ)− V (φmin) , (4.6)

FRS, min = 0 , (4.7)

FBB, min − FRS, min = 2π4M3
5

(
T 4
c − T 4

)
. (4.8)

The meaning of Tc is made clear by eq. (4.8): At the critical temperature T = Tc, the

difference in the free energy of the two phases is zero. For T > Tc, the BB phase has a

lower free energy than the RS phase and is the preferred phase thermodynamically. As

the temperature drops below Tc, the RS phase has a lower free energy and becomes the

thermodynamically preferred phase.
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5 Dynamics of the phase transition

We assume that after the end of inflation and reheating, the RS model is in the BB

phase, which is the thermodynamically stable phase at very high temperatures. As the

temperature drops, the RS phase becomes thermodynamically favorable. Since both these

phases are local minima of free energy, they are separated by some kind of barrier in the

field space, and the phase transition is first order, proceeding by bubbles of true vacuum

nucleating inside the false vacuum. The standard prescription to calculate the rate of such

a phase transition [42, 43] can be applied, but with important modifications pointed out

in ref. [2], which we mention next.

To calculate the tunneling rate across a barrier, one has to identify the relevant fields

that interpolate between the true and the false vacuum. In the present case, staying within

the radion EFT, the relevant field for the tunneling rate calculation on the RS side is

the radion itself. The radion is a composite, and a different field has to be identified in

the BB phase. Ref [2] assumed the relevant degree of freedom in the BB phase to be Th

(temperature of the horizon), for which a potential can be written, but the kinetic term is

not known (see however ref. [31] for a discussion of this aspect). The way out was provided

by noticing that the path in the field space that interpolates between the false and the

true vacua has some features in the phenomenological cases of interest. One can split it

into three regions: i) the BB region, ii) the φ ≲ T region, and iii) the T ≲ φ ≲ φmin

region. For T ≲ Tc (i.e. in the thin wall limit), the calculable contribution from region iii)

is parametrically larger than the combined contribution from i) and ii), so that it provides

a useful estimate for the full action. As T/Tc reduces, the contribution from region iii)

also reduces. This means that if at a given T/Tc, the contribution from region iii) is too

small, one cannot ignore the other two contributions. Generically, we can take the other

regions to contribute O(1) amount to the action, so that the actually computable action,

from region iii), can only be trusted for values of T/Tc such that it is at least O(1). All in

all, this means the above approach cannot be extended to very small values of T/Tc. Also,

note that the radion potential has a singularity at φs = (1/λ)1/ϵ2 ≪ φmin coming from a

breakdown of the approximations that were used to derive it. Since φ ≳ T in region iii),

we do not need to worry about this as long as T is not too small. With these considerations

in mind, we now calculate the bounce action in both the thin and thick wall limits

We leave the technical details of the bounce action calculation for thin and thick wall

cases to app. C, and give the final expressions here. For the thin wall case, the bounce

action is

Sb =
4

3π7M6
5

(
S1

T 3
c

)3 Tc/T

(1− T 4/T 4
c )

2 ,

S1 =
√

48M3
5

∫ φmin

T
dφ
√
V (φ)− V (φmin) . (5.1)

For the thick wall case, the approach is numerical. We have to minimize the action

Sb =

∫
d4x

(
12M2

5 (∂φ)
2 + V (φ) + 2π4M3

5T
4
)
, (5.2)
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subject to the boundary conditions φ′(0) = 0 and φ′(φ ≈ 0) = −(π2/
√
6)T 2. The second

condition comes from equating the energy across the bubble boundary [32]. Working with

rescaled quantities

1

24M3
5

Ṽ (φ) ≡ κ4 φ4 v(φ) , y = κφT−1 , x = κ r T , (5.3)

the thick wall bounce action looks like

Sb =
96πM3

5

κ3

∫
dxx2

(
1

2

(
dy

dx

)2

+ y4 v(Ty/κ) +
π4

12

)
. (5.4)

The overall factor of M3
5 ∼ N2

c makes the N2
c dependence of the bounce action manifest.

For the O(3) symmetric bubbles with bounce action Sb, the tunnelling probability per

unit time per unit 3-volume, at temperature T is given by

Γ(T ) = T 4e−Sb(T ) , (5.5)

where we have ignored constant O(1) multiplicative factors in the above. For the phase

transition to complete, we need the probability in a Hubble volume to be at least of order

1, which translates to

Γ(T ) ≳ H4 , (5.6)

where H is the Hubble constant in the BB phase, and is fixed by the Friedmann equations

H2 =
ρtotal
3M2

pl

. (5.7)

The energy density ρtotal gets contributions from the vacuum energy and from the radiation

(since the false vacuum is at a temperature T ). Recall that the vacuum energy is tuned to

zero at the RS minimum, so that when BB phase is meta-stable, it has higher free energy

than the RS phase, and therefore has a positive vacuum energy. This is given as

ρvac, BB = 2π4M3
5T

4
c . (5.8)

The energy density from radiation scales as T 4 and quickly becomes subdominant as T ≲
Tc, which is necessary for the RS phase to become stable. The condition for the phase

transition to complete becomes

T 4e−Sb(T ) >
4π8

9

M6
5T

8
c

M4
Pl

, (5.9)

or equivalently

Sb(T ) < − log

(
4π8

9

M6
5T

8
c

T 4M4
Pl

)
≡ Smax

b (T/Tc) . (5.10)

Defining the nucleation temperature Tn as the temperature at which Γ(Tn) = H4, we get

Sb(Tn) = Smax
b (Tn/Tc) . (5.11)
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Ignoring order 1 factors, for Tc around the TeV scale, Smax
b ∼ 140 and changes slowly as

a function of T/Tc. Using M2
pl = M3

5 (ℓAdS = 1), Smax
b is independent of the number of

colors Nc. The bounce action Sb(T ) on the other hand, scales as N2
c . Using this we can

effectively obtain a bound on the maximum Nc that allows a phase transition to complete,

at a given Tn/Tc (i.e. the amount of supercooling):

Nmax(Tn/Tc) =

√
Smax
b (Tn/Tc)

Sb,Nc=1(Tn)
. (5.12)

In the next section, for the parameter choices in table 1, we present the results for Sb

and Smax
b , both in the thin wall limit and away from it. We find that the bounce action

is reduced for some of the parameter choices, and is correlated with increasing the radion

mass.

6 Results

6.1 Bounce action and maximum N

The left panel of fig. 3a shows the bounce action (normalized by 16π2M3
5 = N2

c ) in the

thin wall limit (solid lines) and away from it (dashed lines), for the parameter choices in

table 1. Also shown is the maximum bounce action (dotted) beyond which the rate is too

small to compete with the Hubble expansion. We note a couple of things in fig. 3a. The

thin wall curves are only applicable for T/Tc ≲ 1, and for all the parameter choices, they

are above the Smax
b line, so that the phase transition rate is too small even for Nc = 1, in

the thin-wall limit. The phase transition completes in the thick-wall case, at a temperature

Tn where the Sb and Smax
b curves intersect (which in turn depends on Nc because Sb scales

as N2
c ). For a non-zero ϵ3, the thick wall bounce action is smaller than the ϵ3 = 0 case

(e.g. red vs blue curves in fig. 3a), and is a slowly varying function of T/Tc. Further, the

variation in the thick wall bounce action as a function of T/Tc is larger in the presence of a

non-zero ϵ3, which has consequences for GW signal, as we explain later. For convenience,

we also show the corresponding radion potential in the right panel of fig. 3a. We can notice

a correlation between the second derivative of the radion potential at the minimum and

the bounce action. When the second derivative is larger, i.e. the physical radion is heavier,

the potential is deeper and the bounce action is lower. For a given amount of supercooling,

say T/Tc = 10−3, the bounce action can be lowered approximately by a factor of 30 due to

a non-zero ϵ3 (e.g. comparing the red and the blue curves in fig. 3a).

Using eq. (5.12), we can calculate the maximum color Nmax in the dual theory for

which the phase transition can complete for a given amount of supercooling. Figure 3b

shows Nmax as a function of Tn/Tc. For some amount of supercooling, one can have

Nmax ∼ 10 (e.g. the orange and red curves in fig. 3b). Such values of Nmax are obtained

at Tn/Tc ∼ 10−6, where the bounce action is becoming smaller than O(1) (e.g. the orange

and red curves in Fig. 3a). Nmax ∼ 10 is therefore the most one can hope in the present

analysis, because we have only computed a part of the bounce action that was supposed

to be dominant. Once this calculable part is reduced beyond O(1) values, one cannot use
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(a) Left: The bounce action normalized by 16π2M3
5 = N2

c , for the parameter choices in table 1.

Both thin wall (solid lines) and thick wall (dashed lines) estimates for the bounce action are shown.

Also shown in dotted is the maximum value of bounce action Smax
b , beyond which the phase

transition rate to too small to compete with the Hubble expansion. Right: The corresponding

radion potential for the parameter choices in table 1.
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(b) Maximum number of colors for the phase transition to complete,

as a function of Tn/Tc, for the parameter choice in table 1.

Figure 3: Bounce action, potential, and the maximum number of colors for the phase transition

to complete, for the parameters in table 1.

this as a complete answer. Taking the lowest bounce action to be O(1), eq. (5.12) gives

Nmax ∼
√

Smax
b ∼ 12 for Smax

b ∼ 140.

The amount of supercooling that the metastable phase experiences has important

phenomenological implications. During this period of supercooling, the universe inflates,

and this dilutes any matter abundances generated before the phase transition. If the

framework is to address dark matter abundance and baryon asymmetry with sufficient

supercooling, they must be generated after the phase transition completes. Supercooling
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also has implications for primordial black hole generation mechanisms, cosmological aspects

of axion model building, topological defects and so on (e.g. see [27, 44] and references

therein). A key more generic observation is that bubble collision at the end of the phase

transition can generate gravitational waves, whose frequency and abundance are dependent

on the amount of supercooling. For all these applications but especially with an eye to the

latter, we estimate the peak frequency and the GW abundance from bubble collisions in

the next subsection.

6.2 Gravitational wave signal

First-order phase transitions can give rise to stochastic gravitational wave signals, which

can potentially be detected in ground and space-based GW detectors, according to their

characteristic frequency and abundance (see refs. [45, 46] for a review). There are three

sources of GW production in a first-order phase transition—bubble collision, sound waves,

and turbulence in the plasma. The last two sources require detailed numerical analysis;

here we focus on the bubble collision as a source of stochastic GW production.

The signal in GW can be characterized by the peak frequency fp, and the frequency

dependence of the fractional abundance ΩGW h2. For the GWs generated by bubble

collision, these two quantities are given by [45]

fp = 0.037 mHz

(
β

H

)(
T∗
TeV

)(
g∗
100

)1/6

,

ΩGW h2(f) = 1.3× 10−6

(
H

β

)2 (
100

g∗

)1/3
3.8(f/fp)

2.8

1 + 2.8(f/fp)3.8
. (6.1)

Here we have assumed that when the transferred latent heat is large compared to the

energy of the surrounding plasma, all the latent heat is transferred to the bubble wall, and

the bubble wall velocity is ultra-relativistic. H here is the Hubble scale during the phase

transition, T∗ is the temperature of the radiation bath right after the phase transition,

and g∗ is the number of relativistic degrees of freedom in the plasma during the phase

transition. The parameter β/H is related to the duration of the phase transition [47], and

can be calculated from the bounce action as:

β

H
= −d log Γ

d log T

∣∣∣∣
T=Tn

≈ −4 +
dSb

d log T

∣∣∣∣
T=Tn

, (6.2)

where we have used eq. (5.5) in the last equality above. Note that β/H is a function of Tn,

the temperature at which the phase transition can proceed, which in turn depends on Nc.

A small β/H decreases the peak frequency, but crucially increases the abundance. Figure 4

shows β/H as a function of Tn/Tc for the parameter choices in table 1. On each curve,

Nc varies, which changes Tn. Values of Nc = 2, 5, 10 are shown on the individual curves.

The behavior of β/H with and without ϵ3 is very different, as seen for example by the blue

and the red curves in fig. 4. When ϵ3 = 0, β/H is small and decreases as Tn/Tc decreases,

unlike the ϵ3 ̸= 0 case. When the deformation in the IR is very small so that one is close
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Figure 4: The parameter β/H as a function of Tn/Tc for the parameter choices in table 1. On

each curve, N varies as a parameter. Points with Nc = 2, 5, 10 are shown by markers.

to a CFT, the bounce action is weakly dependent on temperature [32], and β/H is close

to zero. This is different than the behavior seen for ϵ3 ̸= 0.

The increased peak frequency and reduced GW signal from a non-zero ϵ3 is still within

the reach of proposed space-based GW interferometers such as LISA [6, 7], DECIGO [8–

11], and BBO [12–14]. In fig. 5 we show the expected GW abundance as a function of

frequency, for some values of β/H, and compare to the projected reach of the experiments

(taking g∗ = 100 and T∗ = TeV in eq. (6.1)). For a given value of Nc, the values of β/H

are different for the four parameter choices in table 1, and are at different values of Tn/Tc.

The left panel of fig. 5 shows the GW signal for β/H = 20, 50, 200, 350 (corresponding to

Nc = 2, shown by “x” in fig. 4). The value of β/H changes significantly for a non-zero

ϵ3: from 20 (ϵ3 = 0, Tn/Tc = 0.002, parameter A) to 350 (ϵ3 = −1/81, Tn/Tc = 0.7,

parameter D). Such different values of β/H correspond to very different peak frequencies

and fractional abundances (e.g. the red and blue curves in the left panel of fig. 5). For

comparison, we also show the GW signal for β/H = 10, 30, 120 in the right panel of fig. 5

(corresponding to Nc = 5, shown by “o” in fig. 4). For both choices of Nc we see that while

the signal strength is reduced and peak frequency is increased due to a non-zero ϵ3, there

is still a possibility of discovery.

7 General comments

In this work we have argued for including self-interaction terms in the bulk potential of

the stabilizing scalar. We considered a bulk potential with a quadratic and a cubic term,

with signs chosen such that both terms grow in the IR. We stayed in the limit of small

back-reaction and within the radion EFT. In the presence of a cubic term, and for a large

hierarchy, the defining features of the radion potential are changed, and the radion mass is

increased. The same effect also reduced the bounce action and thereby increased the rate
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Figure 5: GW abundance as a function of frequency for some values of β/H: values in the left

panel correspond to Nc = 2 (indicated in fig. 4 by a “x”), values in the right panel correspond

to Nc = 5 (indicated in fig. 4 by a “o”). Also shown is the projected reach from LISA [6, 7],

DECIGO [8–11], and BBO [12–14]. We have taken g∗ = 100 and T∗ = TeV.

for a transition from the hot phase to the RS phase. Equivalently, this reduced the amount

of supercooling needed before completing the phase transition and increased the maximum

number of colors Nmax for which the phase transition can complete, for a given amount

of supercooling. For a choice of parameters, we were able to have Nmax ∼ 10. We also

discussed the resulting GW signals from bubble collisions, and showed that in the presence

of self-interactions, the parameter β/H that characterizes the frequency and abundance of

the GWs does not get too small, unlike the case when the CFT breaking in the IR is small

and β/H is close to zero.

In fig. 6 we show Nmax and β/H for a moderate amount of supercooling Tn/Tc = 10−4,

as a function of the mass squared of the physical radion. The figure summarizes the

main point of the paper—the presence of a self-interaction term increases the mass of the

physical radion and the same effect also reduces the bounce action to increase Nmax, while

disfavoring a small β/H. As the radion mass gets close to the KK scale, we cannot trust the

result entirely, and a complete 5D calculation would be necessary. Our conclusion is similar

to [34], even though the underlying dynamics driving the radion mass up is different.
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Figure 6: The effect on Nmax (left) and β/H (right) as the radion mass squared increases due to

a non-zero ϵ3. The curves are shown for a fixed Tn/Tc = 10−4.
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Our work is a first step towards systematically including the effects of strong coupling

in the IR, in the dynamics of the phase transition. In this work we have chosen parameters

such that the radion is lighter than the other KK masses, allowing us to use the radion

EFT. A more generic situation is when the radion mass is of the same order as other KK

masses, which would drive the calculation out of the radion EFT and a full 5D calculation

would be needed. The back-reaction would be important in the IR and it would change the

free energy of both the RS and the BB phase. The stability of the phases can change the

order of the phase transition, and a full 5D gravitational instanton computation would be

needed to address the question properly. Rather than modeling choices, these are general

effects. We will address some of these issues in a more general model in a future work.
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A Numerical and approximately analytical method

In this appendix we briefly outline the procedure to obtain the approximate analytical

solutions for the scalar χ, for both BB and RS backgrounds. We also describe the numerical

method to obtain the profile for χ in the BB background.

The equation of motion for χ in the background of eq. (2.1) is(
1− e4(r−rh)

) d2χ

dr2
− 4

dχ

dr
− dVB(χ)

dχ
−
∑
i

δ(r − ri)
dVi(χ)

dχ
= 0 , (A.1)

where i runs over (uv, ir) for the RS case and only over (uv) for the BB case. The range

of r is 0 ≤ r ≤ rir for the RS case and 0 ≤ r ≤ rh for the BB case. We will work with

a rescaled coordinate y = r/rir for the RS case, and y = r/rh for the BB case, so that

0 ≤ y ≤ 1 for both backgrounds. Given the bulk and brane potentials in eq. (2.5), (2.6),

the equation and the boundary conditions for the RS and BB backgrounds are

RS:
1

r2ir

d2χ

dy2
− 4

rir

dχ

dy
− 4ϵ2χ− 4ϵ3χ

2 = 0, χ(0) = vuv, χ′(1) = −rirαir , (A.2)

BB:

(
1− e4rh(y−1)

r2h

)
d2χ

dy2
− 4

rh

dχ

dy
− 4ϵ2χ− 4ϵ3χ

2 = 0, χ(0) = vuv . (A.3)

A.1 RS background

In the limit rir ≫ 1, |ϵ2|rir ≲ 1, |ϵ3|rir ≲ 1, eq (A.2) can be solved approximately by singular

perturbation theory and boundary layer analysis [48]. Close to r = y = 0, χ varies slowly
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and the derivatives are small. To leading order in 1/rir, one can drop the second derivative

in eq. (A.2), which results in a first-order differential equation, readily solved. Applying

the boundary condition χ(0) = vuv to the first-order differential equation resulting from

dropping the second derivative term in eq. (A.2), we get

χleft(y) =
vuve

−ϵ2riry

1 + vuvϵ3

(
1−e−ϵ2riry

ϵ2

) , (A.4)

where the subscript “left” refers to the fact that the solution is valid only on the left side

of the interval. As y → 1, χ has to change fast to match the boundary condition at y = 1.

In a small region near y = 1, of width O(1/rir), χ itself is small, but changes fast so that

the derivatives are large. In this region (referred to as “right”) one only keeps the first and

the second derivative terms in eq. (A.2), which gives

χright(y) = −αir

4
e4rir(y−1) + C , (A.5)

where we have applied the boundary condition χ′(1) = −rirαir, and C is an undetermined

constant at the moment. Using asymptotic matching in a region where both the solutions

are valid, and requiring the same functional form, the constant C can be fixed. The final

solution is given as (now switching to r = rir y)

χRS(r) = −αir

4
e4(r−rir) +

vuve
−ϵ2r

1 + vuvϵ3(
1−e−ϵ2r

ϵ2
)
. (A.6)

For consistency, we can check if the equations of motion and the boundary conditions are

satisfied. In the limit of rir ≫ 1, vuv ≪ 1, |ϵ2| ≪ 1, |ϵ3| ≪ 1, the errors on the boundary and

in the bulk are small, and under control. Note that for ϵ2 < 0, the denominator of eq. (A.4)

can vanish at some r. Clearly that is outside the validity of the approximation since the

second derivative would not be small there anymore. To be consistent, we therefore need

−ϵ2rir < log(1 + ϵ2/vuvϵ3). For ϵ2 < 0, ϵ3 < 0, in the limit of small ϵ2, this condition

simplifies to rir < 1/vuv|ϵ3|, which can be satisfied for small vuv.

We can understand intuitively the role of ϵ3 as follows. For small enough r one can

expand the exponential in the denominator in the second term of eq. (A.6), and approximate

it as follows:

vuve
−ϵ2r

1 + vuvϵ3(
1−e−ϵ2r

ϵ2
)
≈ vuve

−ϵ2r

1 + vuvϵ3r
≈ vuve

−(ϵ2+vuvϵ3)r . (A.7)

This makes it clear that for small r, ϵ3 effectively increases ϵ2. This effect compounds as r

increases.

A.2 BB background

Similar to the RS case, eq. (A.3) can be solved in the limit of large rh. For y = r/rh ≪ 1,

the exponential term in the coefficient of χ′′ can be dropped, and we have the same solution

as eq. (A.4). Note that the UV boundary condition is the same for both RS and BB cases.
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As y → 1, unlike the RS case, the coefficient of χ′′ becomes small, so that one can again

drop the second derivative term. Since the only condition on χ(r) is to be regular at y = 1,

the leading order solution is

χBB(r) =
vuve

−ϵ2r

1 + vuvϵ3(
1−e−ϵ2r

ϵ2
)
. (A.8)

To be more precise, we can do a Taylor series expansion around y = 1 to solve the equation

near y = 1 and match it to χleft(r) at some intermediate value. This procedure gives the

same result as above, to leading order.

We would like to check the approximate solution (A.8) with the numerical solution for

the profile. Without an explicit boundary condition to be applied at y = 1, it is not clear a

priori how to numerically solve for χ in the BB geometry. For this we apply a method that

is akin to matching in an intermediate region. We solve the full equation numerically with

given χ(0), and for some value of χ′(0), varying χ′(0). We also expand the equation in a

Taylor series expansion around y = 1 which analytically fixes χ′(1) in terms of χ(1). As we

vary χ′(0) in the numerical solution, we check whether the analytical relation between χ(1)

and χ′(1) is satisfied, which uniquely determines χ′(0), and hence the numerically regular

solution.

In the special case of ϵ3 = 0, the solution is a linear combination of hypergeometric

functions [2], and the correct linear combination regular at the horizon is easily identified.

Figure 1 shows a comparison between the solutions: for ϵ3 ̸= 0, between the approximate

solutions obtained in this appendix and the numerical solution obtained by the method

discussed in the previous paragraph, and for ϵ3 = 0, between the exact solution and the

approximate solution.

B Radion potential

Starting with the purely gravitational 5D action

S =

∫
d5x

√
g
(
−2M3

5R[g]− Λ5

)
−
∑

i=uv,ir

∫
d4x

√
gi Ti , (B.1)

where −Λ5 = Tuv = −Tir = 24M3
5 (setting ℓAdS = 1), and plugging back the metric

ds2 = −e−2rdx2 + dr2 , 0 ≤ r ≤ rir , (B.2)

but making rir a 4D field rir(x), one generates a kinetic term for rir(x). In terms of

φ = exp(−rir), the 4D action looks like

S = −12M3
5

∫
d4x(∂φ)2 . (B.3)

At this point, there is no potential for φ and it is a modulus. To generate a potential to

stabilize the geometry, we add a GW scalar χ with the action defined in eq. (2.4) and solve

for the background value of χ which is a function of r due to the choice of boundary and
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bulk potentials. Evaluating Sχ on χ(r) gives the potential for φ, for which we outline the

steps now.

Plugging χ(r) in Sχ, we get

Sχ =

∫
d4x

∫ rir

0
dr e−4r

(
−1

2

(
dχ

dr

)2

− VB(χ)

)
−
∑

i=uv,ir

e−4riVi(χ(ri)) . (B.4)

Using χ equations of motion χ′′− 4χ′− ∂χVB(χ) = 0 and an integration by parts, the bulk

term of Sχ evaluates to∫
d4x

(
−1

2

(
e−4rχ

dχ

dr

)∣∣∣∣rir
0

−
∫ rir

0
dr e−4r

(
VB(χ)−

1

2
χ
dVB

dχ

))
. (B.5)

Adding the contribution from the uv, ir localized terms (in eq. (B.4)) to the bulk contri-

bution in eq. (B.5), the potential is given as

V (rir) =
1

2

(
e−4rχ

dχ

dr

)∣∣∣∣rir
0

+

∫ rir

0
dr e−4r

(
VB(χ)−

1

2
χ
dVB

dχ

)
+ Vuv(χ(0)) + e−4rirVir(χ(rir)) .

(B.6)

For Dirichlet boundary condition in UV, Vuv(χ) = 0. Given the bulk potential in eq. (2.5),

VB−(1/2)χ∂χVB = −(2/3)ϵ3χ
3. Using χ(r) from eq. (2.7), we need to evaluate the integral

−2

3
ϵ3

∫ rir

0
dr e−4r

−αir

4
e4(r−rir) +

vuve
−ϵ2r

1 + vuvϵ3

(
1−e−ϵ2r

ϵ2

)
3

. (B.7)

To proceed, we need some identities related to hypergeometric functions. First note that

each term in the above is an integral of a general form, with a closed-form answer expressed

in terms of hypergeometrics:∫
dr

ear

(1 + becr)n
=

ear

(1 + becr)n−1 2F1(1, 1− n+
a

c
, 1 +

a

c
, becr) . (B.8)

Two other useful identities are [49]:

2F1(a, b, c; z) = (1− z)c−a−b
2F1(c− a, c− b, c; z) ,

2F1(a+ δλ, b, c+ λ) ≈ (1− δz)−b , |λ| ≫ 1 , |δ| ≤ 1 . (B.9)

To simplify the further expressions, we define

ϵ32 =
ϵ3
ϵ2

, λ =
vuvϵ32

1 + vuvϵ32
, Y (r) =

λe−ϵ2r

1− λe−ϵ2r
, (B.10)

in terms of which χ(r) can be written as

χ(r) = −αir

4
e4(r−rir) +

1

ϵ32
Y (r) . (B.11)
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We now expand the integrand in eq. (B.7), use eqs. (B.8), (B.9) for simplification and the

notation of eq. (B.10). Calling the four terms from expanding eq. (B.7) as t1, t2, t3, t4, we

have

t1 = −2

3
ϵ3

∫ rir

0
dr e−4r

(
−αir

4
e4(r−rir)

)3
=

1

96
ϵ3α

3
ire

−12rir

∫ rir

0
dre8r

=
1

768
ϵ3α

3
ir

(
φ4 − φ12

)
. (B.12)

t2 = −2

3
ϵ3

∫ rir

0
dr e−4r 3

(
−αir

4
e4(r−rir)

)( 1

ϵ32
Y (r)

)2

=
1

2

ϵ22
ϵ3
αir e

−4rir

∫ rir

0
dr

λ2e−2ϵ2r

(1− λe−ϵ2r)2
=

1

2

ϵ2
ϵ3
αir e

−4rir
(
− Y (r) + log(1 + Y (r))

)∣∣∣rir
0

=
1

2

ϵ2
ϵ3
αirφ

4

(
−Y (rir) + log(1 + Y (rir)) +

λ

1− λ
+ log(1− λ)

)
. (B.13)

t3 = −2

3
ϵ3

∫ rir

0
dr e−4r 3

(
−αir

4
e4(r−rir)

)2( 1

ϵ32
Y (r)

)
= −1

8
ϵ2α

2
ire

−8rir

∫ rir

0
dr

λe(4−ϵ2)r

(1− λe−ϵ2r)
=

1

32
ϵ2α

2
ire

−8rir

(
e4r2F1(1,

4

ϵ2
, 1 +

4

ϵ2
;λ−1eϵ2r)

)∣∣∣∣rir
0

=
1

32
ϵ2α

2
ire

−8rir
(
− e4rY (r)

)∣∣∣rir
0

=
1

32
ϵ2α

2
ir

(
−φ4Y (rir) + φ8

(
λ

1− λ

))
. (B.14)

t4 = −2

3
ϵ3

∫ rir

0
dr e−4r

(
1

ϵ32
Y (r)

)3

= −2

3

ϵ32
ϵ23

∫ rir

0
dr

λ3e−(4+3ϵ2)r

(1− λe−ϵ2r)3

= −1

6

ϵ32
ϵ23

(
e−4r

2F1(3,−
4

ϵ2
, 1− 4

ϵ2
;λ−1eϵ2r)

)∣∣∣∣rir
0

= −1

6

ϵ32
ϵ23

(
− e−4rY 3(r)

)∣∣∣rir
0

=
1

6

ϵ32
ϵ23

(
φ4Y 3(rir)−

(
λ

1− λ

)3
)

. (B.15)

We have used |ϵ2| ≪ 1 in the above to simplify the hypergeometric functions. Collecting

everything together, keeping to leading order in φ, and dropping overall constants, the

integral in eq. (B.7) is given as:

φ4
(
A+BY + CY 3 +D log(1 + Y )

)
, Y =

λφϵ2

1− λφϵ2

A =
1

768
ϵ3α

2
ir −

λ

1− λ
+ log(1− λ) , B = − 1

32
ϵ2α

2
ir −

1

2

ϵ2
ϵ3
αir , C =

1

6

ϵ32
ϵ23

, D =
1

2

ϵ2
ϵ3
αir .

(B.16)

In addition to all the terms in eq. (B.6), there is a potential generated by the detuning of

the IR brane tension, and is given by

Vdetune(φ) = τ̃ φ4 , (B.17)

where τ̃ is a free parameter at this point. Together with above, including all the con-

tributions in eq. (B.6), and keeping to linear order in ϵ2, the radion potential is given
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as

V (φ) = φ4 (a1 + a2Y + a3 log(1 + Y )) , Y =
λφϵ2

1− λφϵ2

a1 = τ , a2 = − 1

32
ϵ2α

2
ir −

ϵ2
ϵ3
αir + 2αir , a3 =

1

2

ϵ2
ϵ3
αir , (B.18)

where we have absorbed terms to define an overall τ and used exact values for χ(0) and

χ′(rir) (these are the specified boundary conditions and are only approximately satisfied by

the approximate solution). The ϵ3 → 0 limit is finite, and in this limit a2Y + a3 log(1 + Y )

reduces to −(1/2)αirvuvφ
ϵ2 . Note that for Y to stay finite, we need rir < (1/ϵ2) log λ.

To make it clear what are the reasonable values for parameters, and to keep the N

dependence of the dual theory clear, we define τ ≡ 24M3
5κ

4. Since M3
5 ∼ N2

16π2 , this makes

it clear that τ ∼ N2

16π2κ
4 (which is the glueball normalization) and we need κ ≲ 1 for small

back-reaction. The radion potential can be rewritten as

V (φ) = 24M3
5 κ

4 φ4 v(φ/φmin; ϵ2, ϵ3, αir, vuv) , (B.19)

where the function v does not have an analytical expression (since φmin does not have an

analytical expression), but is easily obtained numerically. The dimensionless function v

encodes the information about the breaking of the CFT, and plays a crucial role when

calculating the bounce action. Putting everything together, the radion action is

S = 24M3
5

∫
d4x

(
−1

2
(∂φ)2 − κ4 φ4 v(φ/φmin; ϵ2, ϵ3, αir, vuv)

)
. (B.20)

C Bounce action in the thin and thick wall limits

Starting with the action

S =

∫
d4x

(
−12M2

5 (∂φ)
2 − V (φ)

)
, (C.1)

the bounce action is obtained by looking for a solution to φ that minimizes the Euclidean

action

Sb =

∫
d4x

(
12M2

5 (∂φ)
2 + Ṽ (φ)

)
, Ṽ (φ) = V (φ)− C , (C.2)

and evaluating the action on the solution. The constant C is chosen to subtract the

contribution from the false vacuum, and is given by −2π4M3
5T

4
c = V (φmin) for the thin

wall case, and −2π4M3
5T

4 for the thick wall case. At zero temperature, φ is assumed to

be a function of the combination ρ2 = x⃗ · x⃗+ t2E and this is referred as the O(4) symmetric

solution. At finite temperature, there is another saddle that can dominate. For inverse

temperature β = 1/T , the Euclidean time is made periodic with period β. The field φ is

assumed to be a function of the combination r2 = x⃗ · x⃗ and this is referred to as the O(3)

solution. In rest of the discussion we focus on the O(3) solution only.
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For O(3) symmetric solutions, the action is given more explicitly as (ignoring temper-

ature corrections to the potential)

Sb =

∫ β

0
dtE

∫
d3x

(
12M2

5 (∂φ)
2 + Ṽ (φ)

)
=

4π

T

∫
dr r2

(
12M2

5

(
dφ

dr

)2

+ Ṽ (φ)

)
.

(C.3)

The equations of motion are

24M3
5

(
d2φ

dr2
+

2

r

dφ

dr

)
=

dṼ (φ, T )

dφ
≈ dṼ (φ)

dφ
. (C.4)

One of the boundary conditions is φ′(r = 0) = 0 and we will have more to say about the

second boundary condition later.

C.1 Thin wall case

In the limit of the two vacua being very degenerate, the solution for φ is such that it

has a large region where it is constant (and equal to its value in the true vacuum) and

then changes quickly to the value in the false vacuum. In this limit, the wall is small

compared to the size of the bubble, hence this is called the thin-wall solution. In this limit,

one can ignore the first derivative term in the equations of motion. Using the identity

2d2y/dx2 = d/dy(dy/dx)2, the equations can be solved to give

12M3
5

(
dφ

dr

)2

= Ṽ (φ) , (C.5)

where we used the boundary condition φ′(r = 0) = 0 and the fact that at r = 0, φ = φmin

and Ṽ (φmin) = 0. To evaluate the action on this solution, a somewhat indirect approach

is more intuitive. First note that for a bubble of size R, the field is mostly constant for

r ≲ R, changes quickly in the vicinity of r = R, and is again constant afterwards. We can

split the action into these three regions. In the region r ≲ R, we can drop the derivative,

Ṽ (φ) is a constant, and the integrand is proportional to r2. For r ∼ R, the factor of r2

can be approximated to be R2, and we have to keep both the derivatives and the potential

inside the integral. For r ≳ R there is no contribution. We therefore have

Sb =
4π

T

(
Ṽ (φ)

∫ R

0
dr r2 +R2

∫
r∼R

dr

(
12M3

5

(
dφ

dr

)2

+ Ṽ (φ)

))
. (C.6)

Using Ṽ (φ) = ∆F = FFV − FTV > 0 as the difference in the free energies between the two

vacua, we get

Sb =
4π

T

(
1

3
∆FR3 +R2S1

)
, S1 =

∫
r∼R

dr

(
12M3

5

(
dφ

dr

)2

+ Ṽ (φ)

)
. (C.7)

Changing variables from r to φ, S1 can be written as

S1 =
√
48M3

5

∫ φmin

0
dφ

√
Ṽ (φ) , (C.8)
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and is independent of R. Since φ changes from 0 to φmin in the r ∼ R region, this fixes the

limits of the integration in eq. (C.8).5 Equation (C.7) gives Sb as a function of R, which is

minimized at R = −2S1/∆F , at which the bounce action is given as

Sb =
16π

3T

S3
1

(∆F )2
. (C.9)

The free energy difference ∆F can be written in terms of the critical temperature Tc as

∆F = FFV − FTV = 2π4M3
5

(
T 4 − T 4

c

)
, (C.10)

using which, the bounce action becomes

Sb =
4

3π7M6
5

(
S1

T 3
c

)3 Tc/T

(1− T 4/T 4
c )

2 . (C.11)

One can also calculate the φ profile for thin-wall case, using eq. (C.5) as

−
√

12M3
5

∫ φ

φmin

dφ√
Ṽ (φ)

= r , (C.12)

where we have chosen the negative sign of the square root, and used the boundary condition

dφ/dr = 0 at r = 0, which by eq. (C.5) is at φ = φmin.

C.2 Thick wall case

In the thick wall case, we minimize the action

Sb =

∫
d4x

(
12M2

5 (∂φ)
2 + V (φ) + 2π4M3

5T
4
)
, (C.13)

One of the boundary conditions to be satisfied is the standard one: φ′(0) = 0 (r being

a radial coordinate). The second boundary condition is more subtle. The usual second

boundary condition is to require φ(r → ∞) = φfalse vacuum. In the case at hand, φ is not a

dynamical variable in the other phase. Inside the bubble, close to the boundary, we have

φ ∼ T ≈ 0, and the energy is only in the gradient. Outside the bubble and close to the

boundary, the energy is proportional to T 4. Requiring the energies to match at the bubble

boundary we get [28]

12M3
5

(
dφ

dr

)2
∣∣∣∣∣
φ≈ 0

= 2π4M3
5T

4 . (C.14)

We choose the negative sign in the square root because φ starts near φmin at the center of

the bubble and decreases to zero at the boundary, thereby the derivative is negative when

φ → 0. Putting everything together, the equations and the boundary conditions are

24M3
5

(
d2φ

dr2
+

2

r

dφ

dr

)
=

dṼ (φ)

dφ
,

dφ

dr

∣∣∣∣
r=0

= 0,
dφ

dr

∣∣∣∣
φ≈0

= − π2

√
6
T 2 . (C.15)

5Technically the lower limit is φ ∼ T , since we are estimating the action from region iii) (see discussion

in main text). Taking the lower limit to be approximately zero does not change the estimate.
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Since the location at which φ ≈ 0 is not known a priori, one has to approach the problem

indirectly. The strategy is to solve the differential equation numerically with φ(0) =

φ0, φ
′(0) = 0, calculate r∗ such that φ(r∗) ≈ 0, and adjust φ0 till φ

′(r∗) has the appropriate

value. For numerical convenience we define

1

24M3
5

Ṽ (φ) ≡ κ4 φ4 v(φ) ,

y = κφT−1 , x = κ r T . (C.16)

With this rescaling, the action in eq. (C.3) looks like

Sb =
96πM3

5

κ3

∫
dxx2

(
1

2

(
dy

dx

)2

+ y4 v(Ty/κ) +
π4

12

)
. (C.17)

The differential equation and the boundary conditions in the rescaled coordinates are

d2y

dx2
+

2

x

dy

dx
=

d

dy
y4v(Ty/κ) ,

dy

dx

∣∣∣∣
x=0

= 0 ,
dy

dx

∣∣∣∣
y≈0

= − π2

√
6
. (C.18)

As discussed before, since the value of x at which y ≈ 0 is not known before solving

the equation, we trade that boundary condition with y(0) = y0, calculate x∗ such that

|y(x∗)| < δ = 10−1 and adjust y0 till y′(x∗) + π2/
√
6 = 0. Note that eq. (C.18) depends on

T/Tc and one has to solve it for different values of T/Tc to get the temperature dependence

of Sb.

Figure 7 compares the results for the thin and thick wall cases for a generic choice of

parameters: left shows the bounce action as a function of T/Tc for the thin and the thick

wall cases, right shows the scalar profile for several values of T/Tc for the thick wall case,

and for the thin wall case where T ≈ Tc (the two vacua being almost degenerate). As

the thin-wall limit is approached (i.e. the bubble radius gets bigger), the results for the

thick-wall calculation converge to the thin-wall results.
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Figure 7: Thin vs thick wall for τ = 2, αir = 5, vuv = 1/5, ϵ2 = −1/10, ϵ3 = 0. Left shows the

bounce action and right shows the bubble profile.

When computing the bounce action and the bubble profiles for ϵ3 ̸= 0, one technical

difficulty is to be kept in mind. As discussed earlier, the radion potential V (φ) has a

singularity at a finite but non-zero φs = (1/λ)1/ϵ2 , where λ = vuv(ϵ3/ϵ2)/(1 + vuv(ϵ3/ϵ2)).
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Given that Tc ≲ φmin, if the thick wall profile is computed at T/Tc ≪ 1, the relevant φ

probed is of the order (T/Tc)φmin ≪ φmin, and for small enough T , one can be sensitive

to the singular point φ = φs. Since φs ≪ φmin, one can calculate for intermediate

temperatures without running into this issue. In this work we consider only values of

T/Tc such that we are not sensitive to the singularity. Further, note that the boundary

condition requires imposing a condition when y ≈ 0 or equivalently φ ≈ 0. Numerically we

require |y(x∗)| ≤ δ = 10−1 or equivalently |φ| ≤ T (δ/κ) ∼ 10−1T . As long as T is not too

small, we do not probe the singular region of the potential.
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