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We survey a current, heated debate in the artificial

intelligence (AI) research community on whether large

pretrained language models can be said to understand

language—and thephysical and social situations language

encodes—in any humanlike sense. We describe argu-

ments that have been made for and against such under-

standing and key questions for the broader sciences of

intelligence that have arisen in light of these arguments.

We contend that an extended science of intelligence can

be developed that will provide insight into distinct modes

of understanding, their strengths and limitations, and the

challenge of integrating diverse forms of cognition.
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What does it mean to understand something? This question

has long engaged philosophers, cognitive scientists, and

educators, nearly always with reference to humans and

other animals. However, with the recent rise of large-scale AI

systems—especially the so-called large languagemodels—a

heated debate has arisen in the AI community on whether

machines can now be said to understand natural language

and thus understand the physical and social situations that

language can describe. This debate is not just academic;

the extent and manner in which machines understand our

world have real stakes for how much we can trust them to

drive cars, diagnose diseases, care for the elderly, educate

children, and more generally act robustly and transparently

in tasks that impact humans. Moreover, the current debate

suggests a fascinating divergence in how to think about un-

derstanding in intelligent systems, in particular the contrast

between mental models that rely on statistical correlations

and those that rely on causal mechanisms.

Until quite recently, there was general agreement in

the AI research community about machine understanding:

While AI systems exhibit seemingly intelligent behavior in

many specific tasks, they do not understand the data they

process in the way humans do. Facial recognition software

does not understand that faces are parts of bodies, the role

of facial expressions in social interactions, what it means to

“face” an unpleasant situation, or any of the other uncount-

able ways in which humans conceptualize faces. Similarly,

speech-to-text and machine translation programs do not

understand the language they process, and autonomous

driving systems do not understand the meaning of the

subtle eye contact or body language drivers and pedestrians

use to avoid accidents. Indeed, the oft-noted brittleness of

these AI systems—their unpredictable errors and lack of

robust generalization abilities—are key indicators of their

lack of understanding (1). However, over the last several

years, a new kind of AI system has soared in popularity

and influence in the research community, one that has

changed the views of some people about the prospects

of machines that understand language. Variously called

large language models (LLMs), large pretrained models,

or foundation models (2), these systems are deep neural

networks with billions to trillions of parameters (weights)

that are “pretrained” on enormous natural-language cor-

pora, including large swathes of the web, online book

collections, and other collections amounting to terabytes

of data. The task of these networks during training is to

predict a hidden part of an input sentence—a method

called “self-supervised learning.” The resulting network is a

complex statistical model of how the words and phrases

in its training data correlate. Such models can be used

to generate natural language, be fine-tuned for specific

language tasks (3), or be further trained to better match

“user intent” (4). LLMs such as OpenAI’s well-known GPT-3

(5) and more recent ChatGPT (6) and Google’s PaLM (7) can

produce astonishingly humanlike text, conversation, and,

in some cases, what seems like human reasoning abilities

(8), even though the models were not explicitly trained to

reason. How LLMs perform these feats remains mysterious

for lay people and scientists alike. The inner workings of

these networks are largely opaque; even the researchers

building them have limited intuitions about systems of such

scale. The neuroscientist Terrence Sejnowski described the

emergence of LLMs this way: “A threshold was reached, as

if a space alien suddenly appeared that could communicate

with us in an eerily human way. Only one thing is clear—

LLMs are not human... Some aspects of their behavior

appear to be intelligent, but if not human intelligence, what

is the nature of their intelligence?” (9).

As impressive as they are, state-of-the-art LLMs remain

susceptible to brittleness and unhumanlike errors. How-

ever, the observation that such networks improve signifi-

cantly as their number of parameters and size of training

corpora are scaled up (10) has led some in the field to

claim that LLMs—perhaps in a multimodal version—will

lead to human-level intelligence and understanding, given
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sufficiently large networks and training datasets. A new AI

mantra has emerged: “Scale is all you need” (11, 12).

Such claims are emblematic of one side of the stark

debate in the AI research community on how to view LLMs.

One faction argues that these networks truly understand

language and can perform reasoning in a general way

(although “not yet” at the level of humans). For example,

Google’s LaMDA system, which was pretrained on text and

then fine-tuned on dialogue (13), is sufficiently convincing

as a conversationalist that it convinced one AI researcher

that such systems “in a very real sense understand a wide

range of concepts” (14) and are even “making strides toward

consciousness” (15). Anothermachine language expert sees

LLMs as a canary in the coal mine of general human-level

AI: “There is a sense of optimism that we are starting to see

the emergence of knowledge-imbued systems that have a

degree of general intelligence” (16). Another group argues

that LLMs “likely capture important aspects of meaning, and

moreover work in a way that approximates a compelling

account of human cognition in which meaning arises from

conceptual role” (17). Those who reject such claims are

criticized for promoting “AI denialism” (18).

Those on the other side of this debate argue that large

pretrained models such as GPT-3 or LaMDA—however flu-

ent their linguistic output—cannot possess understanding

because they have no experience or mental models of the

world; their training in predicting words in vast collections

of text has taught them the form of language but not the

meaning (19–21). A recent opinion piece put it this way: “A

system trained on language alone will never approximate

human intelligence, even if trained from now until the heat

death of the universe,” and “it is clear that these systems

are doomed to a shallow understanding that will never

approximate the full-bodied thinking we see in humans”

(22). Another scholar argued that intelligence, agency, and,

by extension, understanding “are the wrong categories” for

talking about these systems; instead, LLMs are compressed

repositories of human knowledge more akin to libraries

or encyclopedias than to intelligent agents (23). For ex-

ample, humans know what is meant by a “tickle” making

us laugh because we have bodies. An LLM could use the

word “tickle,” but it has obviously never had the sensation.

Understanding a tickle is tomapaword to a sensation, not to

another word.

Thoseon the “LLMsdonotunderstand” sideof thedebate

argue that while the fluency of large language models is

surprising, our surprise reflects our lack of intuition of

what statistical correlations can produce at the scales of

thesemodels. Anyonewho attributes understanding or con-

sciousness to LLMs is a victimof the Eliza effect (24)—named

after the 1960s chatbot created by Joseph Weizenbaum

that, simple as it was, still fooled people into believing it

understood them (25). More generally, the Eliza effect refers

to our human tendency to attribute understanding and

agency tomachines with even the faintest hint of humanlike

language or behavior.

A 2022 survey given to active researchers in the natural-

language-processing community shows the stark divisions

in this debate. One survey item asked whether the respon-

dent agreed with the following statement about whether

LLMs could ever, in principle, understand language: “Some

generative model [i.e., language model] trained only on

text, given enough data and computational resources, could

understand natural language in some nontrivial sense.” Of

480 people responding, essentially half (51%) agreed, and

the other half (49%) disagreed (26).

Those who would grant understanding to current or

near-future LLMs base their views on the performance of

these models on several measures, including subjective

judgment of the quality of the text generated by the model

in response to prompts (although such judgments can be

vulnerable to the Eliza effect), and more objective perfor-

mance on benchmark datasets designed to assess language

understanding and reasoning. For example, two standard

benchmarks for assessing LLMs are the General Language

Understanding Evaluation (GLUE) (27) and its successor

(SuperGLUE) (28), which include large-scale datasets with

tasks such as “textual entailment” (given two sentences, can

the meaning of the second be inferred from the first?),

“words in context” (does a given word have the same

meaning in two different sentences?), and yes/no question

answering, among others. OpenAI’s GPT-3, with 175 billion

parameters, performed surprisingly well on these tasks (5),

and Google’s PaLM, with 540 billion parameters, performed

even better (7), often equaling or surpassing humans on the

same tasks.

What do such results say about understanding in LLMs?

The very terms used by the researchers who named these

benchmark assessments—“general language understand-

ing,” “natural-language inference,” “reading comprehen-

sion,” “commonsense reasoning,” and so on—reveal an

assumption that humanlike understanding is required to

perform well on these tasks. But do these tasks actually

require such understanding? Not necessarily. As an exam-

ple, consider one such benchmark, the Argument Reasoning

Comprehension Task (29). In each task example, a natural-

language “argument” is given along with two statements;

the task is to determine which statement is consistent with

the argument. Here is a sample item from the dataset:

Argument: Felons should be allowed to vote. A

person who stole a car at 17 should not be barred

from being a full citizen for life.

Statement A: Grand theft auto is a felony.

Statement B: Grand theft auto is not a felony.

An LLM called BERT (30) obtained near-human performance

on this benchmark (31). It might be concluded that BERT

understands natural-language arguments as humans do.

However, one research group discovered that the pres-

ence of certain words in the statements (e.g., “not”) can

help predict the correct answer. When researchers altered

the dataset to prevent these simple correlations, BERT’s

performance dropped to essentially random guessing (31).

This is a straightforward example of “shortcut learning”—

a commonly cited phenomenon in machine learning in

which a learning system relies on spurious correlations

in the data, rather than humanlike understanding, in or-

der to perform well on a particular benchmark (32–35).

Typically, such correlations are not apparent to humans

performing the same tasks. While shortcuts have been dis-

covered in several standard benchmarks used to evaluate
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language understanding and other AI tasks, many other,

as yet undetected, subtle shortcuts likely exist. Pretrained

language models at the scale of Google’s LaMDA or PaLM

models—with hundreds of billions of parameters, trained

on text amounting to billions or trillions of words—have

an unimaginable ability to encode such correlations. Thus,

benchmarks or assessments that would be appropriate for

measuring human understanding might not be appropriate

for assessing such machines (36–38). It is possible that, at

the scale of these LLMs (or of their likely near-future succes-

sors), any such assessment will contain complex statistical

correlations that enable near-perfect performance without

humanlike understanding.

While “humanlike understanding” does not have a rig-

orous definition, it does not seem to be based on the

kind of massive statistical models that today’s LLMs learn;

instead, it is based on concepts—internal mental models

of external categories, situations, and events and of one’s

own internal state and “self”. In humans, understanding

language (as well as nonlinguistic information) requires

having the concepts that language (or other information)

describes beyond the statistical properties of linguistic

symbols. Indeed, much of the long history of research

in cognitive science has been a quest to understand the

nature of concepts and how understanding arises from

coherent, hierarchical sets of relations among concepts that

include underlying causal knowledge (39, 40). Thesemodels

enable people to abstract their knowledge and experiences

in order to make robust predictions, generalizations, and

analogies; to reason compositionally and counterfactually;

to actively intervene on the world in order to test hypothe-

ses; and to explain one’s understanding to others (41–47).

Indeed, these are precisely the abilities lacking in current

AI systems, including state-of-the-art LLMs, although ever-

larger LLMs have exhibited limited sparks of these general

abilities. It has been argued that understanding of this

kind may enable abilities not possible for purely statistical

models (48–52). While LLMs exhibit extraordinary formal

linguistic competence—the ability to generate grammatically

fluent, humanlike language—they still lack the conceptual

understanding needed for humanlike functional language

abilities—the ability to robustly understand and use lan-

guage in the real world (53). An interesting parallel can

be made between this kind of functional understanding

and the success of formal mathematical techniques applied

in physical theories (54). For example, a long-standing

criticism of quantum mechanics is that it provides an

effective means of calculation without providing conceptual

understanding.

The detailed nature of human concepts has been the

subject of active debate for many years. Researchers dis-

agree on the extent to which concepts are domain-specific

and innate versus more general-purpose and learned (55–

60), the degree to which concepts are grounded via em-

bodied metaphors (61–63) and are represented in the

brain via dynamic, situation-based simulations (64), and

the conditions under which concepts are underpinned by

language (65–67), by social learning (68–70), and by culture

(71–73). In spite of these ongoing debates, concepts, in the

formof causalmentalmodels as described above, have long

been considered to be the units of understanding in human

cognition. Indeed, the trajectory of human understanding—

both individual and collective—is the development of highly

compressed, causally based models of the world analogous

to the progression from Ptolemy’s epicycles to Kepler’s

elliptical orbits and to Newton’s concise and causal account

of planetary motion in terms of gravity. Humans, unlike

machines, seem to have a strong innate drive for this

form of understanding both in science and in everyday

life (74). We might characterize this form of understanding

as requiring few data, minimal or parsimonious mod-

els, clear causal dependencies, and strong mechanistic

intuition.

The key questions of the debate about understanding in

LLMs are the following: 1) Is talking of understanding in such

systems simply a category error, mistaking associations

between language tokens for associations between tokens

and physical, social, or mental experience? In short, is it the

case that these models are not, and will never be, the kind

of things that can understand? Or conversely, 2) do these

systems (or will their near-term successors) actually, even

in the absence of physical experience, create something

like the rich concept-based mental models that are central

to human understanding, and, if so, does scaling these

models create ever better concepts? Or, 3) if these systems

do not create such concepts, can their unimaginably large

systems of statistical correlations produce abilities that

are functionally equivalent to human understanding? Or,

indeed, that enable new forms of higher-order logic that

humans are incapable of accessing? And at this point will

it still make sense to call such correlations “spurious” or

the resulting solutions “shortcuts?” And would it make

sense to see the systems’ behavior not as “competence

without comprehension” but as a new, nonhuman form of

understanding? These questions are no longer in the realm

of abstract philosophical discussions but touch on very real

concerns about the capabilities, robustness, safety, and

ethics of AI systems that increasingly play roles in humans’

everyday lives.

While adherents on both sides of the “LLM understand-

ing” debate have strong intuitions supporting their views,

the cognitive science–based methods currently available

for gaining insight into understanding are inadequate for

answering such questions about LLMs. Indeed, several

researchers have applied psychological tests—originally

designed to assess human understanding and reasoning

mechanisms—to LLMs, finding that LLMs do, in some

cases, exhibit humanlike responses on theory-of-mind tests

(14, 75) and humanlike abilities and biases on reasoning

assessments (76–78).While such tests are thought to be reli-

able proxies for assessing more general abilities in humans,

they may not be so for AI systems. As we described above,

LLMs have an unimaginable capacity to learn correlations

among tokens in their training data and inputs, and can use

such correlations to solve problems for which humans, in

contrast, seem to apply compressed concepts that reflect

their real-world experiences. When applying tests designed

for humans to LLMs, interpreting the results can rely on

assumptions about human cognition that may not be true

at all for thesemodels. Tomakeprogress, scientistswill need
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to develop new kinds of benchmarks and probing methods

that can yield insight into the mechanisms of diverse

types of intelligence and understanding, including the novel

forms of “exotic, mind-like entities” (79) we have created,

perhaps along the lines of some promising initial efforts

(80, 81).

The debate over understanding in LLMs, as ever larger

and seeminglymore capable systems are developed, under-

scores the need for extending our sciences of intelligence

in order to make sense of broader conceptions of under-

standing for both humans and machines. As neuroscientist

Terrence Sejnowski points out, “The diverging opinions of

experts on the intelligence of LLMs suggests that our old

ideas based on natural intelligence are inadequate” (9). If

LLMs and related models succeed by exploiting statistical

correlations at a heretofore unthinkable scale, perhaps

this could be considered a novel form of “understanding”,

one that enables extraordinary, superhuman predictive

ability, such as in the case of the AlphaZero and Al-

phaFold systems from DeepMind (82, 83), which respec-

tively seem to bring an “alien” form of intuition to the

domains of chess playing and protein structure prediction

(84, 85).

It could thus be argued that in recent years, the field of

AI has createdmachines with newmodes of understanding,

most likely new species in a larger zoo of related concepts,

that will continue to be enriched as wemake progress in our

pursuit of the elusive nature of intelligence. And just as dif-

ferent species are better adapted to different environments,

our intelligent systems will be better adapted to different

problems. Problems that require enormous quantities of

historically encoded knowledge where performance is at

a premium will continue to favor large-scale statistical

models like LLMs, and those for which we have limited

knowledge and strong causal mechanisms will favor human

intelligence. The challenge for the future is to develop new

scientific methods that can reveal the detailed mechanisms

of understanding in distinct forms of intelligence, discern

their strengths and limitations, and learn how to integrate

such truly diverse modes of cognition.
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